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Abstract

This work is about solving the global localization issue for mobile robots operating
in large and cooperative environments. It tackles the problem of estimating the
pose of a robot or team of robots in the map reference frame, given the map, the
real-time data from the robot onboard sensors and the real-time data coming from
other robots or sensors in the environment. After a first step of position hypotheses
generation, an efficient probabilistic active strategy selects an action, for a single
lost robot case, or two joint actions when two lost robots are in a line of sight,
so that the hypotheses set is best disambiguated. The action set is adapted to the
multi-hypothesis situation and the action evaluation takes into account the remote
observations available in robot network systems. The paper presents the theoretical
formulation for both, the non cooperative and cooperative cases. An implementation
of the proposed strategy is discussed and simulation results presented.
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1 INTRODUCTION

The ability of a mobile robot to solve a map-based navigation issue involves
three main tasks: global localization, path planning and path execution, the
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later requiring two sub-tasks, position tracking and obstacle avoidance. This
paper adresses the map-based global localization challenge, identified as a
key topic by the robotics research community, especially in large areas [4].
Specifically, the paper studies the global localization task for mobile robots
operating in large and cooperative environments. This refers to the problem
of estimating the position of a robot in the map reference frame, (xm

r , ym
r , θm

r ),
given the map, the real-time data from the robot onboard sensors and the real-
time data coming from other robots or sensors in the environment. Moreover,
providing autonomy to mobile robots implies that they should solve the global
localization task without human aid, therefore the paper proposes an active
strategy that selects actions to be performed by the robots to solve the global
localization task, taking advantage of the cooperative environment.

Different reasons have made to formulate global localization in a stochastic
context: noisy sensor data, delays in the data acquisition processes or approxi-
mations of the robot kinematic model. Due to these reasons, global localization
methods have to deal with uncertainty in the state space of the robot. This
uncertainty is usually represented whether with a multi-gaussian distribution
[10,1,26], a complete discretization of the state space [7] or by means of a
set of weighted particles sampling the state space [25,15,12]. Whichever the
case, the distribution is considered multi-peak for robust solutions, that is,
we have to deal with multiple position hypothesis in order to solve the global
localization issue. Therefore, if we are considering an autonomous robot, an
active strategy is required so as to decide which command should the robot
perform, in robot coordinates frame since the robot is not yet localized, to
drive it to other places of the environment with the aim of disambiguating the
multi-hypothesis situation. Figure 1 shows an usual multi-hypothesis situation
when particle filter localization is executed in an environment of 10.000m2.

Fig. 1. Multi-hypothesis situation in global localization with particle filtering
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Existing methods for active global localization can be divided in heuristic,
geometric and entropy-based approaches. Heuristic strategies have been pro-
posed by [10,9]. The former describes a set of rules that command the robot
to the non visited areas where more features are expected to be found, while
the later drives the robot to the nearest obstacle found in the map, taking into
account all position hypotheses. Heuristic approaches lead to generalization
problems when they are exported to dynamic and large environments with
other robots operating around.

A second trend in active strategies are the geometric approaches [20,17].
In [20], authors address the problem of localizing a lost robot executing the
minimum distance path by means of a random search over a world overlap-
ping local maps of all hypotheses. More recently, [17] proposes a minimalist
approach using only odometry data to actively localize a robot up to the sym-
metries of the environment. Both works suppose deterministic sensor readings
and robot motions, and present simulated experiments in an ideal polygonal
world. Extrapolation of these approaches to uncertain, dynamic and coopera-
tive environments remains an open question.

A third family of active techniques, called entropy-based, address the issue of
the uncertainty. In [6], a general formulation of the problem is presented, based
on the Markov framework of the same authors [7]. They evaluate a finite and
fixed set of actions computing the expected future belief and its associated
entropy. The strategy selects the action minimizing the expected entropy, so
selecting the action that most concentrate the expected position distribution
over the state space. The complete discretization of the state space provokes
high computational complexity, especially for large environments. Authors in
[18] implement an entropy-based active localization algorithm using a stereo
camera and a particle filter framework that improves the computational cost.
However, computational efforts remain hard and in the practical situation
authors have to reduce drastically the set of actions and the size of the envi-
ronment to obtain a reasonable computation delay. These approaches grow in
complexity when multiple robots are operating in the same environment and
detections should be considered for the computation of the expected belief.

In recent years, attention has been paid to cooperative robotics. A group of
robots is considered to solve a common task or to provide services to a user
community. Moreover, when a set of sensors is deployed on the environment,
robots and sensors build a computer network, and a network robot system

arises. In such a system, cooperative behaviours can appear in two ways: shar-

ing information among the sensors and robots of the network or selecting joint

actions to solve a common task. Cooperative localization has been adressed by
means of different passive approaches. Some authors have studied the relative
localization and identification between robots [19,21,22], a key subsystem to
integrate observations coming from a remote observer (another robot or the
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sensor network). In [5] map-based global localization is addressed, where a lost
robot integrates observations from another robot using a particle filter frame-
work. A simulated experiment shows how a group of heterogeneous robots
can localize themselves, thanks to the proposed cooperative framework, in
an environment where, otherwise, they could not localize. Other authors also
adressing the information-sharing issue for cooperative localization are [14,23].
They propose fusion frameworks such as decentralized Kalman Filters focused
on applications in open outdoor terrain, using absolute sensors, such as GPS
or compass, to correct estimations. Finally, the RoboCup community has also
extensively studied the multi-robot localization problem but in a more limited
way, because of the particular specifications of such environment [3].

Up to the knowledge of the authors, there are no works adressing the active

global localization in such a netwok robot system, neither for a single lost robot
member of that network, where the robot can take benefit of the potentialities
of remote observations in the action selection step, nor for the case of more
than one lost robot, members of that network, where the robots furthermore
can select a set of joint actions, one action to be execute by each lost robot.

The present work proposes a novel and efficient solution to the active map-
based global localization for cooperative mobile robots operating in large envi-
ronments. Since the goal application is to navigate in large environments, such
as urban settings, with a group of robots operating on it and/or with a de-
ployed sensor network [24], both computational efficiency and cooperation are
addressed. Novelty relies on the consideration of a cooperative environment
in the action selection step for global localization, in the two described ways
of cooperation: sharing information and selecting joint actions. Efficiency is
thanks to the reduction of time complexity for the active strategy, since com-
puting is performed in terms of the number of position hypotheses, instead of
using the whole belief function such as entropy-based approaches do.

The paper is organized as follows: In section 2, the basic assumptions, main
definitions and notation used are presented for the proposed active and coop-
erative global localization method. Section 3 presents the theoretical frame-
work for the single robot case in a non cooperative environment and section
4 extends the formalism to the network robot context (cooperative environ-
ment), developing the single lost robot case and the two lost robots case.
An implementation of the presented active strategy is proposed in section 5.
Section 6 describes the simulator used to test the proposed approach in a net-
work robot environment. Section 7 analyses the computational complexity of
the presented approach for both, the theoretical framework and the proposed
implementation. Simulation results in the URUS [24] test bench area, an out-
door campus environment of 10.000 m2, are presented in section 8 showing
promising behaviours. Finally, section 9 lists the main conclusions pointing
out the potentialities of the presented work.
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2 BASIC ASSUMPTIONS AND DEFINITIONS

We give in this section the basic considered assumptions as well as the formal
definitions of the concepts that will be used all throughout the paper dealing
with the presented active strategy. Some of the assumptions made are common
to other existing map-based mobile robot localization approaches. Please note
that the points listed below are further discussed in section 5.

2.1 Basic assumptions

• Environment is large-scale since it goes beyond the robot sensor horizons.
• The robot has a map, M, as a data base describing the area where it

operates following an environment model. There is no restriction on the
ontology of this environment model.

• The robot is equipped with a sensory system that provides proprioceptive
observations at time t, in order to propagate the state of the robot using a
kinematic model of the robot platform.

• The sensor network does not cover all the working area. Otherwise, the
robots are considered to have always communication coverage, so data com-
munication service is always available.

• Position of the sensor network devices is known with a given uncertainty.
• A sub-system for robot identification and relative localization is assumed

to be onboard the robots and also implemented by the sensor network. If a
robot is within an area covered by the sensor network or in the line of sight
of another robot, the first one can request for remote observations about its
position. Examples of such a sub-system can be found in [19,21,22].

• A robot can process real observations coming either from its onboard ex-
teroceptive sensor readings, from other robots, or from the sensor network
server, thanks to an implemented data communication service. Figure 2 il-
lustrates this issue, remarking the difference between local/remote sensor
readings of the whole system and local/remote observations available at a
given robot for local processing.

Fig. 2. Locally available observations for a mobile robot in a network robot context

• An explicit model for each observation is assumed, in order to compute
synthetic observations, provided that the robot is at a given state. These
observation models can be pre-computed off-line and stored in a look-up
table or in an appearance map, or they can be computed at execution time.
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While the former alternative needs discretization of the full state space
to compute the model, appearing a trade-off, especially in large enviro-
ments, between discretization resolution and memory complexity, the later
approach increases time complexity.

• Studying the errors provoked by data communication delays is beyond the
scope of this work. Here, the robots are assumed to move relatively slow in
comparison with communication delays, thus errors on integrating delayed
data are directly modelled incrementing uncertainty of observations.

• A path planning technique is assumed to be available in order to provide
the robot a collision free path to execute.

2.2 Definitions

• A position p in the map frame coordinates is Xm
p = (xm

p , ym
p , θm

p ). The true

state of the rth robot is defined by its position Xm
r = (xm

r , ym
r , θm

r ). The
estimated state of the rth robot is X̂m

r = (x̂m
r , ŷm

r , θ̂m
r ).

• The state space is given by Xm = {[xm
min, xm

max], [y
m
min, y

m
max], (−π, π]}. Both

Xm
r and X̂m

r are in Xm.
• A proprioceptive observation at time t is denoted by ot

0
and is the input to

propagate the state of the robot using a kinematic model f(·).
• At time t, a robot can use up to NO real observations, ot

n, n = 1..NO. Each
observation is in its observation space, ot

n ∈ On.
• The nth synthetic observation at the state Xm

p , is computed by the explicit
observation model and is denoted as os

n(Xm
p ), where os

n(Xm
p ) ∈ On.

• A likelihood function Ln(·) is defined that calculates the matching between
two nth observations (real and/or synthetic). This function approaches to 1
for similar observations and goes close to 0 for distinctive ones.

Ln(ot,s
n , ot,s

n ) ∈ [0, 1] (1)

• The conditional probability for a real observation ot
n, given the robot is

at state Xm
p , p(ot

n|Xm
p ), is computed from the explicit observation model

os
n(X

m
p ) and the likelihood function Ln(·), as:

p(ot
n|Xm

p ) = Ln(ot
n, o

s
n(Xm

p )) ∈ [0, 1] (2)

• This probability can be also computed for a synthetic observation, indicating
how distinctive is the position Xm

q to the position Xm
p from the point of view

of the nth observation. This fact is the core of the herein proposed active
strategy and is formally defined as:

p(os
n(Xm

q )|Xm
p ) = Ln(os

n(Xm
q ), os

n(X
m
p )) ∈ [0, 1] (3)

• A set of NH position hypotheses for the robot is defined as H = {h1, . . . , hNH
}

where the ith hypothesis is defined with a position in the map coordinate
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frame, Xm
hi

= (xm
hi

, ym
hi

, θm
hi

), a covariance matrix, Chi
, and a probability as-

sociated to that hypothesis such that for the robot position, phi
:

hi = {Xm
hi

, Chi
, phi

}, ∀i = 1..NH ;
NH
∑

i=1

phi
= 1 (4)

Different approaches can be found in the literature providing this hypothesis
set explicitly [10,1,26], or, alternatively, clustering a particle set such as the
provided by the particle filter localization methods [25].

With all these assumptions and definitions, the problem to be solved by an
active strategy is where to move a lost robot in order to reduce the hypotheses
set. The proposed strategy exploits the map and the cooperative environment,
selecting actions that drive the robot where distinctive observations are ex-
pected among the hypotheses. The proposed active approach is formulated in
a general way but section 5 discusses practical issues when implementing the
above listed requeriments in order to obtain the illustrative results of section 8.

3 ACTIVE STRATEGY. NON COOPERATIVE ENVIRONMENT

This section formulates the active strategy for the single robot case operating
in a non cooperative environment, therefore only observations coming from
its own sensors are available. The proposed active strategy is divided in three
steps, and only one action can be selected. The first step consists in randomly
generating a set of exploration particles in the robot coordinate frame, as
robot candidate destinations (candidate actions). The second step validates
these exploration particles if a multi-hypothesis path exists between the robot
and the given exploration particle. The third step computes, for each validated
exploration particle, the expected number of remaining hypotheses given that
the robot goes to that exploration particle. The exploration particle, as a
position in the robot coordinate frame, with minimum expected number of
remaining hypotheses is the selected one to drive the robot.

3.1 Generating Exploration Particles

Let’s call the kth exploration particle, ǫr
k, as a random position in the robot

coordinates frame generated within a given disk of radius Rǫ around the robot.
Rǫ is called the exploration radius.

ǫr
k = Xr

ǫk
= (xr

ǫk
, yr

ǫk
, θr

ǫk
) (5)
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Under the assumption that hi is the true hypothesis, we can express ǫr
k in the

map coordinates frame as:

ǫm
ki = ǫr

k|hi =















xm
hi

ym
hi

θm
hi















+















cos(θm
hi

) −sin(θm
hi

) 0

sin(θm
hi

) cos(θm
hi

) 0

0 0 1





























xr
ǫk

yr
ǫk

θr
ǫk















(6)

Please note that ǫm
ki ∈ Xm and equation 6 shows that a single exploration

particle ǫr
k becomes a set of NH positions in the map when it is translated

to the map coordinates frame, since we have to consider all hypotheses and,
therefore, we should translate ǫr

k for each hypotheses hi, i = 1..NH . Fig. 3
illustrates this observation.

Fig. 3. A set of 5 exploration particles in the robot coordinates frame (left) and their
transformation to map coordinates frame (right) when NH = 2. Each exploration
particle is represented as a point with a short line indicating its orientation.

3.2 Multi-hypothesis Path Planning

Even if ǫr
k is expressed in the robot coordinate frame and, therefore, the robot

knows where the exploration particle is positioned, since ǫr
k can be beyond

the sensor horizons we have to assure that a free path exists between the
robot and ǫr

k for all hypotheses. We have called this step multi-hypothesis path

planning (MHPP), as the planning of a path expressed in the robot coordinate
frame using all hypotheses constraints. Figure 4 draws the MHPP approach in
an illustrative geometric world. For this step, Chi

can be used as a clearance
factor. If a multi-hypothesis path (MHP) exists between the robot and the ǫr

k,
we label ǫr

k as a valid candidate destination, er
k, to drive the robot adding it

to the set of all valid exploration particles E. Summarizing, the output of the
first and second steps of the active strategy will be a set E of NE exploration
particles E = {er

1
. . . er

NE
} that are connected to the robot with a MHP. This

set E is the action set to be evaluated, since each er
k is considered as an action

go to er
k. This action set has been automatically generated and it is adapted to
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the current situation of the robot. Note that E is not a fixed action set such as
most of the previous works proposed in the literature. Please, remind that an
exploration particle is expressed in the robot frame and it can be translated
to the map frame if we assume hypothesis hi being true:

em
ki = er

k|hi, em
ki ∈ Xm; ∀k = 1..NE, ∀i = 1..NH (7)

Fig. 4. Multi-hypotyhesis Path (MHP) in an illustrative geometric world. Map co-
ordinate frame on the left and robot coordinate frame on the right.

3.3 Computing Hypotheses Reduction

The goal of this third step is to compute N̂H(er
k), as the expected number of

remaining hypotheses given that the robot goes to er
k and senses the environ-

ment. To compute this number, we first must to be able to compute N̂H(er
k|hi),

as the expected number of remaining hypotheses assuming hi as the true po-
sition hypothesis, and given that the robot will execute the action go to er

k.
Using equation 3 and considering we are integrating only one exteroceptive
observation (NO = 1), we formulate:

N̂H(er
k|hi) =

NH
∑

j=1

p(os
1
(em

kj)|em
ki) (8)

If the perception module of the robot provides NO exteroceptive observations,
and we assume independency between them, equation 8 is generalized as:

N̂H(er
k|hi) =

NH
∑

j=1

NO
∏

n=1

p(os
n(em

kj)|em
ki) (9)
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We can now formalize the N̂H(er
k) as the sum of each N̂H(er

k|hi) weighted by
the probability of the ith hypothesis being true, phi

:

N̂H(er
k) =

NH
∑

i=1

N̂H(er
k|hi) · phi

(10)

Please note that N̂H(er
k) ∈ [1, NH ] since p(os

n(em
kj)|em

ki) ∈ [0, 1] as stated in
section 2. For an exploration particle er

k having similar synthetic observa-
tions ∀hi, all the probabilities p(os

n(em
kj)|em

ki) will be close to 1 and, therefore,

N̂H(er
k)|hi ≈ NH . Given the assumption of equation 4, N̂H(er

k) will also result
in ≈ NH . This case implies that the position of er

k has synthetic observations
too similar for all position hypotheses, and, therefore, it is an exploration par-
ticle that will not disambiguate at all the situation. On the other hand, when
an exploration particle has completely different synthetic observations ∀hi,
the probability p(os

n(em
kj)|em

ki) will be close to zero ∀i 6= j, but it will take one

for i = j. Again, given the assumption of equation 4, N̂H(er
k) ≈ 1. In this

case, the exploration particle er
k is expected to completely disambiguate the

situation since all synthetic observations are entirely different for each hi.

With this well delimited results, we can use the N̂H(er
k) as the expected number

of remaining hypotheses given that the robot goes to er
k, so the robot will start

path execution driving itself to the position er
k with minimum N̂H(er

k).

4 ACTIVE STRATEGY. COOPERATIVE ENVIRONMENT

This section formulates the previous strategy for a cooperative context in
which different robots work in a network robot environment. A network robot
environment is formed by a sensor network of NC sensors and a group of NR

robots. The formulation is presented for the two ways of cooperation discussed
in section 1: sharing information and selecting joint actions.

4.1 Single Lost Robot in a Sensor Network: Sharing Information

This subsection analyses the particular case of a lost robot which is a member
of a network robot system. In this situation the active strategy selects, as in
section 3, one action exploiting its onboard sensors and the map, but also uses
the potentialities of integrating remote observations. Let’s define the coverage
space of the sensor network, which does not depend on time, as:
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CCN =
NC
⋃

c=1

Cc , CCN ⊂ Xm (11)

where Cc is the coverage area of the cth sensor of the network. We can also
define the coverage space of the robots, which is time depending, as:

Ct
RN =

NR
⋃

r=1

Ct
r , Ct

RN ⊂ Xm (12)

where Ct
r is the coverage area of the rth robot at time t. For a lost robot,

Ct
r = ∅.

In the proposed network robot system, both CCN and Ct
RN are data available

on the central server, since it knows where the sensors are deployed and where
the non lost robots are. Note that a robot can request both coverage spaces at
a given time and, therefore, a lost robot can use this data for local processing
when it is executing the active global localization strategy.

In this context, the active strategy will be the same that the one exposed in
section 3. Evaluation of actions will be done by equations 9 and 10, but con-
sidering that the robot can use external observations done by other observers
such as a camera network or well localized robots. In equation 9, and in order
to consider remote observations for the active strategy, the lost robot has to
evaluate if em

kj is in CCN

⋃

Ct
RN . If this is the case, a remote observation for

that position is available and the p(os
n(em

kj)|em
ki) can be computed where os

n is
the model for that remote observation.

The effect of this is that exploration particles expected to be in the coverage
space, CCN

⋃

Ct
RN , will be attractive to move the robot since disambiguation

can be done via remote observations instead of only considering the robot
exteroceptive observations. Therefore, this is a situation of an active approach
considering the potentialities of a cooperative environment, taking advantage
of information sharing.

The reader can consider, as an illustrative example, the GPS system as a
particular case of this cooperative context since the GPS satellite network
acts as a sensor network. Assuming that we have a map of the GPS coverage
in our environment, a lost robot equipped with a GPS out of coverage will be
attracted by actions driving the robot to areas where GPS is available.

4.2 Two Lost Robots: Selecting Joint Actions

This subsection addresses the case where two lost robots are performing the
global localization task, hence trying to locate themselves in the environment.
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Fig. 5. Robot frames and the cooperative robot frame.

In this case the output of the active strategy should be two joint actions, each
one to be executed by each robot.

We assume two lost robots, rth and ρth, that are in the line of sight of each
other and can be detected between them by means of an active or passive
beacon system like the ones reported in [19,21,22]. So they can build up a
commom frame in the middle point of this line of sight, called the cooperative
robot frame and denoted by (xrρ, yrρ, θrρ)(see figure 5). From the observation
made by the rth robot to the ρth robot, (δr

ρ, α
r
ρ, φ

r
ρ), the cooperative frame is

placed in terms of the rth robot coordinates as:

xr
rρ =

δr
ρ

2
cosαr

ρ; yr
rρ =

δr
ρ

2
sinαr

ρ; θr
rρ =

φr
ρ

2
(13)

Initially, the robots translate their own observations to the cooperative frame
(xrρ, yrρ, θrρ) and an hypotheses generation step to localize its center is ex-
ecuted integrating all available observations. Once a set of hypotheses for
(xrρ, yrρ, θrρ) is obtained, the active strategy could run as exposed previously
and the robots could perform the two best actions, a different action for each
robot. But this approach is not suitable since this couple of actions could
disambiguate the same subset of hypotheses and, therefore, the two decided
actions would be redundant. Instead, it would be desirable that the robots
take complementary actions, complementary in the sense that each action
disambiguates a different subset of hypotheses. Previous strategy of estimat-
ing N̂H(er

k) gave us a quantitative criterion but for the multi-action problem
we need also a qualitative criterion to evaluate the actions.

To formulate a qualitative criterion, we start defining a NH -dimensional vector,
V (erρ

k ), for each exploration particle in the cooperative robot frame. The ith

component of such vector is defined using the equation 9 as:

V (erρ
k )i = N̂H(erρ

k |hi) − 1, ∀i = 1 . . .NH , ∀k = 1 . . . NE (14)

This vector indicates at its ith component how the kth exploration particle
resolves the hypothesis hi. Substraction of 1 removes the contribution of i = j
of equation 9, which is always 1, and leads to a more sparse vector set, more
suitable for computations presented below. A vector defined by the above
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equation will have the following properties inherited from equations 1 and 3:

• V (erρ
k )i ∈ [0, NH − 1] , ∀i = 1..NH , ∀k = 1..NE

• The ideal exploration particle is that erρ
k which fully disambiguates the

situation. It has a vector V (erρ
k ) = [0].

• An useless exploration particle has completely ambiguous synthetic obser-
vations. It has a vector V (erρ

k ) = [NH − 1].

We define a weighted scalar product between two of these vectors as:

< V (erρ
k ), V (erρ

q ) >=
NH
∑

i=1

V (erρ
k )i · V (erρ

q )i · phi
, ∀k, q = 1 . . . NE (15)

These weighted scalar product gives us a measure of the complementariness
of these two exploration particles. The scalar product will be maximized when
two particles disambiguate the same subset of hypotheses and, therefore, their
vectors will be colinear. Otherwise, when two exploration particles disam-
biguate different subsets of hypotheses, V (erρ

k ) and V (erρ
q ) are close to be

orthogonal and the scalar product approaches to zero.

For this case, the strategy initially selects the best exploration particle in the
sense of minimum N̂H(erρ

k ), as it was done for the single robot case, which
will be called the primary one, erρ

s1. Then, the strategy will search a support
action, that is, going to the exploration particle erρ

k minimizing the weighted
scalar product with erρ

s1. This support exploration particle will be labelled as
erρ

s2. Finally, erρ
s1 and erρ

s2 have to be executed by the robots so it is necessary
to compute the translation of both actions from the cooperative robot frame
(x, y, θ)rρ to each robot frame (x, y, θ)r and (x, y, θ)ρ.

5 IMPLEMENTATION OF THE ACTIVE STRATEGY

This section details the implementation of the proposed active strategy, which
is intended to be independent from the origin of data, whether coming from
a real platform and sensors or from a simulated environment.

5.1 Environment Model

The experimentation area is the surroundings of the ’FIB square’ at the Cam-
pus Nord of the Universitat Politècnica de Catalunya. This outdoor environ-
ment (see Fig.1) is about 100mx100m and it is the test bench environment
for the URUS european project [24]. The environment is modelled with the
vector format of the Geographical Information Systems (GIS) model [13]. One
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of the benefits of using such a map is that the robots are using a standard
format, human compatible, and usually available at city councils of impor-
tant towns, instead of an adhoc representation adapted to the robot sensors.
Other interests of this representation is its compactness (∼ 4bits/m2 in our
case), required for large environments, and the possibility to perform both
localization and path planning tasks on it. In such map, the environment is
represented by a set of obstacles. Each obstacle is represented with some re-
lated semantic information and a set of straight segments limiting its borders.
Each segment is parametrized with two points in the map coordinate frame,
height information, and is also accompanied of some semantic data. In order to
drastically reduce computational cost of routines dealing with the map, each
obstacle is enclosed in a minimum bounding ball [8]. A detailed exposition of
this representation can be found in [2].

5.2 Observation Models

For the active strategy we take into account a laser scanner, an electronic
compass and a set of omnidirectional cameras deployed on the environment.
The relative localization between robots is only considered to build the co-
operative frame for the two lost robots case. This subsection describes the
observation models used to compute the synthetic observations os

n(Xm
p ), that

is the nth observation expected to have at the state Xm
p . These models are

used to compute the p(os
n(e

m
kj)|em

ki) of equation 9.

The observation model for the laser scanner, os
1
(Xm

p ), is a vector of NLS =
133 ranges over the scan aperture of (−95, 95) degrees. The maximun laser
range is limited to RL = 15m. To compute this observation model, we compute
the ray tracing function from the position Xm

p . Ray tracing uses the map to re-
turn the distance between the given position and the nearest obstacle forward.
In order to obtain an entire scan observation, the ray tracing is performed NLS

times covering all the scan aperture. The output of the observation model of
the laser scanner is, for the Xm

p position:

os
1
(Xm

p ) = (os
1,1(X

m
p )...os

1,NLS
(Xm

p )); os
1,i(X

m
p ) = rayTracing(Xm

p ,M, i) (16)

For the compass, the observation model, os
2
(Xm

p ), is:

os
2
(Xm

p ) = θm
p , ∈ (−π, π] (17)

The sensor network is modelled as a set of NC omnidirectional cameras
deployed at known positions of the environment. The implemented observa-
tion model, os

3
(Xm

p ), outputs a triplet containing range, bearing and heading
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measures (see figure 6). The coverage area for the cth camera, Cc, is modelled
as the set of positions of the state space that are in a line of sight of length
less than RC = 7m with the position of the cth camera. If Xm

p ∈ Cc, the
observation model is computed as:

os
3
(Xm

p ) =















δc,p

αc,p

φc,p















=















√

(xm
p − xm

c )2 + (ym
p − ym

c )2

atan(
ym

p −ym
c

xm
p −xm

c
)

θm
p















(18)

otherwise, when Xm
p /∈ Cc, ∀c = 1..NC the output of the model is os

3
(Xm

p ) =
(−1,−1,−1), indicating that the position is not seen by the camera network.

Fig. 6. The observation model for the cth camera seeing the position Xm
p .

This implementation does not integrate potential relative localization be-
tween robots in equation 9 as observations. This could be done in a similar
way such that implemented by the cameras since a well localized robot can be
considered as an static camera of the camera network.

5.3 Likelihood Functions

In order to compute the conditional probabilities of equation 9, and as stated
in equations 2 and 3, we need to implement likelihood functions Ln(·) for
each of the above mentioned observations models. All the implemented Ln(·)
are based on the well known erfc(). Below, these likelihoods are presented as
a functions between a real and a synthetic observation but, as discussed in
equation 3, they can be also computed for two synthetic observations.

The likelihood function for the laser observations, where σ1 = 0.5m, is:

L1(o
t
1
, os

1
(Xm

p )) =
1

NL

NLS
∑

i=1

erfc(
|ot

1,i − os
1,i(X

m
p )|

σ1

√
2

) (19)
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For the compass observations, the L2(·), where σ2 = 0.08rad, is:

L2(o
t
2
, os

2
(Xm

p )) = erfc(
|ot

2
− os

2
(Xm

p )|
σ2

√
2

) (20)

The likelihood function for the camera network observation, where σ3,1 =
0.5m, σ3,2 = 0.05rad and σ3,3 = 0.1rad, is:

L3(o
t
3
, os

3
(Xm

p )) =
1

3

3
∑

i=1

erfc(
|ot

3,i − os
3,i(X

m
p )|

σ3,i

√
2

) (21)

For the Ln(·) involving two synthetic observations os
n(em

ki) and os
n(em

kj), param-
eters σn can be calculated using the matrices Chi

and Chj
, ∀i, j, k, n.

5.4 Hypotheses Generation: Particle Filtering and Clustering

A particle filter has been implemented to perform an initial search as pre-
vious step of the active strategy, following the well stablished framework
of [25]. The filter represents the position belief with a set of NP particles,
st

i = {Xm,t
si

, wt
si
}, ∀i = 1..NP . It initializes generating the set of position parti-

cles sampling randomly the (x, y)m space, but sampling the θm space with a
normal law of N (θ0, σθ0), being θ0 the first ’magnetically clean’ compass obser-
vation. Weights of each particle are initialized to wsi

= 1/NP . A propagation
step is performed to move each particle’s state, using the odometric oberva-
tion ot

0
and the kinematic model f(·). The above described likelihood functions

integrate real observations to correct the weights of each particle position as:

wt
si

= wt−1

si
·

N0
∏

n=1

p(ot
n|Xm,t

si
) , ∀i = 1..NP , ∀t > 0 (22)

The resampling step generates a new particle set sampling the old one accord-
ing to the particle weights, so likely areas are successively more sampled. We
have used NP = 5000 for this initial step. After several iterations, particles
are concentrated in differentiated clusters, so we perform a clustering step to
generate a reduced hypotheses set H . Clustering is implemented using a re-
cursive routine that starts with the set of position particles ordered by their
weights wsi

≥ wsj
when i < j. Let Kk be a cluster and c(Kk) be the cen-

troid of it. Initially, the routine creates the first cluster using the first particle
c(K1) = Xm

s1
. The rest of the particles will join to an already created cluster

if d(Xm
si

, c(Kk)) < RK or, otherwise, will create a new cluster. RK is the pa-
rameter fixing clustering size, set to RK = 3m. Each time that a particle joins
to an already created cluster, the centroid is updated, using all the particles
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in that cluster, as a weighted mean of their positions. The fact that, in a par-
ticle filter, the more likely particles are usually at the center of the clusters
improves the performance of this simple method. Finally, a covariance matrix
is computed with the particle subset of each cluster, and clusters become the
position hypotheses, so the system is ready to perform the active strategy.

5.5 Multi-hypothesis Path Planning

The Rapidly-Exploring Random Trees (RRT) approach [11] has been imple-
mented. In the case of the multi-hypothesis path planning, the tree is com-
puted in the robot coordinate frame translating the map obstacles to this
frame for each hypotheses in a similar way as equation 6 does. When planning
paths in the robot coordinates to reach er

k goals, randomly points that build
iteratively the tree are generated in the surroundings of the robot, instead of
on the whole map in order to improve the efficiency of the RRT. Details on
the implementation of the RRT’s can be found in [2]. However, we have seen
that generation and validation of the exploration particles can be collapsed in
a single step by means of building a single RRT bounded in the exploration
area. The RRT is also generated in the robot frame, taking into account the
constraints of all hypotheses. The nodes of the RRT will be directly the ex-
ploration particles. This computes a single but ’big’ RRT just once, avoiding
the computation of a RRT to validate each exploration particle. Exploration
radius Rǫ is set to 20m.

6 Overview of the Simulated Environment

The implemented simulator periodically updates the position of each robot
Xm,t

r , ∀r = 1..NR according the velocities commanded by the user or any
other process driving the robot. This simulator also has several independent
processes that compute the real observations used by the localization filter.
There are also independent processes for camera network observations and for
relative localization between robots. This simulator uses the YARP middel-
ware for interprocess communication [16] and is fully implemented in C++
following the object oriented programming paradigm. Figure 7 shows the di-
agram of the processes involved in the simulations of the global localization.
With this proposed architecture, the localization module is fully reusable when
observations come from real sensors, as in the case of real experimentation.
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Fig. 7. Diagram of involved processes of the simulated environment. Big bold blocks
are main processes and small non-bold blocks are threads. Wide arrows are YARP
communications and thin arrows represent shared memory communications.

6.1 Mobile platform

We simulate a generic holonomic wheeled mobile platform, that, at time t,
receive translational and rotational velocities, vt

L and vt
θ, to propagate, at

each time step ∆T0, its position with the kinematic model f(Xm,t−1

r , vt
L, vt

θ):

Xm,t
r =












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xm
r
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
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
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∆T0v
t
Lcos(θm,t−1

r + ∆T0v
t
θ)

∆T0v
t
Lsin(θm,t−1

r + ∆T0v
t
θ)

∆T0v
t
θ















(23)

When a set of NR is being simulated, this update is done by each platform as
an independent thread.

6.2 Real Observations

The onboard sensors and the other sensors and robots of the network pro-
vide real observations, ot

n, computed from the simulated robot position, to be
integrated by the localization algorithm, in the hypotheses generation step.

Each platform is equipped with wheel encoders that provide, at time t, the
odometric observation ot

0
. This observation is composed by the increment in

translational motion, δLt, and the increment in rotational motion, δθt. We
add to these increments a simulated normal noise with standard deviation of
5% in translation and 10% in rotation:

ot
0

= (δLt + N (0, 0.05 ∗ δLt), δθt + N (0, 0.1 ∗ δθt)) (24)
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where,

δLt =
√

(xm,t
r − xm,t−1

r )2 + (ym,t
r − ym,t−1

r )2; δθt = θm,t
r − θm,t−1

r (25)

Each simulated robot has also a simulated laser scanner RS4 (Leuze corp.),
providing, at time t, a real observation ot

1
; computed from the simulated robot

position, Xm,t
r , following the model described in the section 5. However, to

simulate a real observation, we add normal noise with 5cm standard deviation.

ot
1

= (ot
1,1, .., o

t
1,NLS

); ot
1,i = rayTracing(Xm,t

r ,M, i) + N (0, 0.05) (26)

An electronic compass TCM2 (PNI corp.) is also simulated to be onboard
of each robot and provides, at time t, a real observation ot

2
. This observation

is directly computed as the heading of the simulated robot position with a
normal noise of standard deviation of 0.05rad:

ot
2

= θm,t
r + N (0, 0.05) (27)

In the simulator, compass observations are always available. However, compass
measurements are usually corrupted by magnetic distortions. For the local
distortions, the TCM2 device provides an automatic routine to calibrate itself
in a given position on the robot. For the external distortions, this device has
a magnetic alarm to detect corrupted readings.

The sensor network is modelled as a set of NC omnidirectional cameras

deployed at known positions. This camera network provides to the robot, at
time t, the observation ot

3
. The model to compute real observations of the

camera network is the same than the one exposed in section 5, but adding
normal noise to the measurements. If a robot is in the coverage area of the cth

camera, Xm
r ∈ Cc, a real observation of the camera network is available as:

ot
3

=


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atan( y
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) + N (0, 0.02 ∗ δt
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r + N (0, 0.2)
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(28)

When the ρth robot sees the rth one in a line of sight of length less than
RR = 10m, the observation made by ρ at time t, in terms of the ρth frame, is:
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(29)
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7 COMPUTATIONAL COMPLEXITY

This section discusses the computational cost of the proposed active approach,
both in time and memory, and compares it to that of the existing entropy-
based methods [7,18]. In order to compare different methods, we introduce the
notation NA as the number of actions to be evaluated, which in our method
coincides with NE since each exploration particle supposes an action.

As equations 9 and 10 suggest, the time complexity to evaluate a single action
in the proposed active strategy is O(N2

H ·NO). Therefore, the time complexity
of evaluating a set of NA actions results on O(N2

H ·NA ·NO). In the particular
case of the implementation presented in section 5 and since the observations
are computed on-line, N0 becomes NLS + NC , which refers to the laser scan-
ner number of points and the number of cameras respectively. In terms of
memory complexity, the presented implementation is extremely efficient since
the spatial representation is based on the compact GIS vector format and no
sensor-appearance data is stored in the map database, thus avoiding space dis-
cretization and huge representations. The memory complexity of this spatial
representation has not been analyzed in this work but the real environment of
about 10.000m2, used in this paper as a testbench area, is represented with a
map of about 40KBytes, supposing a very efficient map model (4Bytes/m2).

For the work in [7], based on the Markov framework, time complexity behaves
as O(N2

X ·NA ·NS), where NX is the number of all possible position states, NA

the size of the action set and NS the number of sensings at each state. In order
to reduce the computational cost, authors precompute the sensor model and
cluster the belief distribution, forming a set of NXg Gaussians in a runtime
step, reducing time complexity to O(NX · NXg · NA), with NXg ≪ NX . This
clustering step is similar to that performed by our proposed strategy in the
sense of creating a set of Gaussians instead of having a complete sampled belief
distribution. Therefore we can suppose that NXg ∼ NH . However, the term
NX remains in the time complexity expression for this approach. Due to the
complete discretization of the state space, NX grows up with the environment
size and this approach remains too expensive in large areas.

Using the same entropy-based approach but based on the particle representa-
tion of the uncertainty, the work presented on [18] has a time complexity of
O(N2

P ·NA·NJ), where NP is the number of particles representing the belief, NA

the number of actions to be evaluated, and NJ an observation model parame-
ter. Authors precompute the observation model, reducing the time complexity
to O(N2

P ·NA) but incrementing the memory complexity since the precompu-
tations have to be stored in an appearance map. Since NP ≪ NX is a general
case, this work drastically reduces the time complexity in comparison with [7].
However, the complexity remains high, specially for large environments where
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the amount of particles needed to global localize the robot is also large. In the
practical experimentation, authors in [18] report the requirement to reduce
the action set and the size of the environment.

Table 1 summarizes this discussion. We find that the theoretical time complex-
ities of the considered frameworks are of the form of O(N2

X,P,H · NA · NS,J,O).
Therefore the quadratical terms N2

X , N2

P , N2

H are the critical ones to be an-
alyzed. In large environments, such as the one of 10.000m2 used as a test
bench of this paper, a complete discretization, with discretization steps of
∆xy = 0.5m, and ∆θ = 5◦, would result in NX ∼ 3 · 106 states. In our im-
plementation, the particle filter localization needs about NP ∼ 5000 particles.
Several executions of the particle filter with the clustering step have resulted
in a number of hypotyheses of about NH ∼ 20 in the testbench environ-
ment, thus NH ≪ NP ≪ NX , indicating that the presented approach entails
a significant improvement in time complexity, a key requeriment in large en-
vironments. For the practical implementation we found a trade-off between
the pre-computation of the observation models, which increases the memory
complexity, and the on-line computation of these models, which increases the
time complexity. In our proposed implementation we have choosen to compute
on-line the observation models since the memory resources required to store
these models grows up with the number of states NX , which increases with
the environmnt size, therefore being critical in large evironments.

Table 1
Comparison of computational complexities between existing active methods

Theoretical Practical Practical

Time Complexity Time Complexity Memory Complexity

[6] O(N2

X · NA · NS) O(NX · NXg · NA) O(NX · NS)

[18] O(N2

P · NA · NJ) O(N2

P · NA) O(NX · NJ)

[proposed] O(N2

H · NA · NO) O(N2

H · NA · (NLS + NC)) (∼ 4Bytes/m2)

Finally, we provide a numerical result about the real delays obtained when
computing the active strategy. A run of the active stategy, with NH = 19
position hypotheses and NE = 40 exploration particles, needs about 87 seconds
in a standard 2GB RAM, 1.86-GHz Core 2 Duo PC, running Linux Ubuntu
kernel 2.6.17. Only the 1.8% of this delay is for the generation of the E set,
which involves multi-hypothesis path planning. The 97% of this execution time
has been to compute the synthetic observations, os

1
(em

kj) and os
1
(em

ki) of the laser
scanner. Authors are confident that the proposed implementation can be fairly
optimized to reduce these delays.
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Fig. 8. The set H of NH = 19 position hypotheses on the map. Each hypothesis
is marked as a blue ellipse. Please note also the red dot marking the true robot
position Xm

r , the robot frame (xr, yr) and the position of the NC = 5 cameras.

8 SIMULATION RESULTS

8.1 Single Lost Robot. Non Cooperative vs Cooperative Environments

In this section we present the results of the active strategy for the single lost
robot case, comparing the non cooperative environment of section 3 with the
cooperative environment of subsection 4.1. The methodology has been as fol-
lows: the robot is placed in a given position and the particle filter is run using
only the onboard robot sensors. For the presented run, this step has generated
a set H of NH = 19 position hypotheses showed in figure 8. Afterwards, an
exploration particle set, E, is generated for both cases, obtaining a common
set of NE = 40 exploration particles, {er

1
. . . er

40
}. The evaluation of each ex-

ploration particle is performed separately, that is, in the non cooperative case,
only the onboard sensors are considered in equation 9, while in the cooperative
case also the camera network has been considered to evaluate the actions.

Figure 9 shows the E set of NE = 40 exploration particles in the robot frame.
We can see how the exploration set has been adapted to the multi-hypotheses
constraints, thanks to the multi-hypotheses path planning step. The figure also
shows, marked with a blue cross, the six best actions for the non cooperative

22



−6 −4 −2 0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Meters

M
et

er
s

Yr

Xr

Fig. 9. The set E of NE = 40 exploration particles that has been evaluated for both
cases. The six best actions for the non cooperative case are marked with a blue
cross and the six best ones for the cooperative case with a red square.

case, and, with a red square, the six best actions for the cooperative case. The
reader can overlap the robot frame of this figure with the depicted robot frame
on figure 8 in order to imagine where the robot will arrive if it goes to a given
exploration particle. For the non cooperative case, the best actions are going to
places which are distinctive from the laser scanner observation point of view.
These six best actions are mainly related in going down of the corridor (see
figure 8), since laser scanner is expected to take less ambiguous observations.
On the other hand, for the cooperative case, the six best actions are going
up of the corridor, since this is the area where more camera detections are
expected taking into account all the hypotheses.

Figure 10 shows the value of each N̂(er
k), ∀k = 1 . . . 40, for both, non coop-

erative and cooperative cases. This figure shows how the expected number
of hypoteses is always bounded to [1, NH ]. We can observe that, for the co-
operative case, the expected reduction of hypotheses is more significant that
the obtained for the non cooperative environment. Therefore, some particles
have the same N̂(er

k), indicating that no camera detection was expected even
though considering all hypotheses, thus the onboard sensors remain the only
means to disambiguate the situation. However, some other actions take bene-
fit from the potential remote observations of the camera network and reduce
clearly their evaluation index.

8.2 Cooperative Environment. Two Lost Robots

This section presents the results for the two lost robots case studied in sub-
section 4.2. In order to better evaluate this case, only the laser scanners of
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Fig. 10. The N̂(er
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(blue dots) and the cooperative (red squares) cases. Particles are sort by its xr

coordinate in order to be related with figure 9.

the robots are considered in the active strategy, but there are no limitations
on integrating remote observations of a camera network. We have proceeded
placing two robots in the environment in positions within a line of sight.
Robots first have performed a relative localization observation between them
and then, have built the cooperative frame. Then the hypotheses generation
step is performed with the particle filter, using the observations provided by
the compasses and the laser scanners of each robot. For this case the parti-
cles si represent positions of the cooperative frame and this fact implies that
each particle should satisfy a line of sight constraint imposed by the relative
localization. Moreover, when position particles have to be corrected with real
observations (see equation 22), they have to be translated to the relative po-
sitions of each observer given the observed line of sight. Thanks to this line of
sight constraint and to the integration of more observations taken from two
diferent points of view, the hypotheses generation step is improved and a few
number of hypotheses generated. In the experiment presented in figure 11,
where the two robots are placed at the same corridor as the one in figure 8,
the number of generated hypotheses has been NH = 11. The two lost robots
case entails, at this initial step, an improvement in the hypotheses generation
which implies less computational efforts to perform the active strategy, since
time complexity depends on N2

H .

Once the set H has been cooperatively generated, the active strategy is ex-
ecuted and outputs two joint actions, one to be performed by each robot.
Figure 12 shows the E set generated in the presented execution and marks
the selected primary action with a green square, the five best support actions
considering the quantitative criterion with red diamonds and the five best
support actions considering the qualitative criterion with green crosses. We
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Fig. 11. The set H of NH = 11 position hypotheses of the cooperative frame. Each
hypothesis is marked as a blue ellipse. The x axis of each robot and that of the
cooperative frame are also showed.
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Fig. 12. The set E of NE = 40 exploration particles that has been evaluated,
in the cooperative frame. The green square marks the primary action, erρ

s1. Five
best secondary actions following the quantitative criteria (red diamonds). Five best
secondary actions following the qualitative criteria (green crosses).

can see how the quantitative criterion would select redundant actions in most
of the cases while the qualitative one clearly selects complementary actions.
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9 CONCLUSIONS

Global localization is an important challenge for the mobile robot research
community. We have presented in this paper a general theoretical probabilis-
tic approach to solve the map-based global localization problem in large en-
vironments. This has been done by proposing an active strategy based on
estimating the reduction factor of position hypotheses. The method is general
since it is neither sensor dependent nor spatial representation dependent. It
is based on some assumptions clearly exposed in section 2 that are, however,
usually stated in map-based navigation approaches used in mobile robotics,
such as the need of observation models. However, there are some contribu-
tions of this work we would like to pay attention to. The presented algorithm
is computationally efficient, both in time and memory, when compared to
other existing approaches, as it has been stated in section 7. Also note that,
the presented active strategy selects the action to perform among a generated
set of valid actions for the current situation of the robot, instead of selecting
an action within a finite and fixed set of commands. However, the most im-
portant contribution of this work is the possibility to use the active strategy
in cooperative environments, both for a single robot using a sensor network
and for multiple robots within a sensor network context. This is an active and
prominent research field within the robotics community.

An implementation of the proposed strategy has been proposed in order to
present some simulated results in a large and real environment for the non
cooperative and the cooperative cases. Single robot simulations show that the
proposed method generates feasible commands to be executed by the robot
in order to reduce the hypotheses set for the map-based global localization
problem in large environments. The generated commands have the aim to
drive the robot to the most distinctive areas of the environment, distinctive
from the point of view of the onboard exteroceptive sensors. When a single
lost robot is member of a robot network system, the results evidence how the
behaviour of the robot changes taking benefits of the potential observations
done by a camera set deployed on the environment.

For the two lost robot case, we establish a rational criteria to perform two
joint actions when this robots are in a line of sight. These actions are choosen
following a qualitative criteria that evaluates the level of redundancy of the
actions. Results show how this criteria selects actions that are complementary
form the point of view of the expected observations. Moreover, the two lost
robot case benefits from a more accurate hypotheses generation step, since
generated hypotheses to localize the cooperative frame integrates the observa-
tions of the two lost robots, and satisfies the line of sight constraint imposed
by the relative localization observation.
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