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hypotheses, but paying special attention no to let the system
become overconfident too soon.

Since adding information links for all possible matches
produces overconfident estimates that in the long term lead
to filter inconsistency, we propose instead a two step loop
closure test. First, we check whether two poses are candidates
for loop closure with respect to their mean estimates. This is
achieved by testing for the Mahalanobis distance in the same
way data association gating is commonly performed during
a SLAM update. But instead of adding all these information
links, we limit the candidates to a second test that checks
for large values on the second term of the Bhattacharyya
distance. The purpose of this part of the test is to allow loop
closing only on highly informative situations. That is, when
the proposed matching covariances are sufficiently different,
and a large amount of information is expected to enter the
filter.

The reminder of this paper is as follows. In section II we
present our strategy for computing pose constraints from two
vantage points using computer vision. Section III is devoted
to explain our chosen SLAM representation, and the way in
which our vision-based pose constraints are used to update
the map. Section IV described the proposed loop closure test.
Some experimental results in an outdoor scenario are shown
in Section V, and concluding remarks are added in Section
VI.

II. RELATIVE POSECONSTRAINTS

The technique iterates as follows: SIFT image features are
extracted and matched from candidate stereo image pairs.
Their image point correspondences are then triangulated to
obtain a set of 3D feature matches, which are in turn used
to compute a least squares best fit pose transformation.
Robust feature outlier rejection is obtained via RANSAC
during the computation of the best camera pose constraint.
These camera pose constraints are used as relative pose
measurements in a delayed-state information-form SLAM.
A substantial computational complexity advantage of the
delayed-state information-form SLAM is that predictions
and updates take constant time prior to loop closure given
its exact sparseness [2]. Thanks to the features used, the
proposed technique is robust enough not only to relate
consecutive image pairs during robot motion, but also, to
assert loop closure hypotheses.

A. Feature Extraction

Simple correlation-based features, such as Harris corners
[3] or Shi and Tomasi features [4], are of common use in
vision-based SFM and SLAM; from the early uses of Harris



himself to the popular work of Davison [5]. This kind of
features can be robustly tracked when camera displacement
is small and are tailored to real-time applications. However,
given their sensitivity to scale, their matching is prone to
fail under larger camera motions; less to say for loop-
closing hypotheses testing. Given their scale and local affine
invariance properties, we opt to use SIFTs instead [6], [7], as
they constitute a better option for matching visual features
from varying poses. To deal with scale and affine distortions
in SIFTs, keypoint patches are selected from difference-of-
Gaussian images at various scales, for which the dominant
gradient orientation and scale are stored.

In our system, image pairs are acquired from a calibrated
stereo rig1. Features are extracted and matched with pre-
vious image pairs. The surviving features are then stereo
triangulated enforcing epipolar and disparity constraints. The
epipolar constraint is enforced by allowing feature matches
only within ±1 pixel rows on rectified images. The disparity
constraint is set to allow matches within a 1−10 meter range,
where camera resolution is best. The result is a set of two
clouds of matching 3D pointspt from the current pose, and
pi from a previous pose, 0< i < t, both referenced to the
coordinate frame of the left camera.

B. Pose Estimation

The homogeneous transformation relating the two afore-
mentioned clouds of points can be computed by solving a
set of equations of the form

pt = Rpi + t . (1)

A solution for the rotation matrixR is computed by
minimising the sum of the squared errors between the rotated
directional vectors2 of feature matches for the two robot
poses. The solution to this minimisation problem gives an
estimate of the orientation of one cloud of points with respect
to the other, and can be expressed in quaternion form as

∂
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The quaternionq that minimises the argument of the
derivative operator in the differential Equation 2 is the
smallest eigenvector of the matrixA.

1Point Gray’s Bumblebee firewire stereo 640×480 camera, with a 6mm
lens.

2A directional vectorv can be computed as the unit norm direction along
p, and indicates the orientation of such point.

Fig. 1. SIFT correspondences in two consecutive stereo image pairs after
outlier removal using RANSAC.

If we denote this smallest eigenvector by the 4-tuple
(α1,α2,α3,α4)

⊤, it follows that the rotational angleθ as-
sociated with the rotational transform is given by

θ = 2cos−1(α1), (6)

and the axis of rotation would be given by

â =
(α2,α3,α4)

⊤

sin(θ/2)
. (7)

Then, it can be shown that the elements of the rotation
submatrixR are related to the orientation parametersâ and
θ by
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(8)
wheresθ = sinθ , cθ = cosθ , andc′θ = 1−cosθ [8].

Once the rotation matrixR is computed, we can use again
the matched set of points to compute the translation vectort

t =
N

∑
k=1

pk
i −R

N

∑
k=1

pk
t . (9)

It might be the case that SIFT matches occur on areas of
the scene that experienced motion during the acquisition of
the two image stereo pairs. For example, an interest point
might appear at an acute angle of a tree leaf shadow, or on
a person walking in front of the robot. The corresponding
matched 3D points will not represent good fits to the camera
motion model, and might introduce large bias to our least
squares pose error minimisation. To eliminate suchoutliers,
we resort to the use of RANSAC [9]. The use of such a robust
model fitting technique allows us to preserve the largest
number of point matches that at the same time minimise
the square sum of the residuals‖Rpt + t −pi‖, as shown in
Figure 1.
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III. V ISUALLY AUGMENTED ODOMETRY IN

INFORMATION FORM

A. Exactly Sparse Delayed-State SLAM

Compared to the Extended Kalman Filter (EKF) SLAM
which has quadratic time complexity in the number of
states, the delayed-state information-form SLAM has been
shown to produce exactly sparse information matrices [2]. If
consecutive robot poses are added to the state, the result is
a tri-block diagonal information matrix, linking consecutive
measurements. This situation allows constant predictions
and updates, with a considerable advantage in terms of
computational cost and making it suitable for relative large
environments. This three-block diagonal structure is only
modifyied sparsely during loop closure. Thus, to keep the
computational complexity low, we would like to only close
loops when these are really needed. Our loop closure test is
ment to do exactly that.

The delayed-state information-form SLAM representation
consists on estimating a state vectorx with the history of
poses parameterised as an inverse normal distribution.

p(x) = N (x;µ ,Σ) = N
−1(x;η ,Λ) , (10)

where
Λ = Σ−1 and η = Λµ (11)

In a delayed state representation, the map state is simply
the history of pose mean estimates
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As in most SLAM formulations, white noisewt with
covarianceQ is added to the vehicle motion prediction
model, and its linearised version is used in the computation
of covariance prediction (information prediction in our case).

xt+1 = f (xt ,ut)+wt

≈ f (µ t ,ut)+F(xt − µt)+wt
. (12)

Given the absolute dead-reckoning readings of positionxd ,
yd , and orientationθ , the delayed state can be written as

x = [xt ,yt ,θt , . . .x1,y1,θ1]
⊤ . (13)

The vehicle motion model can be express in terms of the
relative travelled distance and relative orientation change

xt+1 = xt + d cos(θt + ψ) (14)

yt+1 = yt + d sin(θt + ψ) (15)

θt+1 = θt + ∆θ . (16)

At two consecutive time stepst and t + 1, the relative
travelled distance and relative orientation change are
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√

(xd
t+1− xd

t )2 +(yd
t+1− yd

t )2 (17)

ψ = tan−1

(

yd
t+1− yd

t

xd
t+1− xd

t

)
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∆θ = θt+1−θt . (19)

Considering the liniarisation of the noninear motion predic-
tion model from Equation 12 we can calculate the Jacobian
F as

F =
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
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The revision of the entire history of poses, as a result
of adding the new information that links the current and
predicted poses, can be computed in information form [2]
with

η̄ =


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and the associated information matrix is

Λ̄ =
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Augmenting the information vector in this form introduces
shared information only between the new robot posext+1

and the previous onext . Moreover, the shared information
betweenxt+1 and the delayed-states (t − 1 to 1) is always
zero, resulting in a naturaly sparse information matrix with
a tridiagonal block structure.

Now, in the information-form measurement updates are
additive and can be computed in constant-time. The pose
constraints linking the predicted pose and any previous
nearby poses, as measured by our vision system would have
the form

zt+1 = h(xt+1,i)+vt

≈ h(µ̄ t+1,i)+H(xt+1,i− µ̄t+1,i)+vt+1
, (24)

with vt+1 the zero mean, white measurement noise with
covarianceR and the measurement JacobianH.

The nonlinear measurement model is

zx = d cos(ψ) (25)

zy = d sin(ψ) (26)

zθ = θt+1−θi . (27)
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Fig. 2. Links coming from Mahalanobis (blue) and Mahalanobis-
Bhattacharyya distance (red) tests.

where

d =
√

(xt+1− xi)2 +(yt+1− yi)2 (28)

ψ = tan−1
(

yt+1− yi

xt+1− xi

)

−θi (29)

and the JacobianH is computed as shown in Equation 20
with

∆x = xt+1− xi (30)

∆y = yt+1− yi . (31)

The update to the entries linking posest +1 andi in the
information vector and information matrix become:

ηt+1,i = η̄ t+1,i +H⊤R−1(zt+1−h(µ̄t+1,i)+Hµ̄t+1,i) (32)

Λt+1,i,t+1,i = Λ̄t+1,i,t+1,i +H⊤R−1H . (33)

R now represents a covariance term for the sensor uncer-
tainty, usually fixed depending on the sensor used. In this
visually augmented SLAM respresentation, the JacobianH
is always sparse [10] and as a consequence only the four
blocks relating posest + 1 and i in the information matrix
will be updated

H = [Ht+1,0, . . . ,0,Hi,0, . . . ,0] . (34)

For consecutive poses, this produces tridiagonal blocks inΛ,
and for larger loop closures, the updates only modify the
diagonalt + 1 and i terms and introduces sparse blocks at
the locationst +1, i and i,t +1.

IV. L OOPCLOSURE DETECTION

Two phases can be distinguished during the loop-closing
process. First, we need to detect the possibility of a loop
closure event and then, we must certify the presence of
such loop closure from visual data. The likelihood of pose
estimates are valuable in detecting possible loop closures.
A comparison of the current pose estimate with the history
of poses can tell whether the robot is in the vicinity of
a previously visited place, in terms of both the global
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Fig. 3. Sparse information matrix in delayed state SLAM. Loop-closure
event adds non-zero off-diagonal elemets (see zoomed region).

position and the orientation. This is achieved by measuring
the Mahalanobis distance from the prior estimate to all
previously visited locations, i.e., for all 0< i < t,

d2
M = (µ t+1− µ i)

⊤

(

Σt+1 + Σi

2

)−1

(µ t+1− µ i) (35)

The average mean is used to accommodate for the varying
levels of estimation uncertainty both on the pose prior being
evaluated, and on the past pose being compared. In case of
a normal distribution, the Mahalanobis distances follows the
χ2-square distribution with n-1 degrees of freedom (where n
is the number of variables; in our case, 2dof corresponding a
95% confidence bound suffice). We are serching for nearby
locations only sufficiently close as to guarantee that a link
from vision data is possible.

Many nearby poses will satisfy this condition, as shown
in Figure 2. At the start of a SLAM run, when covariances
are small, only links connecting very close poses will satisfy
the test. But, as error is accumulated, pose covariances grow
covering larger and larger areas of matching candidates.
For long straight trajectories having corresponding visual
features, information links could even be established. Some
aid in reducing the effect of large pose constraints, and it
comes from the fact that orientation variance is usually larger
than position variance, and pose covariance ellipsoids are
usually align orthogonal to the direction of motion.

Nevertheless, adding all these information links would
drive the filter to inconsistency, specially for pose constraints
over large distances. One reason is that the rigid transforma-
tions computed form the matching of visually salient features
that are distant from the camera are too noisy, inconsistent
with the sensor uncertainty parameterR used during the filter
update step.

Instead of adding all the information links coming from
Mahalanobis distance test, our update procedure must first
pass a second test. The aim of this second test is to allow
updating using only links with high informative load. In
terms of covariances, this happens when a pose with a large
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Fig. 4. Odometry-only (black), vision-only (green), and combined vehicle
trajectory (red).

covariance can be linked with a pose with a small uncertainty.

dB =
1
2

ln

∣

∣

∣

∣
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√

| Σt+1 || Σi |
(36)

The above expression refers to the second term of the
Bhattacharyya distance,and gives a measure of separability in
terms of covariance difference [11]. This test is typically used
to discern between to distinct classes with close means but
varying covariances. We can see however that it also can be
used to fuse two observations of the same event with varying
covariance estimates. Given that, the value ofdB increases
as the two covariancesΣt+1 and Σi are more different. The
Bhattacharyya covariance separability measure is symmetric,
and we need to test whether the current pose covariance is
larger than thei-th pose it is being compared with. This is
done by analysing the area of uncertainty of each estimate
by comparing the determinants of| Σt+1 | and | Σi |. The
reason is that we only want to update the overall estimate
with information links to states that had smaller uncertainty
than the current state. Figure 2 shows in red the remaining
links after the second test.

In a second phase we still must certify the presence of a
loop closure event to update the entire pose estimate and to
reduce overall uncertainty. When an image correspondence
can be established, the computed pose constraint is used
in a one-step update of the information filter, as shown in
Equations 33 and 32. A one-step update in information form
changes the entire history of poses adding a linear number
of non-zero off-diagonal elements in the information matrix
as shown in the Figure 3. The degree of sparsity can be
controlled by reducing the confidence on image registration
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Fig. 5. The information added during the loop closure event enourmosly
reduces the accumulated errors: prediction (red), update (blue).

when testing for loop-closure event.

V. EXPERIMENTS

To test our strategy for vision-based augmented odometry
we have performed a series of experiments on urban unstruc-
tured environments of small size. In one of our experiments
we chose a cyclic path of around 300 sq meters with the
purpose to test a loop-closure situation. A snapshot of these
tests is shown in Figure 4. The robot was manually driven
through a series of predefined via points previously marked
on the floor. The results of estimating the vehicle motion
purely from accumulated raw odometry and purely from
concatenating vision pose constraints are shown in the figure
as black and green plots, respectively. The delayed-state
information-based revised trajectory resulting from the fu-
sion of the two is shown in red. No motion was accumulated
for those cases when not enough SIFT points were obtained
during the computation of vision-based pose constraints.
The effect of noninformative vision-based poses at some
iterations can be efficiently modelled in our approach only
by computing motion predictions from odometry without
performing map updates.

Due to the fact that the raw odometry is really poor
especially when the vehicle turns and the vision-based pose
constraints can fail in translation estimation but provides
quite accurate rotation estimation, our SLAM gives more
weight to the translation measurements provided by the
odometry and to the rotation estimated using SIFT points.
Whereas odometry error accumulates monotonically, vision-
based pose constraints vary in accuracy from very accurate
(about 3,4 cm) to as large as 1 meter in estimation error.
Nontheless the fusion of both provides a consistently revised



pose estimate.
At each step both distances (Mahalanobis and Bhat-

tacharyya) are used to test the presence of loop closure
events. When a loop-closing event is announced, visual
matching is performed among the corresponding indexed
images. If sufficient point matches are found, the homoge-
neous transformation relating the pose constraint is used to
update the history of poses, and their associated information
terms. Figure 5 shows in blue the correction of the entire
history of poses after a link of about 50 meters is established.
Also shown are the corresponding covariance estimates as
maintained by the filter in information form.

VI. CONCLUSIONS ANDFUTURE WORK

This paper proposed an efficient approach to vision-based
loop closing problem in delayed-state robot mapping based
on analysing the similarity and separability of pose estimates
from the mean and covariance difference measures. The
mapping process is based on an exactly sparse delayed-state
filter that uses SIFT features to compute pose constraints.
Another type of features that we seek to explore in the future
are Speed Up Robust Features SURFs [12]. These features
have similar response properties to SIFTs, replacing Gaus-
sian convolutions with Haar convolutions, and a significant
reduction in computational cost.

We can conclude saying that, concerning the accuracy
of the pose estimation, our approach performs well when
comparing the estimated trajectory with ground truth points,
and considerably reduces the memory and execution time
by using a sparse information matrix to link consecutive
measurements each time (time and memory increase linearly
compared to the quadratic cost of the traditional EKF).

On the other hand, concerning the loop closure process,
the method introduced here is a straightforward approach
consistent with the likelihood of estimates. Instead of search-
ing for visual correspondences within the whole history of
images, we restrict our search by applying conservative tests
for loop-closure event detection in terms of mean closeness
and covariances separability. The experimental results show
that these tests avoid unnecessary and unreliable links, sub-
stantially reducing the search time. Moreover, the established
links enormously reduce the accumulated errors from the
history of poses as shown in Figure 5 by adding only high
informative elements to the filter.

The experimental results presented here constitute a pre-
liminary study on the use of 6D vision-based pose transforms
for outdoor mapping. We are currently working in testing
this vision-based technique for mapping of wider areas, in
the order of 10000 sq. meters, where robust loop closing
methods as the one presented in this paper are necessary to
reduce the accumulated errors in the mapping process. Our
focus now is on pursuing strategies for intelligent pruning of
the number of states in the filter, so as to keep the problem
tractable for large areas.
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