Efficient Vision-based Loop Closing Techniques for
Delayed State Robot Mapping

Viorela lla, Juan Andrade-Cetto and Alberto Sanfeliu

Abstract— This paper shows results on outdoor vision-based hypotheses, but paying special attention no to let the system
loop closing for Simultaneous Localization and Maping. Our pecome overconfident too soon.
experiments show that for loops of over 50m, the pose esti-  gince adding information links for all possible matches

mates maintained with a Delayed-State Extended Information d fident estimates that in the | t lead
Filter are consistent enough to guarantee assertion of vision- produces overconfident estimates that in the long term lea

based pose constraints for loop closure, provided no necessary t0 filter inconsistency, we propose instead a two step loop
information links are added to the estimator. The technique closure test. First, we check whether two poses are candidates
computes relative pose constraints via a robust least squares for loop closure with respect to their mean estimates. This is
minimisation of 3D point correspondences, which are in tum 5 chieyed by testing for the Mahalanobis distance in the same
obtained from the matching of SIFT features over candidate L S .
image pairs. We propose a loop closure test that checks both way data aSSOC|at|on_ gating Is Com_monly perfor_med durlng
for closeness of means and for highly informative updates at @ SLAM update. But instead of adding all these information
the same time. links, we limit the candidates to a second test that checks
for large values on the second term of the Bhattacharyya
distance. The purpose of this part of the test is to allow loop
Closing large loops during Simultaneous Localisation anglosing only on highly informative situations. That is, when
Mapping (SLAM) is quite challenging. But, when accom-the proposed matching covariances are sufficiently different,
plished, it reduces the accumulated estimation error enaind a large amount of information is expected to enter the
mously. A straight forward solution to the loop closindfilter.
problem is to rely on the pose estimates from the filter of The reminder of this paper is as follows. In section Il we
choice (be it a Kalman filter, an Information filter, or apresent our strategy for computing pose constraints from two
particle filter) and perform data association tests as muglantage points using computer vision. Section Ill is devoted
and as often as possible. By testing for data associatigd explain our chosen SLAM representation, and the way in
based on the likelihood of estimates, one can avoid somghich our vision-based pose constraints are used to update
of the problems associated with appearance-based SLAMe map. Section IV described the proposed loop closure test.
such as aliasing for homogeneous or repetitive scenes. B8ome experimental results in an outdoor scenario are shown

closing all loops consistent with the likelihood of estimatesn Section V, and concluding remarks are added in Section
might add information links that are either unnecessary oyj.

unreliable.

Unnecessary links are those that contribute with little Il. RELATIVE POSECONSTRAINTS
information to reduce the estimation error. That is the case The technique iterates as follows: SIFT image features are
with repetitive measurements to the same landmarks wheRtracted and matched from candidate stereo image pairs.
little or no motion occurs, or when pose constraints fronTheir image point correspondences are then triangulated to
small steps are used in the case of a delayed state retain a set of 3D feature matches, which are in turn used
resentation.Unreliable links on the other hand, are thosetg compute a least squares best fit pose transformation.
that are not consistent with the sensor uncertainties f@obust feature outlier rejection is obtained via RANSAC
which the system was trained. This happens for exampifuring the computation of the best camera pose constraint.
when distance estimates come from computer vision sensoThese camera pose constraints are used as relative pose
Distance errors being inverse to disparity in images ani@easurements in a delayed-state information-form SLAM.
larger for measurements to far away landmarks, and might substantial computational complexity advantage of the
introduce errors that are inconsistent. delayed-state information-form SLAM is that predictions

Thus it is important to close loops sparsly on the on@nd updates take constant time prior to loop closure given
hand, and reliably on the other. In [1] the authors suggeft exact sparseness [2]. Thanks to the features used, the
that testing for loop closure in SLAM should be performechroposed technique is robust enough not only to relate
independently of the vehicle pose estimates. This is certainpnsecutive image pairs during robot motion, but also, to
a nice thing to do once the filter has become inconsistent. lsert loop closure hypotheses.
this work, we adopt instead the straightforward approach of .
relying on the estimator for the generation of pose constraift Feature Extraction

. . o . Simple correlation-based features, such as Harris corners

The authors are with the Institut de Robotica i Informatica In- . . .
dustrial, CSIC-UPC. Llorens Artigas 4-6, Barcelona, 08028 Spain[3] or Shi and Tomasi features [4]’ are of common use in
[vila,cetto,sanfeliul]@ri.upc.edu. vision-based SFM and SLAM; from the early uses of Harris
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himself to the popular work of Davison [5]. This kind of

features can be robustly tracked when camera displaceme
is small and are tailored to real-time applications. Howevel
given their sensitivity to scale, their matching is prone tc
fail under larger camera motions; less to say for loop
closing hypotheses testing. Given their scale and local affin
invariance properties, we opt to use SIFTs instead [6], [7], a
they constitute a better option for matching visual feature
from varying poses. To deal with scale and affine distortion:
in SIFTs, keypoint patches are selected from difference-ot
Gaussian images at various scales, for which the domina
gradient orientation and scale are stored.

In our system, image pairs are acquired from a calibrate
stereo rig. Features are extracted and matched with pre
vious image pairs. The surviving features are then stereo
triangulated enforcing epipolar and disparity constraints. THZé'g._ 1. SIFT corr_espondences in two consecutive stereo image pairs after

. L . outlier removal using RANSAC.
epipolar constraint is enforced by allowing feature matches
only within +1 pixel rows on rectified images. The disparity
constraint is set to allow matches within a 10 meter range,
where camera resolution is best. The result is a set of tw
clouds of matching 3D points; from the current pose, and
pi from a previous pose, & i <t, both referenced to the
coordinate frame of the left camera.

If we denote this smallest eigenvector by the 4-tuple
Q1,02,03,04)", it follows that the rotational anglé as-
sociated with the rotational transform is given by

6 = 2cos Y(ay), (6)
B. Pose Estimation
The homogeneous transformation relating the two afor

mentioned clouds of points can be computed by solving a
set of equations of the form

é';l_nd the axis of rotation would be given by

_ (GZ; a37 a4)T
= sin(6/2) 0

a»

Pt = Rpi +t. @ _ .
_ _ o Then, it can be shown that the elements of the rotation
A solution for the rotation matrixR is computed by submatrixR are related to the orientation paramet&rand
minimising the sum of the squared errors between the rotatgdby

directional vectors of feature matches for the two robot

poses. The solution to this minimisation problem gives an a2+ (1-a2)cp  axdCh—aSs  axaly+aySe
estimate of the orientation of one cloud of points with respe® = | ayayC, +a;Sg af, +(1- af,)ce ayaCy —axSp | ,
to the other, and can be expressed in quaternion form as adLly—aSe  dALCh+asy az+(l—ad)ce
% (qTAq> =0, (2) wheresg = sind, cg = cosb, .andc’a =1—cos0 [8]. .
o Once the rotation matriR is computed, we can use again
whereA is given by the matched set of points to compute the translation vector
N
A = BBy 3 N N
2,5 © t= TP -RY Pl ©)
0 —C',E _CI; —(‘7k k=1 k=1
By — CE OK b —E;Iﬁ 7 (4) It might be the case that SIFT matches occur on areas of
C{ —bz 0 by the scene that experienced motion during the acquisition of
C b{j -bk 0 the two image stereo pairs. For example, an interest point
and might appear at an acute angle of a tree leaf shadow, or on
bk :v{‘+v}‘, K ZV{(—VF . ) a person walking in front of the robot. The corresponding

matched 3D points will not represent good fits to the camera

The quaternionq that minimises the argument of the motion model, and might introduce large bias to our least
derivative operator in the differential Equation 2 is thesquares pose error minimisation. To eliminate saathiers,

smallest eigenvector of the matrix. we resort to the use of RANSAC [9]. The use of such a robust

model fitting technique allows us to preserve the largest
1point Gray’s Bumblebee firewire stereo 64@80 camera, with a 6mm number of point matches that at the same time minimise
lens.

2A directional vectorv can be computed as the unit norm direction alongth_e square sum of the re3|du¢|I§pt +t—pi ”’ as shown in
p, and indicates the orientation of such point. Figure 1.
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I1l. VISUALLY AUGMENTED ODOMETRY IN At two consecutive time steps and t + 1, the relative
INFORMATION FORM travelled distance and relative orientation change are
A. Exactly Sparse Delayed-Sate S AM
| d = Jod, o020, -wW2 @)
Compared to the Extended Kalman Filter (EKF) SLAM
which has quadratic time complexity in the number of ¢ = tan? ytdﬂf)’? g (18)
states, the delayed-state information-form SLAM has been o xtdﬂ—x?
shown to produce exactly sparse information matrices [2]. If A0 = B.1-8. (19)

consecutive robot poses are added to the state, the result is

a tri-block diagonal information matrix, linking consecutiveConsidering the liniarisation of the noninear motion predic-

measurements. This situation allows constant pl’ediCtiOlﬁ%n model from Equation 12 we can calculate the Jacobian
and updates, with a considerable advantage in terms pfgg

computational cost and making it suitable for relative large 1 0 —dsin(G+y)
environments. This three-block diagonal structure is only F=| 0 1 dcofa+y) |. (21)
modifyied sparsely during loop closure. Thus, to keep the 00 1

computational complexity low, we would like to only close

loops when these are really needed. Our loop closure test isThe revision of the entire history of poses, as a result

ment to do exactly that. of adding the new information that links the current and
The delayed-state information-form SLAM representatiofredicted poses, can be computed in information form [2]

consists on estimating a state vectowith the history of ~with

poses parameterised as an inverse normal distribution. _ Q;l (f(ft,ut) —Fpy)
- n=| n—FQ (f(u,u)—Fu) |, (22
P(X) = A (% 1, Z) = A4 1N, N) (10) Ni_11
where L and the associated information matrix is
N=3%" and =A 11
n=~Au (11) . 9 o 0
In a delayed state representation, the map state is simplyA= | —F'Q™! A +F QIF Nti-1 , (23)
the history of pose mean estimates 0 Ne—1:1t N—1:1t-11
Hi Augmenting the information vector in this form introduces
U= : ) shared information only between the new robot pgse
1y and the previous ong;. Moreover, the shared information

betweenx;,1 and the delayed-states{1 to 1) is always
As in most SLAM formulations, white noise; with  zero, resulting in a naturaly sparse information matrix with
covarianceQ is added to the vehicle motion predictiona tridiagonal block structure.
model, and its linearised version is used in the Computation Now, in the information-form measurement updates are
of covariance prediction (information prediction in our case)additive and can be computed in constant-time. The pose

X1 = F(Xe,Up) + W constraints linking the predicted pose and any previous
A F1L E(x — : (12) nearby poses, as measured by our vision system would have
~ f(He,up) + F(xe — Hp) +w the form
Given the absolute dead-reckoning readings of positipn Zi1
+

h(Xt41,i) + Vi
h

, and orientatiorf, the delayed state can be written as — ,
¥ y (Higai) +HXer1i — Hegqj) + Vet

_ T
X= [0 X, Y1, 8] 13 with Vi1 the zero mean, white measurement noise with

The vehicle motion model can be express in terms of tHgovarianceR and the measurement Jacobtdn
relative travelled distance and relative orientation change  The nonlinear measurement model is

(24)

~
~

X+1 = X +dcoga+ ) (14) z = dcoqy) (25)
Ver1 = Yi+dsin(a+ ) (15) zy = dsin(y) (26)
6.1 = G-+A6. (16) Zg = B,1-6. (27)
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Fig. 3. Sparse information matrix in delayed state SLAM. Loop-closure

event adds non-zero off-diagonal elemets (see zoomed region).

Fig. 2. Links coming from Mahalanobis (blue) and Mahalanobis-

Bhattacharyya distance (red) tests.

position and the orientation. This is achieved by measuring

where the Mahalanobis distance from the prior estimate to all
d = \/(Xt+1 S )24 (Yert — Vi) (28) previously visited locations, i.e., for allQi < t,
_ 1 Ve Vi) S35\t
vooom <Xt+l—xi) 9' (29) A = (Kea— 1) <%) (M1 —wi)  (35)
and the Jacobiakl is computed as shown in Equation 20
with The average mean is used to accommodate for the varying
levels of estimation uncertainty both on the pose prior being
Ax X1 X (30) evaluated, and on the past pose being compared. In case of
Ay = Y-V (31) a normal distribution, the Mahalanobis distances follows the

The update to the entries linking poges 1 andi in the

x?-square distribution with n-1 degrees of freedom (where n
is the number of variables; in our case, 2dof corresponding a

information vector and information matrix become:
Nessi = Meeri +H R Yz —h(Bg) +HEG ) (32) ns _ _
from vision data is possible.

N aTpt
Atsiteri = Mivigrri HHRTTH. (33) Many nearby poses will satisfy this condition, as shown
R now represents a covariance term for the sensor uncé-Figure 2. At the start of a SLAM run, when covariances
tainty, usually fixed depending on the sensor used. In thif€ small, only links connecting very close poses will satisfy
visually augmented SLAM respresentation, the Jacobian the test. But, as error is accumulated, pose covariances grow
is always sparse [10] and as a consequence only the fdt#vering larger and larger areas of matching candidates.

blocks relating poses+ 1 andi in the information matrix FOr long straight trajectories having corresponding visual
will be updated features, information links could even be established. Some

aid in reducing the effect of large pose constraints, and it
H = [Ht+1,0,...,0,H;,0,...,0] . comes from the fact that orientation variance is usually larger

For consecutive poses, this produces tridiagonal blocks in than position variance, and pose covariance ellipsoids are
and for larger loop closures, the updates only modify th#Sually align orthogonal to the direction of motion.

the locationg +1,i andi,t + 1. drive the filter to inconsistency, specially for pose constraints

over large distances. One reason is that the rigid transforma-
IV. LooPCLOSUREDETECTION tions computed form the matching of visually salient features

Two phases can be distinguished during the loop-closirifjat are distant from the camera are too noisy, inconsistent
process. First, we need to detect the possibility of a looyith the sensor uncertainty paramefReused during the filter
closure event and then, we must certify the presence update step.
such loop closure from visual data. The likelihood of pose Instead of adding all the information links coming from
estimates are valuable in detecting possible loop closurddahalanobis distance test, our update procedure must first
A comparison of the current pose estimate with the historgass a second test. The aim of this second test is to allow
of poses can tell whether the robot is in the vicinity ofupdating using only links with high informative load. In
a previously visited place, in terms of both the globaterms of covariances, this happens when a pose with a large

95% confidence bound suffice). We are serching for nearby
locations only sufficiently close as to guarantee that a link

(34)
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Fig. 4. Odometry-only (black), vision-only (green), and combined vehicléFig. 5. The information added during the loop closure event enourmosly
trajectory (red). reduces the accumulated errors: prediction (red), update (blue).

covariance can be linked with a pose with a small uncertaintyhen testing for loop-closure event.

L M’ V. EXPERIMENTS
2
dg = ZIN———== (36) To test our strategy for vision-based augmented odometr
2 Tonll o] % J 4

we have performed a series of experiments on urban unstruc-

The above expression refers to the second term of tiered environments of small size. In one of our experiments
Bhattacharyya distance,and gives a measure of separabilityme chose a cyclic path of around 300 sq meters with the
terms of covariance difference [11]. This test is typically use@urpose to test a loop-closure situation. A snapshot of these
to discern between to distinct classes with close means bests is shown in Figure 4. The robot was manually driven
varying covariances. We can see however that it also can Beough a series of predefined via points previously marked
used to fuse two observations of the same event with varyiran the floor. The results of estimating the vehicle motion
covariance estimates. Given that, the valuedgfincreases purely from accumulated raw odometry and purely from
as the two covariances, 1 and; are more different. The concatenating vision pose constraints are shown in the figure
Bhattacharyya covariance separability measure is symmetras black and green plots, respectively. The delayed-state
and we need to test whether the current pose covarianceinéormation-based revised trajectory resulting from the fu-
larger than the-th pose it is being compared with. This ission of the two is shown in red. No motion was accumulated
done by analysing the area of uncertainty of each estimafar those cases when not enough SIFT points were obtained
by comparing the determinants ¢&;,1 | and | % |. The during the computation of vision-based pose constraints.
reason is that we only want to update the overall estimafehe effect of noninformative vision-based poses at some
with information links to states that had smaller uncertaintjterations can be efficiently modelled in our approach only
than the current state. Figure 2 shows in red the remainirily computing motion predictions from odometry without
links after the second test. performing map updates.

In a second phase we still must certify the presence of aDue to the fact that the raw odometry is really poor
loop closure event to update the entire pose estimate andespecially when the vehicle turns and the vision-based pose
reduce overall uncertainty. When an image correspondencenstraints can fail in translation estimation but provides
can be established, the computed pose constraint is usggte accurate rotation estimation, our SLAM gives more
in a one-step update of the information filter, as shown iweight to the translation measurements provided by the
Equations 33 and 32. A one-step update in information formdometry and to the rotation estimated using SIFT points.
changes the entire history of poses adding a linear numbéfhereas odometry error accumulates monotonically, vision-
of non-zero off-diagonal elements in the information matribased pose constraints vary in accuracy from very accurate
as shown in the Figure 3. The degree of sparsity can Habout 3,4 cm) to as large as 1 meter in estimation error.
controlled by reducing the confidence on image registratiodontheless the fusion of both provides a consistently revised



pose estimate.

Fellowship to V. lla and a Rambén y Cajal Postdoctoral

At each step both distances (Mahalanobis and BhafFellowship to J. Andrade-Cetto, the NAVROB Project DPI-
tacharyya) are used to test the presence of loop closu2804-5414, and the EU URUS Project FP6-1ST-045062.

events. When a loop-closing event is announced, visual
matching is performed among the corresponding indexed
images. If sufficient point matches are found, the homogetl]
neous transformation relating the pose constraint is used to
update the history of poses, and their associated informatiop,
terms. Figure 5 shows in blue the correction of the entire
history of poses after a link of about 50 meters is establishei
Also shown are the corresponding covariance estimates as

maintained by the filter in information form. [4]

VI. CONCLUSIONS ANDFUTURE WORK
This paper proposed an efficient approach to vision-based
loop closing problem in delayed-state robot mapping baseg)

on analysing the similarity and separability of pose estimates
from the mean and covariance difference measures. Th
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