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Abstract: Embodied cognition suggests that complex cognitive traits can only arise 
when agents have a body situated in the world. The aspects of embodiment and 
situatedness are being discussed here from the perspective of linear systems theory. 
This perspective treats bodies as dynamic, temporally variable entities, which can be 
extended (or curtailed) at their boundaries. We show how acting agents can, for 
example, actively extend their body for some time by incorporating predictably 
behaving parts of the world and how this affects the transfer functions. We suggest 
that primates have mastered this to a large degree increasingly splitting their world 
into predictable and unpredictable entities. We argue that temporary body extension 
may have been instrumental in paving the route for the development higher cognitive 
complexity as it is reliably widening the cause-effect horizon about the actions of the 
agent. A first robot experiment is sketched to support these ideas. 
We continue discussing the concept of Object-Action Complexes (OACs) introduced 
by the European PACO-PLUS consortium to emphasize the notion that for a cognitive 
agent objects and actions are inseparably intertwined. In another robot experiment we 
devise a semi-supervised procedure using the OAC-concept to demonstrate how an 
agent can acquire knowledge about its world. Here the notion of predicting changes 
fundamentally underlies the implemented procedure and we try to show how this 
concept can be used to improve the robot’s inner model and behaviour. 
Hence, in this article we have tried to show how predictability can be used to augment 
the agent’s body and to acquire knowledge about the external world, possibly leading 
to more advanced cognitive traits. 
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1 Introduction: 
During the last years the European Union has invested more than 100 million Euros 
into the field of Cognitive Robotics and adjacent fields subsumable under bio-inspired 
advanced robotics. As the development of such programs rests on the ever growing 
scientific community in these fields, this is indicative of the fact that “a lot of people 
believe in it”. It appears, that machines with truly intelligent, cognitive features1 have 
now become within reach of research and development. This may have been largely 
due to the emergence of “Embodied Cognition” (EC) as a possible theoretical 
foundation for such R&D activities (Lakoff and Johnson, 1999; Brooks, 1999; Todes, 
2001; Varela et al., Rosch, 1991). Summarized in one sentence EC assumes that only 
machines with some kind of a body, which allows direct interactions with the world, 
hence, which situates these machines in their world, will be able to develop advanced 
(cognitive) traits (Chiel and Beer, 1997; Pfeifer and Scheier, 1999; Steels and Brooks, 
1995; Clancey, 1997; Clark, 1999; Todes, 2001; Riegler, 2002). This notion was 
much influenced by Rodney Brooks, who was one of the first to explicitly state these 
ideas in the context of robotics work (Brooks, 1986).  Embodied Cognition is thus 
different from what has been called good old-fashioned AI (GOFAI), which in its 
extreme form supports a Cartesian attitude, treating the mind as an entity independent 
of and, thus, not requiring, the body (see Anderson, 2003 for a comparison between 
the Cartesian viewpoint and EC). This article does not intend to enter into the 
controversy between GOFAI and embodied cognition (first pointed out explicitly by 
Dreyfus, 1972; see also Brooks, 1999). For our purposes it suffices to just illuminate a 
little bit the germination process of EC, which has to a large degree been triggered by 
the notion that after all GOFAI-systems have not really become intelligent (see 
Brooks, 1999 for a discussion). A wealth of possible problems has been put forward 
for explaining this. Most influential was here the discussion of the symbol grounding 

                                                 
1 The term “cognition” is exceedingly ill-defined and no common agreement exist about how cognitive 
is cognitive. After all, also ants can build houses. We will use the term also in a wider sense but always 
in conjunction with human cognitive traits. Furthermore, this article is largely devoted to the question, 
what could be a path towards cognition. Hence we are concerned with processes and not so much with 
their final outcome. Cognitive complexity is, thus, as we see it, a continuum.  
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problem (Searle, 1980; Harnad, 1990) and the frame problem of AI (McCarthy and 
Hayes, 1969; Dennett, 1984) as this had prepared the ground for the germs of EC. 
Meanwhile a large number of articles have appeared discussing, often in a 
controversial way, which conditions are necessary for embodied cognition. A very 
nice summary of this is given by Wilson (2002). She wraps up six of the most 
common claims on cognition found in the literature that to a large degree ask the 
question about the interaction between agent and world, which is a central topic also 
of our paper. 
 
However, one aspect of the EC-discussion is quite puzzling in general. Most of the 
discussion revolves around necessary conditions for a cognitive agent. Little is said 
about what would be sufficient to drive cognitive development. Necessary conditions 
do not specify any on-line procedure, any ontogenetic developmental process, or any 
phylogenetic evolutionary mechanism that could actually drive the development of 
cognition. Hence, from a robotics perspective, necessary conditions are only half of 
the game. If you cannot show (or at least suggest) a process that leads to the 
germination of “something cognitive”, not much has been achieved along those lines.  
 
One possible way out of this dilemma was the idea to let robots develop similar to 
human infants, leading to the growing field of “developmental robotics” (Weng et al., 
2001; Lungarella et al., 2003). For this idea, we, humans, are the proof of concept. 
Hence: build a robot, make it similar to a human, endow it with enough sensor-motor 
complexity, and with a set of useful learning algorithms and let this agent develop and 
learn in interaction with its world and other agents (usually its designers) and you will 
see the emergence of cognition. This can be done with real robots, different from the 
field of “evolutionary robotics”, (Nolfi and Floreano, 2000) which attempts the same 
goals but must almost exclusively rely on simulations, as physical robots cannot have 
offspring and mutate. Both fields have their successes and increasingly complex 
behaviour is observed in such agents, which may some day be (or look) cognitive. 
 
What remains frustrating about these approaches is that self-organization might 
indeed lead to cognition (future will show!), but, we are probably none the wiser as it 
is exceedingly difficult and many times totally impossible to gain a deeper 
understanding about the final (developed or evolved) system, let alone about the 
dynamic processes that have led to it2. 
 
While developmental and/or evolutionary robotics may indeed be a way forward, we 
would nonetheless suggest devoting more effort to the denomination, the theoretical 
understanding, and the technical implementation of possible sufficient conditions for 
cognition. One key question is: Is it possible to specify some processes that may in a 
theoretically grounded way lead the way towards cognition in machines? To this end 
we would like to adopt a systems theoretical perspective on agents and their world 
(Ashby, 1952; McFarland, 1989; Walter, 1953), which has the advantage that its 
cybernetic ideology is already “very procedural” as such. In doing so some aspects of 
biological agents (animals and their nervous system) will be discussed, which appear 
to be relevant in this context.  
                                                 
2 Think about self-organization of neural networks as an example. Many algorithms exist for this and a 
wide variety of problems can now be solved by ANNs. On the other hand the theory of ANNs is mostly 
only developed for linear systems and it is very hard to understand more difficult ANNs in an analytic 
way.  



 4

This article is structured as follows. In general we will present several different results 
and ideas on the questions of embodiment, situatedness and cognition. The core 
thread which links them is the aspect of Predictability and procedures which involve 
predictability around which these ideas evolve.  First (section  2) we would like to 
provide an improved systems theoretical perspective on embodiment relying on linear 
systems theory. By this we will define in a more rigorous way what is the body of an 
agent against “the world outside” (Porr and Wörgötter, 2005). This specification has 
direct implications on understanding the interactions between agent and world from 
which cognition might arise. In the next section ( 3) we will introduce so-called 
“object-action complexes” (OACs) as possible structural entities relevant for 
cognition3 (Hommel et al., 2001). Then (section  4) we will suggest a process by 
which an agent can extend its body-image and show robot experiments for this ( 4.1) 
arguing that this might be helping the agent to develop cognitive traits ( 4.2).  Next 
(section  5) we will extend the OAC concept asking which aspects of objects and 
actions are relevant for an agent (animal) and define “Change”, “Repeatability” and 
“Predictability”, falling back on observations from the neurosciences. We will 
implement these aspects in another simple robot experiment ( 5.1) showing how a 
procedure can be devised by which a machine can discover parts of its world. Finally 
in section  6 we will conclude this article with a discussion. 
 

Agent

World
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1P ++
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Fig. 1) Applying linear systems theory to define agent and world. 

2 On Embodiment 
In 2005 we had tried to provide a systems theoretical description of embodiment (Porr 
and Wörgötter, 2005) from the viewpoint of a constructivist (von Foerster, 1960; 
Maturana and Varela, 1980; von Glasersfeld, 1996). This perspective shall also be 
adopted here, because during phylogeny functional traits can only have developed by 
animals interacting with their environment. This situation is depicted by the simple 
diagram in Fig. 1A, where H describes the transfer function of the agent and P the 
transfer function of the world. Sensor inputs arriving at the agent will through H be 
transformed into motor outputs, while those will – in turn – be transformed into new 
sensor inputs for the agent through P, the transfer function of the world. For example 
the lifting of an object will lead to a changed visual sensation (the object moves), 
where this sensation is different depending on if you have lifted an object submerged 
in water as compared to air (different refraction index leads to different P). The 

                                                 
3 Note, the concept of OACs is still to some degree “emerging” and being controversially discussed 
(Geib et al., 2006). 
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question arises, whether this is an adequate description of system and world. In the 
first place the chosen formalism is general enough to allow describing all linear 
systems in a very simple way 4 . We believe, however, that this simple form of 
describing a system captures the necessary points in the below following discussion 
context of the differences between embodiment, situatedness and the aspect of 
temporary bodily extension.  Hence, we would argue that it is the strength of the 
proposed formalism that these aspects do not seem to depend on the specific shapes of 
H and P. When wanting to discuss more complex aspects of dynamic behavior, 
however, this chosen description level would probably not suffice anymore. 
 
Both transfer functions H and P form a closed loop which has the task to keep the 
sensor input X at a desired state. The loop has the task to compensate against 
unpredictable disturbances coming from D. If we assume that the system is linear, 
then this leads in terms of closed loop control to the transfer function: 

HP
DX

−
=

1
          (1) 

With an appropriate design of the functions H and P we are able to generate the 
desired state at X. It can be clearly seen that the product of H and P defines the 
property of the loop and how they eliminate the disturbance D. 
Note, this diagram describes in the most general sense what it means for an agent to 
be situated. The loop from agent to world and back represents in a systems 
theoretical diagram the notion of situatedness (Thelen and Smith, 1994; Port and van 
Gelder, 1995; Beer, 2000). The distinction between H and P corresponds to the 
distinction between “agent” (the agent’s body) and “world”. 
 
At that point we had argued that every part of the world which can be causally 
changed by the agent’s output could be integrated into the agent (Porr and Wörgötter, 
2005). This can be done by absorbing the environmental transfer function P in H 
arriving at a new transfer function for the agent HPG =  (Fig. 1B).  

G
DX
−

=
1

          (2) 

This operation can only be performed if P is part of the closed loop, hence for any 
transfer function which is part of the loop; which is the case for all fully predictable 
aspects of the world. In Fig.1B this leads to the fact that the transfer function of the 
world vanishes (becomes equal to one). Examples for an (incomplete) bodily 
integration process are the “forgetting about” a well-fitting prosthesis, which becomes 
much integrated in the patient’s body or the feeling of a race-car pilot of “becoming 
united with the machine”. Note, this definition (Fig. 1A) and the process of 
integrating P into H (Fig. 1B) do not rely on the physical world. In our sense also non-
physical agents (internet robots) can be fully situated and embodied as long as they 
can be described by such system theoretical relations (e.g. Etzioni and Weld, 1995). 

                                                 
4 The assumption of agents as linear systems can be debated because non-linearities can exist in the 
transfer functions of agent and world. However, the linear system approximation allows a very elegant 
and clear treatment of closed loop systems which focuses on our main point that transfer functions can 
be absorbed into each other and which allows a simple way of treating closed loop systems. This could 
be done similarly in the time domain with non-linear transfer functions but these equations would be 
much harder to interpret and to discuss. This would eventually lead to a loss in clarity and would rather 
distract from our main points. Using linear transfer functions in the Laplace domain has a long tradition 
in cybernetics and dates back to Ashby (1956). 
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Integration of P into H, however cannot happen for the unpredictable “disturbance” D 
(Porr and Wörgötter, 2003, 2005). Such disturbance can never be integrated into the 
body of the agent which can be clearly seen in Eq.1 and Eq.2 where D is actually the 
input variable and the term 1-G the actual transfer function of the loop. This also 
demonstrates that predictability (1/1-G) and disturbance (D) are dependent on each 
other. The closed loop (1/1-G) has been created because there is actually an 
unpredictable event in the environment. If the agent does not interact with the world, 
no closed-loop process arises, which would, for example, be the case for a piece of 
(predictable!) dead matter lying uninfluenced next to the agent. We rather need 
unpredictable aspects (e.g. weather, other agents, large world, etc) in the environment 
which will force an agent to create a closed loop system, hence “to react” or even 
actively “interact” with the world. Note, however, Predictability is again only a 
necessary condition for embodiment. Clearly the trajectory of the sun is predictable 
and so would be a piece of dead matter but, in spite of this, these entities cannot be 
integrated into your body. 
 
Two sufficient conditions, however, can be suggested to complete the definition. 
1) Continuity: The new body part should be integrated for a substantial part of the 
life time of the agent. Hence any alteration to a body will only with time become a 
manifest part of the body (the body-image) of the agent. Bodies are continuous for 
some time. 
2) Causal Proximity: The predictable entity, for which bodily integration is to be 
considered, needs to be proximate (many times resulting in a physical attachment) to 
the currently existing body of the agent5. Causal Proximity is not simply spatial 
proximity6. Above we had argued that an input D (disturbance) needs to interact with 
the loop 1/(1-G). This interaction is a causal process and proximity in our sense 
means that any entity D, which could potentially be integrated into the body, needs to 
be part of this closed-loop system. If this is true and if this entity remains predictable 
for a longer time (continuity), then integration becomes possible.  
 
And so we define:  

Entities which are fully predictable and causally proximate to 
the (current) body of an agent can be integrated into the body. 
This integration will lead to an alteration of the agent’s body if 
it is continuous relative to the life time of the agent7. 

 

                                                 
5 This causal proximity does not have to lead to any (mechanical/spatial) attachment. Think of a WIFI 
connected system. 
6 Causal Proximity – as by name – leads to the fact that the current body of the agent will be able to 
exert causal effects on the newly considered body parts. This relation is transitive. The new body part 
should also causally affect the old body (if only through a load change, after having screwed on the 
new robot hand). In fact the new body part could be much larger than the old body. Think of a small 
robot that is being physically integrated into a big plant – what is body, what is body-part? 
7 Note, we are here relying on standard logic definition of equivalence defining: U is necessary for R, 
formally R←U, with: predictability←body, yielding in standard logic: if part of your body then 
predicable and also (┐U→ ┐R), where ┐ stands for “not”, yielding if not predictable then not part of 
your body. For continuity (S) and proximity (T) this yields that these conditions together with 
predictability will be “necessary and sufficient”. In standard logic we get then equivalence between the 
terms involved as: [R^S^T]↔U, where ^ stands for the “logical AND” yielding: if [predicable AND 
continuous AND proximal] then equivalent to body. 
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Hence, this definition allows understanding the body of an agent in a constructive way 
(much like “building” a robot). We note that it is not possible to achieve the situation 
of Fig.1B in full, removing the transfer function of the world entirely. Even if all 
entities were predictable for an agent, there would still be many that do not fulfill the 
two sufficient conditions, which would, thus, contribute only to P and never to H. 

2.1. Critical Assessment of the Embodiment Definition 
It seems that the above definition is now capturing each and everything and one might 
ask: are their any agents left at all that are – under this definition – non-embodied?  
More specifically it also seems that the definition of situatedness, by referring to 
closed-loop interactions between agents and world, is identical or very similar to the 
definition of embodiment given here. 
 
Indeed, strong similarities do exist! Let us discuss the different possible cases: 

1. NOT Situated NOT Embodied  
2. Embodied AND Situated 
3. Embodied NOT Situated 
4. Situated NOT Embodied 

 
Case 1 would refer to open-loop systems that are without body (e.g. pure symbol 
manipulation systems). This case is only of theoretical interest here as it would 
represent the archetype of a Cartesian attitude. Case 2 is most common for biological 
systems and robots and it is the case that we have discussed in Fig. 1. There is 
however no principle objection why this case should not hold true for more abstract 
A-life8 creatures like internet agents or computer viruses as long as they obey the 
necessary and sufficient conditions described above within their world.  
Case 3 can also be immediately understood as this represents all open-loop systems, 
which do not feed their output(s) back through the environment onto themselves. 
These systems are not situated. Case 4 makes troubles, it seems. How could a system 
be situated but not embodied? It is by the sufficient condition of Proximity and 
Continuity that this situation can be most easily understood and indeed, biological 
examples of such systems exist, which are swarms of many (embodied) individuals. 
In a swarm the individuals have only fleeting contact with each other. Hence as a 
whole the swarm represents a non-embodied (or very weakly embodied) system, 
which will however indeed influence its environment and also receive feedback from 
it. Cognitive complexity can arise from such (social) systems, for example the 
building of termite mounds, etc. In the context of this article we are, however, not 
concerned with such social, cooperative aspects, which clearly reach out into human 
societies, too, and will only to a minor degree discuss some implications of swarm-
intelligence later. 

3 Object-Action Complexes (OACs) 
The question arises whether this notion of embodiment might be of any use for our 
understanding of agents and their cognitive development. This requires considering 
the processes of agent-world interaction in more detail for which we would like to 
introduce the concept of object-action complexes (OACs). OACs had first been 
discussed by the European PACO+ Consortium as a possible way to better formalize 
the requirements for a machine to approach some level of cognitive complexity. 
                                                 
8 A-life=artificial life. 
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OACs are related to state-action transitions e.g. known from machine learning (Sutton 
and Barto, 1998; Geib et al., 2006). They rest on the suggestion that objects and 
actions are inseparably intertwined. Starting with Gibson’s notion of affordances 
(Gibson, 1979): A hollow thing with liquid may suggest drinking. For this we define 
an OAC formally by [O →A O’], which says object O suggests action A and 
transforms under this action into object O’ (cup-full to cup-empty) as the final 
outcome of this action. Note, rigorously one should define the OAC with respect to 
the Attributes (full, empty) of an object that get altered by an action. This should be 
kept in mind when using the abbreviated [O →A O’] notation. The notion of OACs, 
however, goes beyond Gibson and the intertwining of Objects and Actions becomes 
more evident when considering the role of Actions more closely. While objects may 
suggest actions, it is often the action(-plan) that defines the objectness of a physical 
thing. This become clear by following example:  It is the action of drinking that makes 
this thing hollow,full “a cup” (“a container”, etc.). The decisive influence of the action 
becomes immediately obvious if you plan to turn the (same!) thing solid-bottom upside 
down to use it as “a pedestal” for some figurine for your mantelpiece decoration. 
Hence, the planned and executed action turns a thing with some (required) properties 
into a meaningful object. Depending on the planned actions, different properties of the 
same thing (hollow, full vs. solid bottom) become important. Clearly it is a very 
difficult (cognitive) problem for an agent to find out which properties are important 
and which are not. We will come to this later. 
 

O1 O1 O1A1 A1 A2
O3 O3 O’3

O2 O2 O2

O’1

O’2

Object

Agent

A

A B C

 
 

Fig. 2) Different types of transformations of objects by actions 

4 Route to Cognition – Temporary Bodily Integration 
In the following we would like to suggest how the above notions might be helpful in 
defining some processes that could indeed lead to higher behavioural complexity in an 
agent suggesting a possible route to (higher) cognitive traits. 
 
It has long been known that being able to predict the world, or more specifically to 
predict the changes induced by the agent in the world9, leads to improved fitness of 
the agent fostering its survival (and reproduction). Furthermore, a whole field has 
emerged during the last 10 years or so, which tried to explain advanced cognitive 
properties by so-called “probabilistic models” (Thrun et al., 2005; Chater et al., 2006; 
see also a special issue in TICS, 2006; on Probabilistic Models of Cognition). These 
models most often rely on Bayesian inference (Bayes, 1763; Tenenbaum et al., 2006) 
which is a powerful probabilistic method for making predictions.  

                                                 
9  It may make sense to point out that we are taking about Predictability from an agent centred 
perspective (actions by the agent). Predicting events that happen in the world without the agent’s doing 
will also improve fitness (“thunder may predict rain”). This refers to temporally related events, which 
follow each other, such that this correlation can be learned. This is, however, an entirely different type 
of predictive mechanism not of relevance in the context of this paper. 
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A frame problem, however, hides here (McCarthy and Hayes, 1969; Dennett, 1984). 
In a complex world, such as that a robot or human faces, it does not make sense to try 
to predict each and everything. It is, thus, of interest to analyse a bit more in detail 
from a procedural perspective what happens when an agent interacts with the world 
using the OAC concept and bringing it together with some systems theory. This 
viewpoint will lead to the notion of “being predictable and, therefore, we can ignore 
it” as a powerful method allowing the agent to free mental resources and avoid such a 
possible frame problem from starters (see “Some Speculations”, below). 
 
Figure 2A shows that during the interaction of an agent with an object normally also 
attributes of the agent (O2) will change10. After all the effectors of an agent are also 
just physical objects that will be influenced when getting in touch with another object 
(O1). For biological agents such contacts are most of the time fleeting and of little 
duration as indicated in Fig. 2A by the small contact zone of both OACs. An example 
would be a cat chasing a ball around. A different situation is depicted in Fig. 2B. Here 
a more permanent contact is established between agent and object established by 
action A1. Such cases also exist for animals (a cat holds a mouse between its fangs). A 
new object O3 has this way been formed, however, for most animals follow-up actions 
are normally very restricted and object manipulation cannot be performed (beyond the 
eating of the mouse). This is different for humans and in a restricted way for some 
animals (Hunt, 1996; Povinelli, 2000; Weir et al., 2002). Dexterous manipulation 
becomes possible by the fact that we can use the newly formed object and move it in a 
predictable way using our hands leading to situation (C) in Fig. 2. This notion is not 
terribly new as such but some interesting conclusions arise when looking at the 
situation in Fig. 2C from a systems theoretical viewpoint. 
 

H H

+
+ +

D

P2

D
D D

Unpredictable
Entities

P

G=HP2

P1 P1

A B C

 
 

Fig. 3) Systems theoretical representation of temporary embodiment. 
 
Figure 3A depicts a situated agent (human) facing a few disturbances. In the process 
of grasping an object the human will – if successful – be able to make the grasped 
object fully (or at least very) predictable to her. Hence, an entity that had been a 

                                                 
10 According to Petrick and Geib (personal communication) the aspect of an object’s attribute and, thus, 
the OAC definition as such, needs to be more carefully considered. Think about an open door which 
affords the action of walking through, by which the door’s attribute (open) will not change. We believe 
that this does not pose a problem for the definition of OAC as given above, though, as the attribute list 
of the object, can in principle also contain entries about the relation of the agent with respect to the 
object. Figure 2A suggests that by an action the agent will also change. Or more specifically the 
relation of the agent to the object changes (panels B, C). As O1 and O2 are symmetrical, one could 
attach an attribute to one of them (or to both) which describes their relation to each other. Through the 
performed OAC, this attribute will change. 
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disturbance (of – say – her visual input space) will first become a predictable entity P2 
(Fig. 3B), where the human will then be able to temporarily integrate this entity into 
her body (Fig. 3C). The remaining aspects P1 of the world cannot be integrated as 
they might, for example, be too unpredictable or too far away or from the agent’s 
currently existing body. The idea that humans (and monkeys) indeed perform 
temporary bodily integration is supported by experimental results that over time 
cortical receptive fields are extended representing the tip of a stick, which a monkey 
had to use to obtain food for an prolonged period of time (Obayashi et al., 2000, for a 
very nice review see Iriki and Sakura, 2008). Hence a long duration, where the 
processes depicted in Fig. 3 had taken place, has in this case even led to a long-lasting 
plastic change of the nervous system of this agent (monkey). 
 
The apparently strange notion of temporary bodily integration becomes much more 
digestible if one thinks of an advanced robot that has grasped a pair of pliers and can 
handle it now with high precision and dexterity. What would prevent us – the robot’s 
designers – from using a few screws to permanently attach these pliers to the body of 
the robot this way making the temporary bodily integration a permanent one? 
This brings us briefly back to swarms: Here one could argue that (social) contacts 
formed between individuals would lead also to an augmented body concept by which 
a swarm can achieve more than any of its members. For slime moulds such contact 
can indeed be permanent and they can, indeed, form a body in the more traditional 
sense. Hence, it seems that gradual transitions and different types of temporary bodies 
do indeed exist. It would be interesting to look at swarms and swarm re-organization 
also from a systems theoretical perspective, but this would go beyond the scope of 
this article. 
 
A possible additional complication arises from the fact that the above presented 
picture seems to suggest that “the world is deterministic”. Instead, usually the change 
of an attribute takes place on continuous stochastically affected variables. For 
example the filling level of a cup resulting from the OAC “filling the cup” depends on 
how good the agent can perform this action. A clumsy agent will produce widely 
varying outcome. Hence, at first, action outcomes normally need to be measured in 
continuous space and sometimes also monitored along continuous time. This makes it 
absolutely necessary to include continuous models for attributes in the process. 
Second, the reduction of stochastic influences can be performed by model update 
which can rely on repetition (of the same OAC) and averaging, but possibly also on 
reinforcement learning or even on supervision (a teacher tells the agent how full the 
cup should be). Such model update mechanisms on attributes, which have a variance, 
are important processes and we will deal with this when presenting the experiments of 
the section “Discovery by Doing” below.   However, as such these considerations do 
not alter the line of system theoretical argumentation presented above.  
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Fig. 4) Temporary embodiment experiment (for explanation see text). 

4.1. Robot Experiment – Temporary Embodiment 
In the following we will describe a set of experiments performed with a simple 
industrial robot (Stäubli, Switzerland) demonstrating how the principle of temporary 
bodily integration can be implemented in a machine in a simple algorithmical way to 
provide some support to this idea. A more detailed technical description of this is 
given in Appendix A. 
 
To this end we assume a few things for our machine to be innate: 

A. A visual representation exists by which a scene can be decomposed into 
simple 3-D entities, which we call primitives (see Fig. 4A especially also 
the inset; for technical details see Krüger et al., 2004). Notions of distance 
(metric) exist therein. 

B. The machine “knows” that coherently moving primitives belong together. 
This is known as the rigid body motion principle (see Faugeras, 1993) and 
corresponds to the prominent Gestalt law of Common Fate. 

C. Through this, the robot is able to learn about its own body (gripper). This 
can be achieved by a purely correlation based learning process where the 
robot has learned to associate coherent motion in the visual field to the fact 
that there has been a motor command, which the machine has used to 
perform a movement. We assume that the process of knowing its own body 
is basically completed; but that this process keeps on running “in the 
background” to safeguard against incompleteness and errors in the body 
representation. 
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D. The machine can move its arm and it has also a certain drive to move its 
arm around (without which nothing would ever happen!) 

E. The machine can push things around by making (visually measured) contact 
to entities in the scene, which do not belong to the machine. Measurement 
relies again on the 3-D primitives for which the concept of distance exist. 

F. A grasping reflex can also be performed with some success, triggered by 
certain geometrical constellations between primitives from the world 
(Aarno et al., 2007; Kraft et al., 2007). It can feel a successful grasp (haptic 
sensors) and it knows that it cannot perform another grasp without first 
letting go. Like babies, it, however, rather likes to hold on to a grasped 
entity. After some longer time it might however “get bored” and then it 
releases the object (also similar to small children).  

G. It has an exploration drive by which it will first try to grasp a thing and if 
this fails (measured by the haptic sensors at the hands) it will try to push it 
instead. This exploration is triggered by novelty and will start as soon as 
something new (new primitives) are discovered in the scene. Novelty is a 
strong mechanism in animals to elicit such exploration as it strongly 
stimulates the dopaminergic system of the brain (for review see Fellous and 
Suri, 2003). The implemented drives themselves are similar to basic 
reflexes, existing in animals, where for example frogs will try to catch any 
small, dark fast object which suddenly enters their field of vision, or 
humans will direct their attention and gaze to bright (red) moving objects. 

 
Note most of the built-in prior knowledge (A-G) could be seem as relatively low on 
the cognitive scale. Grasping or pushing reflexes require some sensor-motor coupling, 
the Birth of the Object needs the rigid body motion principle (Gestalt Law of 
Common Fate), and the agent needs to be able to measure correlations (e.g. for the 
Birth of the Object and to assess its own body structure). Even simple vertebrates like 
frogs are know to possess these traits. The goal of the following paragraph will be to 
show that these aspects can lead on to more complex properties like the temporary 
extension of the body-image of the agent. This new trait is again still not “deeply” 
cognitive, but – as argued later – the widening of the cause-effect horizon of the agent 
achieved this way, could well have been one germ for cognition. 
 
Figure 4A shows the body-representation of the robot as viewed by itself. All black-
grey11 primitives have been learned earlier (process C) to belong to its body. In the 
following we will for simplicity use the primitive type “black-gray” like a mental 
concept to graphically depict if a primitive is deemed to belong to the robot. If an 
object enters the visual scene the robot will try to grasp it (process G). If unsuccessful 
it will push it around (process E). This is shown for a not-graspable, upside down, 
green cup in Fig. 4B, where three movement stages are shown (Fig. 4B1-B3). If a 
grasp is successful (Fig. 4C), it will move the object (process D) like the spoon in Fig. 
4C, where we show seven snapshots of movement stages. At first it will realize that 
the object is represented by many primitives which belong together (process B). This, 
we had at some point called “Birth of an Object” as it represents a step where the 
physical “object-ness” of otherwise purely visual entities (the primitives) can be 
ascertained (Kraft et al., 2007). If the machine does not accidentally drop the object 
                                                 
11 Note, primitives at an edge are always showing two colours, one for the inside, the other for the 
outside. Here the robot appears dark (black) and the background brighter (grey) leading to a black-grey 
primitive.  
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but instead moves it for a longer time it will realize that the movement of these 
primitives will (albeit in a complicated geometrical way) be related to its own motor 
actions (process C). As it does not know better it will update its body-image based on 
this sensor-motor correlation and extend it to now include the coherently and 
predictively moving object (process C). This is shown in Fig. 4C by the gradual 
spread of the black-grey primitives along the (originally red-gray) spoon until the 
whole spoon is being re-coloured. Again we emphasize that this is just a graphical 
representation of the spreading inclusion of the spoon into the body image of the robot, 
similar to what happens in monkeys after extended tool use (Iriki and Sakura, 2008).  
If a new entity will enter the visual field now, process G is triggered again. It feels 
reluctant to let go (process F) and, thus, another grasp is inhibited (also F), hence 
processes G,E will lead to a pushing action now (Fig. 4D). As a consequence this 
agent, based on very primitive processes, begins to perform an interaction between a 
very simple “tool” that extends its body (until it drops it) and the world.  
 
Figure 4 shows the complete experiment on our robot in a schematic way. Clearly 
there are many more rather technical details that we had to take care of until the robot 
actually could do all this (see Appendix A as well as Krüger et al., 2004; Aarno et al., 
2007; Kraft et al., 2007; Pugeault, 2008 for details), but the complete sequence as 
such does not require any other component beyond those (A-G) listed above. 

4.2. Some speculations 
What might have been the consequences of such a process for early humans (and 
possibly for nowadays robots)? Clearly, temporary bodily integration spatially 
extends the body of the agent and creates a totally new situatedness. As it is 
predictable, the agent does not have to worry about the new entity and it can largely 
ignore it “as such”. Instead it can now use it to influence the world, thereby vastly 
enlarging its contact points to the world, which, before such processes came into 
being, had been limited to his original, non-extended body only. An agent who has 
realized that through such a process entities of the world can be made predictable 
might also have the chance to discover that it is also possible to operate with 
predictable outcome on other objects out in the world and that chains of predictable 
outcomes can be actively generated (Mendes et al., 2007), even possible transforming 
and shaping the object to a certain ends (Hunt, 1996; Weir et al., 2002). The discovery 
of the Law of Cause and Effect (Thorndike, 1911) during evolution of humankind, 
which appears to be a cornerstone of complex cognition12, could, thus, well have been 
bootstrapped by the horizon enlargement of an agent via temporary bodily integration 
of parts of the world.  

5 Extending the OAC Concept 
Above we had defined an Object-Action Complex by [O →A O’], where we remind 
the reader that this is an abbreviation, because, rigorously, one should define the OAC 
with respect to the Attributes (full, empty) of an object that get altered by an action. 
This should be kept in mind when using the abbreviated [O →A O’] notation. Based 
on this we can also define the Change as ΔO = O - O’. Sometimes only the absolute 
value of ΔO is of relevance, where Change is measured at the object’s attributes 
which change. Also here we need to add a note of caution. The minus sign does not 
                                                 
12 We note, that also other animals have some concept on the basic Law of Cause and Effect (many 
mammals, ravens, etc), but usually only of order one. Hence causal chains remain inaccessible to them. 
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necessarily represent a mathematical subtraction. This would hold only for attributes 
which can be encoded in a metric way (like the filling level of a cup). More generally, 
the minus sign is a comparison operator, which compares an attribute before and after 
an action. For non-metrically encoded attributes (e.g. rank attributes, discrete non-
countable attributes, etc.) the respective comparison operation needs to be differently 
defined. This comparison procedure requires a memory process because we need to 
remember a (perceptual) Prior (O) and compare it with a Posterior (O’). Similar to the 
statement we had made above, we can again point out that it is not an easy problem to 
determine what (which attributes) should be remembered and compared. When 
repeating an OAC the agent can also assess the Expected Change, which is <ΔO>, 
the average Change across trials, together with its standard deviation σΔO called 
Repeatability. A small standard deviation would represent a high repeatability of this 
OAC, because all Changes are similar. Hence, the Expected Change and Repeatability 
can be considered as an Inner Object Model of a certain OAC. Here we need to 
strongly emphasize that different inner models are also possible. Change may be very 
relevant in general, but sometimes the absolute outcome value or a normalized one 
might be of greater importance for measuring the success of a task. Hence, which 
model to use, depends on the goals and the task of the agent. 
 
But, which attributes are important? When performing a certain OAC many things 
can change: Filling a cup leads to a full, heavier cup, an emptier, lighter coffee pot a 
splashing noise and possibly a change of the illumination (because someone else has 
switched a light on).  Normally, through repetition the agent can find out which 
properties change causally (Thorndike, 1911), hence in way correlated to the OAC 
(certainly not the illumination), and this way the agent can improve the Expected 
Change reaching smaller values of σΔO with more and more trials13. Here we note that 
we have tacitly assumed that the agent will be able to perform “fairly optimal” actions. 
Hence, the filling-action as such ought not to introduce additional contingencies 
which affect Change and Expected Outcome. In reality – say for small children – this 
in not necessarily the case. Hence such “clumsy” agents need to improve their actions 
in parallel to updating the Expected Outcome of the corresponding OAC. Thus, 
Action Models as well as Inner Object Models need to be updated and improved in 
parallel. Assuring convergence of such a double-procedure is far from trivial and 
would require special algorithmic attention. 
 
Storing Expected Change and Deviation of course requires also some kind of memory. 
A simple way to measure the Unpredictability U of an OAC is to calculate U= 
abs(ΔO - <ΔO>), Change for a single trial minus Expected Change14. If your actions 
are ok, and your inner object model is complete you should find that actual action 
outcome and expected outcome match. Hence, this OAC is then highly predictable 
and U is small. Humans keep on trying when an attempted OAC keeps on leading to 
an unpredictable outcome. On the other hand, they are getting bored and stop 
repeating actions for which a predictable outcome is again and again obtained. 
Boredom15, hence comes with high Repeatability which corresponds to a small value 

                                                 
13 Alternatively a teacher can tell the agent to “pay attention to” a certain change (similar what we often 
do with our kids), which is a much more efficient procedure as compared to many required repetitions 
in trial and error learning. 
14 We define Unpredictability as predicting change, not predicting status-quo. 
15 It is equally possible to use these quantities to define other psychologically relevant entities, like 
Frustration, which would arise if Repeatability does not get better. 
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of σΔO. Boredom, however, will not be considered in the example below. One more 
thing should be reasonably assumed. Agents should not average Change and 
Predictability over their complete life span, Forgetting – hence limiting the averaging 
window – will help to remove the influence of early trials on the inner model (which 
are most of the time much more erroneous than later trials). 
 
The notions above heavily rely on the aspect of Change, Expected Change and (Un-) 
Predictability. The nervous system of (probably all) animals is highly change sensitive 
and vastly neglects constant inputs as almost all neurons respond in an adaptive way 
(“phasic”) bringing their activity levels back to (near) zero if their inputs remain 
constant. Hence, without over-stating, it seems fair to say that Change is the most 
relevant aspect of the world for biological agents. 

5.1. Robot Experiments – Discovery by Doing 
The considerations above suggest that Predictability will allow an agent to extend its 
body, but it will also allow for “discovering the world” in a reliable way.  This has 
been done in another set of experiments based on the learning of cause-effect rules by 
the help of a human teacher. More details on the algorithmic procedure are given in 
Appendix B and in Agostini et al. (2008a,b). The underlying idea of this is that the 
robot simultaneously learns cause-effects relations while experiencing situations in 
accordance to goal oriented behaviour. A cause-effect pair represents an OAC. 
 
For the following it is important to clearly state our goals. The procedure described 
below focuses on how an agent can enter an OAC into its rule-set and how it can 
statistically update existing OACs, whenever they are being repeated. We are not 
interested in the different possible ways of how to learn an OAC. Thus, we 
implemented a largely supervised learning procedure, by which, if necessary, a human 
teacher instructs actions and explains outcomes. This is a very efficient way of 
teaching but could be replaced by trial and error learning, reinforcement learning or 
other learning methods if desired. In the following we will also not discuss how an 
agent would make a choice (decision making). This is a different issue unrelated to 
the model building for OACs. The same is true for planning, which is also not of 
importance here.  Specifically we will focus on a procedure for generating updating 
OACs based on the concepts of Change, Predictability, etc, developed above.   
 

Table 1) Definitions 
Let us, therefore, come back to our 
definition of Change, Expected Outcome, 
and especially Unpredictability 
U=abs(ΔO - <ΔO>), Change for a single 
trial minus Expected Change16. As the 
definition of U relies only on 
(cumulative) changes it is independent of the specific OAC performed and we can 
measure the Success of any OAC by holding U against some threshold Ф. If U<ФS 
the OAC was successful.  Cleary, success thresholds should change with praxis. An 
inexperienced young child building a LEGO toy house will have a different (in this 

                                                 
16 We note that all these definitions apply to one given OAC. Any other OAC will have values for these 
entities on its own.  This would require an index, which we would like to avoid for easier writing and 
more clarity. 

ΔO Change 
<ΔO> Average Change 
σΔO Repeatability 
U Unpredictability 
ФS Success Threshold 
N Counter 
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definition: higher) success threshold than an experienced adult. Especially, when 
performing an OAC for the first time, its success threshold should be very high, 
because the agent does not know about any Expected Change. Failure occurs for 
U>ФS and this may lead to Surprise and the triggering of a different OAC, possibly 
for resolving the Surprise, or it may lead to the repetition of the current OAC to check 
the consistency of the Failure. Thus, Surprise arising from an unpredictable situation 
can be one strong driving force for the discovery of the world by a machine. Note, 
Surprise is not the only driving force. Even without Failures (which lead to Surprise) 
exploration can be triggered by boredom and other psychological variables. 
 
With these definitions it is possible to arrive at an interactive algorithm where an 
agent performs known OACs and/or learns new ones relying on supervision by a 
human. The human teacher will basically explain all unknown situations to the agent, 
if necessary telling the machine to perform a certain action and to pay attention to a 
certain attribute after perceiving the action outcome. Hence on every first encounter 
the complete cause-effect relation covered by a new OAC is being supervised. This 
removes the terrific problem of how to discover cause-effect relations (which could be 
done by measuring correlations through many repetitions of the same OAC) and 
makes this learning process highly efficient, similar to the teaching of an attentive 
human student. Following our goals, the system itself, however, includes the building 
and updating of inner models which represent each OAC. Hence, the agent will, when 
repeating an OAC, measure Change ΔΟ, calculate Unpredictability U, and update 
Average Change <ΔΟ> as well as Repeatability σΔO. On success it will also 
subsequently lower the success threshold ΦS. This way successes and failures can be 
continuously monitored, where the agent will again “call for an explanation” in case 
of a failure. 
 
The system, which we have implemented, is described in more detail in Appendix B. 
Here we would like to show only an example (Fig. 5) where the goal is to clear parts 
of a table by moving bowls out of the way with a robot arm to make it possible to 
move one bowl (dark) to the far end. See Fig. 7A for a picture of the setup. To this 
end the agent uses a grid of locations and learns to interpret what it means for a given 
action that grid locations are occupied or not17. 
 
The pseudo code below just shows the OAC update subroutine based on the variables 
above. The currently perceived situation is stored in SPrior which is part of a 
perception function used to store the perceived situations (see Appendix B). 
OACs rely in this formalism on consecutively occurring perceptual states (Sprior, 
Spost), on an action, which relies on a Task coupled to SPrior. The action 
transforms SPrior into SPost. Furthermore an OAC contains models of expected 
outcome measured as the Average Change <ΔΟ> together with the assessment of the 
Repeatability σΔO for the respective OAC. Each OAC carries a Success Threshold ФS. 
 
 
 

                                                 
17 It is interesting to ask, what are actually the objects in such a scenario? Evidently the bowls are not 
the objects for the OACs, which we are considering here. Rather, it is the (imagined) grid locations, 
which take the characteristics of an object here. Their attributes are if they are occupied or not. It is one 
strength of the OAC concept that it also holds in the context of such an example.  



 17

 
Subroutine: Execute and update OAC(SPrior, Task) 
  Execute action (deduced from SPrior,Task or instructed by teacher) 
  Perceive posterior SPost 
  Measure Change ΔO (Posterior – Prior) 
  Calculate U=abs(ΔO - <ΔO>)(UN PREDICTABILITY) 
    IF not the expected outcome, hence U > ΦS (FAILURE=SURPRISE) 
      { 
      Teacher explains bad/missing conditions (with indications like “detector A needs to have value B” 

      to afford the expected outcome.) 
      Correct OAC using teacher explanations  (by replacing the value of detector A with 
           attribute B in the OAC representation.) 
      } 
    ELSE (if not failure = success) 
      Update OAC statistics: update <ΔO>, σΔO, and ΦS  
Return 

 
Figure 5A shows a representation of the initial state and the goal in our particular task.  
It also illustrates the sequence of OACs which have to be executed to reach the goal. 
The dashed cells indicate a “don’t care situation”, where the agent will not consider if 
there is a bowl or not at this location. Hence the agent assumes that the occupancy of 
these particular grid cells does not affect the OAC.   
 
This set of OACs (A) will be fully instructed by the teacher in the first trial of the 
agent, because the agent has no knowledge whatsoever. During subsequent trials more 
and more OACs will be learned this way and when an OAC is being repeated it will 
lead to an update of its statistical properties, Average Change <ΔΟ>, Repeatability 
σΔO, and Success Threshold ФS. This is depicted in Fig. 5B where OAC2 from (A) is 
repeated in a much different situation leading to an update of the expected outcome. 
The agent will now give more trust to the fact that cell 2 should be occupied after 
having performed this particular OAC (depicted by a darker grey shading of cell 2 at 
the bottom). The estimate of Average Change will get more stable, Repeatability will 
improve and Success Threshold will be lowered.  
 
Evidently, OAC4 in panel (A) is still incomplete. With the existing knowledge from 
trial (A) the agent assumes that the preconditions for this OAC are: cell 10 must be 
occupied, cell 14 must be free and all other cells do not matter. This is incorrect as 
shown in Fig. 5C, because cells in between also need to be free to be able to perform 
the action 10U4. In the situation depicted in panel (C) surprise will arise and the agent 
will “discover” (by the help of the teacher) another relevant precondition for this 
OAC.  
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Fig. 5) Experiment with a robot arm for learning from a human to clear parts of a table and to move 
one object there. For further explanations see text. 
 

6 Conclusion 
Many of the notions put forward in this article had been presented at least in parts by 
other authors, which we have tried to acknowledge along the way. So this paper hopes 
to contribute to the discussions on embodied cognition by its different (systems 
theoretical) perspective as well as by the attempt to find an uninterrupted procedure, 
based on the evaluation of Change and Predictability, towards more cognitive 
complexity. “Uninterrupted” means here that the same principles have probably been 
valid for our primordial ancestors and are still applicable for us and our children 
(which we teach). It is plainly impossible to draw all cross-links to prior work and 
some aspects have been totally left out, for example, we have totally omitted Piaget’s 
view (Piaget, 1930). 
 
Thus, in this article we have tried to provide a procedural perspective on embodiment 
and cognition using ideas from linear systems theory to explain our assumptions. This 
approach allows disentangling the concept of embodiment from that of situatedness 
and relies heavily on concepts of “Change” and “Predictability”, which are prevalent 
in neuronal responses. Specifically, we tried to show what happens to a system when 
an agent is able to manipulate an object in a predictable way: From a systems 
theoretical viewpoint this object then becomes temporarily integrated into the agent’s 
body.  By ways of simple robot experiments we have shown that the idea of 
temporary bodily integration can be consistently represented on a machine using the 



 19

principle of rigid body motion (RBM) to integrate entities into the body image of the 
agent as soon as those entities move coherently and if this happens together with a 
motor command that the agent has produced. Given preconditions A-G above, this 
process relies then only on signal correlations and does not need any teacher or other 
external influence (which could not have been there anyways during evolution). 
 
In the following we had discussed how a process (relying on Change, Predictability, 
Surprise, etc.) can be formulated by which a robot can (with help) discover the rules 
of its world. This is achieved by exploration, repetition, surprise and the resolving of 
surprise, which can either be achieved by a teacher or through trial and error learning. 
Trial and error learning makes such procedural trees accessible already early in 
human evolution, where supervision has still not played a big role and learning was 
almost exclusively by trial and error. 
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9 Appendix A: Body Extension based on Rigid Body 
Motion 

 

 
 
Fig. 6) Illustration of the scheme: A) 2D primitives are extracted from the image; B) stereo pairs of 2D 
primitives lead to the reconstruction of 3D primitives; C) coplanar pairs of 3D primitives are detected; 
D) grasp hypotheses are inferred from co-planar pairs; and E) the body extension takes place. 
 
Local multi-modal Scene descriptors 
The body extension algorithm makes use of visual symbolic descriptors called Multi-
Modal Primitives. These primitives are extracted from images, and embedded in a 
hierarchical representation discussed in Krüger et al., (2004) and Pugeault (2008). 2D 
primitives (Fig. 6A) are defined as: 

( )( )rml cccx ,,,,, ωθπ = , 
where x  is the primitive’s position in the image; θ  is the 2D orientation; ω  the local 
phase; and the colour is coded as three vectors ( )rml ccc ,, , corresponding to the 
primitive’s left ( lc ), middle ( mc ) and right sides ( rc ). Figure 6A shows the primitives 
extracted from an example scene and 6B the abstract representation of 2D (bottom) 
and 3D (top) primitives. 
 
These primitives can be matched between two images taken from a pair of stereo 
cameras, and stereo pairs of 2D primitives allow reconstructing so-called 3D 
primitives that have the following formulation: 

( )( )rml CCCX ,,,,, ΩΘ=Π  



 24

where X  is the 3D position; Θ  is the 3D orientation; and, Ω  is the phase. 
Appearance based information is coded by generalising local phase and colour of the 
two corresponding 2D primitives.  The reconstruction of a 3D primitive from two 
corresponding 2D primitives is illustrated in Fig. 6B. See Krüger, et al. (2004) and 
Pugeault (2008) for more information about 2 and 3D primitives and the extraction of 
the encoded modalities. 
 
Relations can be defined on 3D primitives, of which two are relevant in the context of 
this paper. In the first place, a co-planarity relation between 3D primitives (see Fig. 
6C) indicates to which degree these primitives are in the same plane based on the fact 
that the two 3D position and 3D orientations are an over-determined system. The 
other relation, called Rigid Body Motion (RBM), describes the transformation 
undergone by 3D primitives describing a moving rigid object, e.g., when the robot has 
grasped the object firmly and is manipulating it. For details, see Kraft et al. (2007) 
and Pugeault (2008). 
 
Grasping Reflex based on Co-Planarity 
Co-planar pairs of 3D primitives are detected using the co-planarity relation. Different 
predefined grasp types exist for different coplanarity relations. Two are shown at the 
top left of Fig. 6D. Then different grasping hypotheses can be associated to each 
actually existing co-planar pair in the image based on a best-match measure. Three of 
them are shown in Fig. 6D, bottom. In Kraft et al. (2007) we could show that, 
although these hypotheses do not always produce a successful grasp, many objects 
could be grasped by allowing multiple trials with different hypotheses of which 
eventually one will lead to a successful grasping action. The grasping success can be 
computed using haptic information as well as by measuring the gap between the 
grasper’s two fingers after the grasp and after lifting the object. 
 
Body knowledge based on the Rigid Body Motion Principle 
The motion performed by an industrial robot (such as the Stäubli RX 60 that has been 
used in the experiments) is predicted with a high degree of precision by the motor 
control. Hence, the change undergone by 3D primitives, based on the RBM relation 
mentioned above, can also be predicted accurately. Then the body can be defined as 
the set of all 3D primitives that move according to this predicted motion. If the 
gripper fails to grasp anything, these primitives describe the gripper alone; if, on the 
other hand, the grasp has led to a stable physical control over an object, these 
primitives describe the gripper and the manipulated object (see Fig. 6E).  
 
Body extension 
The mechanisms described above provide the robot with a 3D model of its own body, 
including any extension obtained by the acquisition of stable physical control over an 
object (indeed the gripper itself can be seen as such an extension). Hence the ability to 
make contact with objects can be computed based on that knowledge and thus any 
grasped object extends the robot’s workspace for (at least) simple actions such as 
pushing, as shown in Fig. 4. 
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10 Appendix B: Discovery by Doing 
 
This appendix contains a more detailed description of the procedures used for the 
experiments shown in Fig.5 and of the example application implemented in a Stäubli 
robot (see also Agostini et al., 2008a,b).  

 

 
 

Fig. 7) Example application using a Stäubli Arm. 
 
Setup 
Figure 7 shows our simple real world application implemented in a Stäubli arm (A) 
together with the used detector grid (B) and one example of a set of possible actions 
(C). The application consists of an environment with 14 cells configured in a 5 by 3 
grid world where each cell in the grid represents a detector di for perception of grid 
occupancy. Bowls are placed in the grid and have black markers to ease the 
perception problem. Detector values are “black” when a bowl is centred in a cell and 
“white” otherwise. These values are derived from the originally existing average grey 
level in a given grid cell after thresholding. The goal is to free a certain area of the 
table to allow for moving one bowl (marked here with yellow rim, A) to the far end. 
Bowls are larger than gird cells, which needs also to be taken into account. To this 
purpose the arm can move any bowl, when possible, from its current cell to one of the 
neighbouring cells. Only vertical or horizontal movements of between one and four 
steps length are permitted (C), but diagonal ones could also be included if desired. 
Action are encoded by grid cell number (e.g. 7), direction of movement (e.g. U for up) 
and step length (e.g 2 for 2 steps), leading to an encoding of, in this example, 7U2 
(see Fig. 7C). 
 
Formalism: N otation 
We assume that the agent has a set of N  sensors that measure some characteristics of 
the environment. The value of the senor i is called an observation vi. Each of these 
sensors is internally represented by the agent as a detector di  (grid cell) that could 
take different values dij called conditions depending on the observation vi. The 
function that maps observations to conditions is called the perception function (PF), 
which basically transforms the raw information of the sensor into some “symbolic” 
representation manageable by the robot (Agostini et al., 2008b). Here this is a simple 
thresholding procedure on the measured grey levels.  
An internal state s of the agent is constituted by the momentarily existing set of values 
of every detector, hence, s={d1j, d2k,…,dN l}, where j,k,l are used to abbreviate possible 
detector values. In our case we have only two possible values for each detector (black, 
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white). Finally, we assume that at each moment the agent is capable of performing a 
well defined action ai taken to the set of all possible actions A. 
 
Formalism: Cause-effect Description – OACs 
We represent a cause-effect description, in our words: an OAC, using a tuple that 
consists of a set of pre-conditions, an action ai and a set of post-conditions. Pre-
conditions are captured by the state s before the action rendering the description O of 
an object, post-conditions by the state s’ after the action, rendering the description O’ 
of the object after some of its attributes have changed. On top of this every OAC 
contains models of expected outcome measured as the Average Change <ΔΟ> 
together with the assessment of the Repeatability σΔO for the respective OAC and a 
Success Threshold ФS. Figure 5 shows multiple examples of different OACs where 
final detector values are shown after thresholding. Dashed cells (see Fig. 5) mean 
“don’t care” if there is either a black or a white. 
 
Formalism: Expected Outcome 
The expected outcome is coded as a set of confidence intervals Ii, one for each 
detector di involved in the post-conditions part of the OAC. The confidence intervals 
are built using a sampled mean <ΔΟ>i and standard deviation σΔOi of the observed 
condition values, the number of observations ni that fed the statistics, and the sampled 
distribution t in the following way,  
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−intα  is the value of the t distribution with p=α/2 and n-1 degrees of freedom.  

The statistics are fed by the observations obtained after the OAC execution and if no 
failure occurs. If the number of samples ni is below a predefined threshold nc the 
teacher supervises the statistic updating as the agent doesn’t have enough confidence 
to evaluate by itself a failure. 
 
Failures - Surprises 
Several types of failures can occur in this system. These failures are fundamental in 
the teaching-learning process as they are the driving force for the agent “to ask for 
help”. This is evident as soon as a failures leads to the situation that a certain expected 
outcome did not take place, which is a typical “surprising situation”. 
Specifically: 

1) Failure happens, if any of the conditions obtained after an OAC execution lie 
outside their corresponding confidence intervals, i.e. if P = abs(ΔΟ − <ΔΟ>) > 
ФS, where ФS = (Imax-Imin)/2. As mentioned before, outcome evaluation only 
takes place after gathering enough statistics. In the special case of the 
application of Fig. 5 detector values are binary separated into black and white, 
hence convergence of the mean <ΔΟ> will also have to be to black or white, 
and the standard deviations σΔO are supposed to converge to 0. A failure will 
occur simply when the agent expects a white and perceives a black or vice 
versa. Surprises are solved by teacher explanations about what to “pay 
attention to” in order to obtain the expected outcome. In the approach 
explanations have the form of “detector A need to have value B” in order to 
obtain the desired outcome. With this explanation the robot corrects the OAC 
representation as depicted in the pseudo-code above. 
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2) The robot perceives the world incorrectly. Due to light changes and intrinsic 
uncertainties of the real world the robot could detect a bowl (black) in an 
empty cell or vice versa. As the teacher supervises robot perceptions with 
respect to state representations she will explain which is the proper attribute 
and the agent performs an updating of the perception function using the 
instructed attribute and the value obtained from the corresponding sensor. 

3) Finally, a failure could also occur if there are no OACs that could produce the 
needed changes to reach the goal. In this case the teacher instructs about the 
action to be performed and the system generates a first approximation of the 
OAC with the observed changes. 

 
Method 
A complete explanation of the method developed for “discovery by doing” using 
OACs is beyond the scope of this article. See Agostini et al. (2008a,b) for a detailed 
description. Nevertheless, we present the basics of the method in the following 
pseudo-code, where we use the §§ symbol to denote a jump to a subroutine. Clearly 
this code fragment is not complete as many required checks, etc. are not been 
included for brevity.  
 
Some explanations: Goal is the final state that the agent is supposed to reach by 
performing a sequence of OACs (see Fig. 5). Rule is a sequence of OACs by which 
the agent can link the perceptual prior perceived at the start to the final perceptual 
posterior at the goal. Task can be understood as the index of a certain OAC in a given 
rule. Hence when a certain task arises then one specific OAC has to be executed.  
 
INIT system  
Define GOAL 
WHILE GOAL is not reached 
  { 
  Perceive and store prior state Sprior using the “Perception Function” (2) 
  Select a rule that connects Sprior to GOAL 
  IF rule found 
    { 
    Extract all Tasks from the Rule to reach the GOAL 
    FOR each Task 
       §§Execute OAC(Sprior,Task)§§ 
    } 
  ELSE (no rule) 
    { 
    Teacher instructs actions (1) 
    FOR each action instructed 
       { 
       Perceive and store prior state Sprior (2) 
       Execute action  
       Perceive and store posterior state Spost (2) 
       GENERATE new OAC using Sprior, Action and Spost 
       } 
    GENERATE RULES using new OACs 
    }(end if rule found) 
  } (end while GOAL is not reached) 
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Execute OAC 
Subroutine: Execute and update OAC(SPrior, Task) 
  Execute action (deduced from SPrior, Task or instructed by teacher) 
  Perceive posterior SPost 
  Measure Change ΔO (Posterior – Prior) 
  Calculate U=abs(ΔO - <ΔO>)(UN PREDICTABILITY) 
    IF not the expected outcome, hence U > ΦS (FAILURE=SURPRISE) 
      { 
      Teacher explains bad/missing conditions (with indications like “detector A needs to have value B” 

       to afford the expected outcome.) 
      Correct OAC using teacher explanations  (by replacing the value of detector A with 
           attribute B in the OAC representation.) 
      } 
    ELSE (if not failure = success) 
      Update OAC statistics: update <ΔO>, σΔO, and ΦS 
Return 

 
Actions of the Teacher 
If necessary, the teacher interferes at three stages, see number in the pseudo-code: (1) 
she can instruct actions, (2) she can supervise whether a prior is correctly perceived or 
not, and (3) she can explain bad or missing conditions for an OAC. 
These actions take place, if required, as described in the subsection on Failures – 
Surprises above. 
 
 


