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Abstract

In this paper we propose a new technique to perform
figure-ground segmentation in image sequences of moving
objects under varying illumination conditions. Unlike most
of the algorithms that adapt color, the assumption of smooth
change of the viewing conditions is no longer needed. To
cope with this, in this work we introduce a technique that
formulates multiple hypotheses about the next state of the
color distribution (some of these hypotheses take into ac-
count small and gradual changes in the color model and
others consider more abrupt and unexpected variations)
and the hypothesis that generates the best object segmen-
tation is used to remove noisy edges from the image. This
simplifies considerably the final step of fitting a deformable
contour to the object boundary, thus allowing a standard
snake formulation to successfully track nonrigid contours.
Reciprocally, the contour estimation is used to correct the
color model. The integration of color and shape is done in
a stage denominated ‘sample concentration’, that has been
introduced as a final step to the well-known CONDENSA-
TION algorithm.

1. Introduction

Color and deformable contours have been extensively
used in computer vision applications, such as object de-
tection and tracking tasks [1] [5]. Usually, these meth-
ods are based on a first step where the object is roughly
(but robustly) located by the color module. This simplifies
the subsequent step of accurately fitting the contour model
to the rigidly or non-rigidly deformed object boundary. In
environments with controlled lighting conditions and un-
cluttered background, color can be considered a reliable
and invariant cue, but when dealing with real scenes with
changing illumination and confusing backgrounds, the ap-
parent color of the objects varies considerably over time,

Figure 1. Abrupt change of illumination. Left:
Two consecutive sequence frames. Light
conditions have changed abruptly (from nat-
ural to red illuminant). Center and right: Cor-
responding Color distributions of the fore-
ground (the can). Φ1 and Φ2 are the coordi-
nates in a 2D colorspace.

and an important challenge for any figure-ground segmen-
tation system to work in real unconstrained environments,
is the ability to accommodate these changes (Fig. 1).

In the literature, the techniques that cope with change in
color appearance can be divided in two groups. On the one
side, there is a group of approaches that search for color
constancy (e.g. [3]); but in practice, these methods work
mostly in artificial and highly constrained environments.
On the other hand, there are the techniques that generate
a stochastic model of the color distribution, and adapt this
model over time. In this sense, in [11], color is represented
by a histogram that is adapted online, as the weighted func-
tion of previous histograms, and a predicted one. Yang and
Lu [13], parameterize object color by a unique gaussian, the
mean and covariance of which are estimated using a linear
combination of the parameters in previous gaussians. Raja
and McKenna [12] approximate color with a mixture of
gaussians, and dynamically update it using a weighted sum
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of previous estimates with estimates based on new data.
The drawback in all these approaches is that they assume

that color varies slowly and that it can be predicted by a dy-
namic model based in only one hypothesis. However, this
assumption does not suffice to cope with general scenes,
where the dynamics of the color distribution might follow
an unknown or unpredictable path.

In order to cope with these unconstrained environments,
we propose a system with the following features, that are
the main contributions of the paper:

• Multihypotheses framework: The use of a particle
filter formulation to predict the color distribution in
subsequent iterations, offers robustness to abrupt and
unexpected changes in the color appearance of the ob-
ject. In previous work [8] we have suggested a similar
multihypotheses framework to track objects in which
color could be approximated by an unimodal distribu-
tion, represented by a histogram. In the present work,
we deal with multicolored objects, approximated by a
mixture of gaussians (MoG). Note the difference be-
tween our work and all previous tracking approaches
using a particle filter formulation (e.g. [2] [5] [10]),
where multiple hypotheses are generated about the po-
sition of the object and not about the distribution of ob-
ject color.

• Integration of color and deformable contours in a
particle filter framework: The color estimation is
used to generate a rough estimation about the ob-
ject position and remove noisy edges from the im-
age. This simplifies the stage of fitting a deformable
contour to the object boundary, and even with a stan-
dard snake formulation, nonrigid objects can be ac-
curately tracked in cluttered backgrounds with abrupt
changes of illumination. The fusion of the multihy-
potheses color model and the deformable contour is
done in a final stage that we have introduced to the
well-known CONDENSATION algorithm.

In the following sections, a detailed description of the
method is given. In Section 2 the object color model and ini-
tialization step are presented. The dynamic model for gen-
erating multiple hypotheses of the (object and background)
color distributions is depicted in Section 3. Section 4 deals
with the global and local deformable model fitting process.
In Section 5, the complete tracking algorithm and model
adaptation is explained in detail, and results and conclu-
sions are presented in Sections 6 and 7, respectively.

2. Color Model

The selection of the colorspace is an important initial
issue for any color-based figure ground segmentation sys-
tem. The typical selection criterion is based on the invari-

Figure 2. Gaussian mixture components of O
(the can) and B. Left image: Filled dots and
continuous lines are O data points (in Fisher
colorspace) and gaussian components, re-
spectively. Empty dots and dashed lines are
B data and gaussians. Lower right image:
p (O|x), where brighter points correspond to
more likely pixels.

ance of the color representation to illumination changes, and
according to this idea, color is usually represented by two
components of the rgb, HSV or CIE xyz (lower case let-
ters represent normalized components) colorspaces or by
linear combinations of the RGB components. However,
these representations are not robust enough to cope with
abrupt illumination changes. In the experiments presented
in this paper, we use a colorspace (Fisher colorspace) that
maximizes the separability of the foreground and back-
ground classes [9].

In order to represent the color distribution of a
monochrome object, color histograms have been demon-
strated to be an effective technique (e.g.[8]). However, when
the object to be modeled contains regions with different col-
ors, the number of pixels representing each color can be
relatively low and a histogram representation may not suf-
fice. In this case, a better approach is to use the MoG model,
that expresses the conditional probability for a pixel x be-
longing to a multi-colored object O as a sum of Mo

gaussian components: p (x|O) =
∑Mo

j=1p (x|j) P (j). Sim-
ilarly, the background color will be represented by a mix-
ture of Mb gaussians.

Given the classes foreground (O) and background (B),
the a posteriori probability that a pixel x belongs to object
O is computed using the Bayes rule:

p (O|x) =
p (x|O) P (O)

p (x|O) P (O) + p (x|B) P (B)
(1)

where P (O), P (B) represent the a priori probabilities of
O and B, respectively. These values are approximated to the
expected relative area values of each class (see Fig. 2).

Similar to the problem of selecting the number of bins
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in histogram models, using MoG conceals the challenge of
choosing the number of gaussian components that better ad-
just the data. We initialize this, with the modified EM algo-
rithm proposed in [4], that is based on a Minimum Message
Length criterion and iteratively fits and annihilates an ini-
tially large number of components (introduced by the user).

Once we have learnt the initial configurations of the MoG
for O and B, they are parameterized by:

Gε = [pε, µε, λε, θε] (2)

where ε = {O,B}, pε contains the priors for each gaussian
component, µε the centroids, λε the eigenvalues of the prin-
cipal directions and θε the angles between the principal di-
rections with the horizontal. G = {GO,GB} will be the state
vector representing the color model.

3. Dynamic Color Model

Let Xε,t−1 = [x1,t−1, . . .xNε,t−1]
T , be the vectors con-

taining the set of points (in a particular colorspace) belong-
ing to the classes O and B, at time t − 1. One of the stages
of the tracking algorithm, consists of propagating the com-
ponents Gε,t−1 of the state vector to G̃ε,t, given a specific
dynamical model and the image at time t, denoted as Zt.
Instead of applying directly the dynamic model to Gε,t−1,
we apply it to the distribution Xε,t−1, to obtain the estima-
tion X̃ε,t, that will be used later to reestimate G̃ε,t. With this
aim we define the following affine random dynamic model:

X̃ε,t = AεXε,t−1 + vε (3)

In the case of representing color distributions in a
2-dimensional colorspace, matrix Aε and translation vec-
tor vε are written as:

Aε =
[

1 + aε,11 aε,12

aε,21 1 + aε,22

]
vε =

[
vε,1

vε,2

]

Variables aε,ij and vε,i are approximated by normal random
distributions, aε,ij ∼ N (

0, σaε,ij

)
, vε,i ∼ N (

µvε,i
, σvε,i

)
,

where parameters σaε,ij
and σvε,i

are learned a priori by a
least-squares procedure, from a training sequence of a still
object under changing illumination. The parameter µvε,i

ac-
counts for the expected displacement between the class dis-
tributions in t − 1 and t, and is approximated by the trans-
lation vector between the centroids of the sets Xε,t−1 and
Xt. Note that the vector Xt = [XO,t,XB,t]

T representing
the color distribution of the whole image Zt is known, but
the subsets XO,t and XB,t are unknown.

Using the EM algorithm initialized on Gε,t−1, a new mix-
ture of Gaussians G̃ε,t is fitted to each predicted distribu-
tion X̃ε,t , and used to compute the a posteriori probability
maps for the foreground class, following eq. 1. In Fig. 3 we
show several hypotheses (with the corresponding p (O|x)

Figure 3. Several hypotheses and their re-
spective p (O|x) map, corresponding to the
abrupt illumination transition presented in
Fig. 1

maps) used to estimate the abrupt change of illumination
that exists in the pair of images of Fig. 3. Observe that
some of the hypotheses are able to provide a ‘good’ fore-
ground/background discrimination.

4. Global and Local Deformable Model Fit-
ting

As color segmentation usually only gives a rough estima-
tion about the object location, we use a deformable model
( [2], [7]) to fit its boundary and obtain a more precise infor-
mation about its position. This process is highly simplified
by using the data that is estimated by the color model (Sec-
tion 3) in order to preprocess the contour image and to re-
move those noisy edges that might disturb the deformable
model fitting process. This simplification allows us to ob-
tain good tracking results in rigid and nonrigid objects, even
using the simple and classical snake algorithm [6]. In the
boundary adjustment process, first a global fit of an affine
contour is performed, that basically deals with object trans-
lation and orientation (rigid motion), followed by local de-
formations that consider nonrigid motions. The following
are some details of these processes:
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Let the contour of the object be parameterized by a curve
r(s) = [u(s), v(s)], s ∈ [0, 1], that moves through the im-
age. In the traditional snake formulation [6], the problem
of snake fitting can be viewed as a force balance equation:

Fint (r (s)) + Fext (r (s)) = 0 (4)

where Fint (r (s)) = α∂2r(s)
∂s2 + β ∂4r(s)

∂s4 are the inter-
nal forces that control the bending and stretching of the
snake (α and β are the elasticity and rigidity parameters, re-
spectively). Fext (r (s)) are the external forces that pull
the curve towards the edge image features. In the litera-
ture, there exist several definitions for this external func-
tion. In particular, we use the Gradient Vector Flow (GVM)
external force proposed in [14], because it has a larger cap-
ture range and better convergence performance in boundary
concavities than other methods.

Eq. 4 is solved by making the snake also a function of
time, i.e., r(s, t) (we will write rt) and iterating over the
following expression:

rt − rt−1

�t
= α

∂2rt−1

∂s2
+ β

∂4rt−1

∂s4
+ Fext (rt−1) (5)

When the solution stabilizes (rt−1 = rt), eq. 4 is satisfied.
For the numerical implementation we approximate the

derivatives with finite differences, and discretize the curve
r(s, t) with NP points, so that the previous gradient descent
method can be rewritten as:

Rt = (I −�tQ)−1 (Rt−1 + �tFext (Rt−1)) (6)

where R = [(u1, v1, 1) , . . . (uNP
, vNP

, 1)]T contains the
homogeneous coordinates of the NP discretized points of
the snake, Q is a NP × NP pentadiagonal matrix includ-
ing the α and β parameters, and I is the NP−identity ma-
trix.

Iterating over eq. 6 the snake is locally fitted to the image
edges, only governed by the internal and external forces.
But previous to this stage we perform a global deforma-
tion in order to find the suitable translation and orientation
of the snake. For this fitting, the next additional constraint
of affine deformation is introduced to eq. 6:

Rt = Rt−1HA = Rt−1


 a11 a12 v1

a21 a22 v2

0 0 1


 (7)

Combining equations 6 and 7, we obtain the following it-
erative procedure for the affine snake deformation:

1. HA =
(J TJ )−1 J T (Rt−1 + Fext (Rt−1))

where J = Rt−1 −�tSRt−1

2. Normalize HA using the component HA (3, 3)
Set HA (3, 1) = HA (3, 2) = 0

(a) (b) (c)

(d) (e) (f)

Figure 4. Global and local fitting procedures:
(a) Original image and contour from previous
iteration. (b) Edge features image. The pro-
cess of contour fitting in such image is quite
difficult because of the noisy edges. (c) Fore-
ground a posteriori probability map obtained
using the color module. (d) Refined edge im-
age. (e) Contour fitted after global deforma-
tions. (f) Contour fitted after local deforma-
tions.

3. Rt = Rt−1HA

Steps 1 − 3 are iterated until the convergence of Rt and
Rt−1. In Fig.4 we show the results of the global and local
fitting in a nonrigid movement.

5. Tracking Algorithm

In this section, we will use the tools described previously
to explain in detail the whole method implemented to track
rigid and nonrigid objects in a cluttered and changing illu-
mination environment. The basic steps of the tracking al-
gorithm follow the procedure of the particle filters, but we
introduce a modification to the classical CONDENSATION
algorithm (similar to the ICONDENSATION technique [5]),
and in order to ‘direct’ the search for the next iteration we
add a final stage that concentrates the future hypotheses on
those areas of the state-space containing more information
about p (O|x). Moreover, in this final stage we fuse object
color and shape information to obtain precise results about
object pose. Next, we present the steps of our algorithm:

• pdf of the color point set: At time t, a set of N

samples S(n)
t−1 (n = 1, . . . , N) with the same struc-

ture as G, parameterizing N color distributions, are
available from the previous iteration. Each sample
has an associated weight π

(n)
t−1 and a classification

X (n)
t−1 = [X (n)

O,t−1,X (n)
B,t−1]

T of the image colorpoints
in the foreground and background sets. The whole set
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Figure 5. Tracking results of a non-rigid object in a sequence with smooth lighting changes. First
row: Tracking results. The tracked contour is superimposed to the original images. Second row:
Edge map. The task of fitting a deformable model to the contour of the object is extremely diffi-
cult because of the presence of noisy edges. Third row: Foreground a posteriori map obtained using
the proposed multihypotheses color model. This map provides a rough estimation of the object posi-
tion and remove most of the noisy edges, so that the deformable contour fitting procedure is highly
simplified.

represents an approximation to p (Gt−1|Zt−1) where
Zt−1 = {Z0, . . . ,Zt−1} is the history of the images.
The algorithm aims to construct a new sample set
{S(n)

t , π
(n)
t } to estimate p (Gt|Zt) .

• Sampling from p (Gt−1|Zt−1): A sampling with re-
placement is performed N times on the set {S(n)

t−1},

where each element has probability π
(n)
t−1 of being cho-

sen. This will give us a set {S ′(n)
t−1}.

• Probabilistic propagation of the samples: Each sam-
ple S ′(n)

t−1 is propagated to S̃(n)
t , using the dynamic

model explained in Section 3.

• Measure and Weight: Each element S̃(n)
t has to be

weighted according to some measured features. Based
on the propagated MoG samples S̃(n)

t we compute
p (O|x) for the whole image using the Bayes rule
(eq. 1). With this probability map, we assign the fol-
lowing weight to each sample:

π
(n)
t =

∑
x∈W p (O|x)

Nw
−

∑
x/∈W p (O|x)

Nw

(8)

where W is the interest region around the previous ob-
ject position (where we predict the object will be), and
Nw, Nw are the number of image pixels in and out of
this interest region.

• Sample Concentration: In the last stage of our al-
gorithm, we concentrate the samples around the local

maxima, so that in the following iteration the hypothe-
ses are formulated around these more likely regions of
the state space. In our case, this is absolutely neces-
sary because the state vector G has high dimension-
ality, and if we let the samples move freely, uniquely
governed by the dynamic model, the number of hy-
potheses needed to find the samples representing a cor-
rect color configuration, is extremely high.

The concentration is performed by tak-
ing the sample with maximum weight,
π∗

t = max{π(1)
t , · · · , π

(n)
t } and based on the a

posteriori map generated by this sample, the ob-
ject of interest is accurately segmented from the image
using the deformable model fitting procedure ex-
plained in section 4. The different steps of this stage,
can be summarized as follows:

1. Using morphologic operations on the probabil-
ity map image a coarse approximation of ob-
ject shape is obtained that allows us to eliminate
noisy edges from the original image (Fig. 4b,c,d).

2. The contour of the object in the previous itera-
tion, is used as initialization of an affine snake,
that is adjusted (only by affine deformations) to
the image of refined edges (Fig. 4e) in order to
solve the global deformation. Next, to cope with
nonrigid deformations the process is repeated
with a non-affine snake (Fig. 4f).
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 6. Performance comparison of a smooth
prediction color dynamic model and the multihy-
potheses one, for an abrupt change in illumina-
tion and rigid motion object. (a)(b)(c) Frames t− 2,
t− 1 and t are three consecutive images of the se-
quence. Note the abrupt change in illuminant be-
tween frames t − 1 and t. (d) Ellipses correspond
to the MoG predicted with a smooth color dy-
namic model. There are also shown the real dis-
tributions of points in colorspace. (e) p (O|x) map
obtained with the smooth model. There is no good
discrimination between fore and background. (f)
MoG of the best sample using the multihypothe-
ses color dynamic model. (g) p (O|x) map obtained
with this color model. There is good fore/back dis-
crimination. (h) Tracking results obtained after us-
ing p (O|x) to eliminate false edges from image
and fitting a deformable contour.

3. Once the boundary of the object has been accu-
rately detected, the color estimations are refined.
Inner image pixels are separated from outer pix-

els and the vector X ∗
t =

[X ∗
O,t,X ∗

B,t

]T
is gen-

erated. Mixtures of gaussians are fitted to these
color distributions (using the EM algorithm),
giving a state vector S∗

t , around which sam-
ples {S̃(n)

t } are ‘concentrated’ with the equa-
tion S

(n)
t = (1 − a)S̃(n)

t + aS∗
t , where the

parameter a governs the level of concentra-

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 7. Performance comparison of a
smooth prediction color dynamic model and
the multihypotheses one, for an abrupt
change in illumination and nonrigid motion
object. See Fig. 6 for interpretation of results.

tion. Similarly, weights {π̃(n)
t } and distributions

{X̃ (n)
t } associated to these samples, are concen-

trated around π∗
t and X ∗

t .

6. Experimental Results

In this section, two different experimental results are pre-
sented in order to illustrate the robustness of our system to
several changing conditions of the environment. As the al-
gorithm has been implemented in an interpretative language
(MATLAB), speed issues are not discussed, focusing on the
effectiveness of the method, instead.

In the first experiment, we track the boundary of a bend-
ing book (nonrigid motion) in a video sequence where the
lighting conditions change smoothly from natural lighting
to yellow lighting. In this case, as the displacement of the
color distribution in color space was relatively small, we
have used ‘only’ 5 hypotheses. Fig. 5 shows some frames
of the sequence with the obtained results, the correspond-
ing edge images and the a posteriori probability maps of
the foreground (the book). The sequence of edge images
contains a lot of noisy boundaries that pose difficulties for
the tracking process and for the adjustment of a deformable
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model to the edges of the object. However, the integration
with color information gives a first estimation of the object
position, that allows us to eliminate many false edges and
relax the complexity of the deformable model fitting proce-
dure.

Whereas in the first experiment we demonstrate the need
for integration of the different vision modules, in the second
experiment we demonstrate the need for a multihypothe-
ses model to face abrupt changes in the illuminant. For this
experiment, we have computed the prediction of the color
distribution using 20 hypotheses. In Fig. 6 we compare the
results obtained using a smooth color dynamic model and
our multihypotheses model, for a rigid object moving in
an environment in which the lighting changes abruptly. The
MoG for frame t predicted by the smooth model, is based
on a weighting function Gt = (1 − a)Gt−2 + aGt−1, where
G is the parameterization of the color distribution and a is
the mixing factor. Results prove the inability of the smooth
color model to predict the change (the a posteriori probabil-
ity map of the foreground region does not discriminate be-
tween fore and background, Fig. 6e) whereas a good result
is obtained with the method proposed in the paper (where
simple morphologic operations over the a posteriori proba-
bility map, allow obtain a good estimation of the object po-
sition, Fig. 6f). In Fig. 7 we show similar results for the con-
tour tracking of a nonrigid object under an abrupt change of
illumination.

7. Conclusions

Most of the methods that adapt color are based on the as-
sumption of smooth change on the color model, so that the
predicted color of the target is computed based on a weight-
ing function of previous color distributions. In this paper we
have presented a method where this constraint is no longer
needed, and the dynamic model is based on the formula-
tion of multiple hypotheses about the next state of the tar-
get color distribution. The best of these hypotheses is used
to make a rough estimation of the object position, and elim-
inate false and noisy edges, so that the task of fitting a de-
formable contour to the object boundary is considerably
simplified. Reciprocally, this boundary is used to refine the
color estimation. We have used this method to obtain a pre-
cise figure-ground segmentation in rigid and nonrigid ob-
jects, moving in an environment with abrupt light changes
(where smooth dynamic color models fail). We plan to con-
tinue this work by integrating other cues such as texture
and optical flow techniques to improve the robustness of the
method. We also plan to apply our multihypotheses frame-
work into tracking of objects in 3D.
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