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Abstract

In this paper a new technique to perform figure-ground
segmentation in image sequences of scenarios with varying
illumination conditions is proposed. The set of color points
of both the target and background are modelled with Mix-
ture of Gaussians (MoG), which optimum number is au-
tomatically initialized. Based on the ‘Linear Discriminant
Analysis’ (LDA) a new colorspace that maximizes the fore-
ground/background class separability is presented. More-
over, there is no need to assume gradual change of the view-
ing conditions over time, because the method works with
multiple hypotheses about the next state of the color dis-
tribution (some considering small changes and other more
abrupt variations). The hypothesis that generates the best
object segmentation and the shape information in the pre-
vious iteration are fused to accurately detect the object
boundary, in a stage denominated ‘sample concentration’,
introduced as a final step to the classical CONDENSATION
algorithm.

1.. Introduction

Color is a visual cue that is commonly used in computer
vision applications such as object detection and tracking
tasks. In environments with controlled lighting conditions
and uncluttered background, color can be considered a ro-
bust and invariant cue, but when dealing with real scenes
with changing illumination and confusing backgrounds, the
apparent color of the objects varies considerably over time.
In the literature, the techniques that cope with change in
color appearance can be divided in two groups. On the one
side, there are the approaches searching for color constancy
(e.g. [2]); but in practice, these methods work on artificial
and highly constrained environments. On the other hand,
there are the techniques that generate a stochastic model
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of the color distribution, and adapt it over time [7], [8].
The drawback in all these approaches is that they assume
a smooth and slow color variation that can be predicted by
a dynamic model based in only one hypothesis (usually by
a weighting function). However, this assumption does not
suffice to cope with general scenes, where the dynamics of
the color distribution might follow an unknown an unpre-
dictable path. In a previous work [6], we have suggested
the use of a multihypotheses framework to track color ob-
jects in such situations, where the color could be approxi-
mated by an unimodal distribution. In the present work, we
deal with multicolored objects.

An overview of the system is given in Section 2. In Sec-
tion 3 we describe the Fisher colorspace. Sections 4 and
5 present the color and dynamical models. The complete
tracking algorithm is depicted in Section 6. Results and con-
clusions are presented in Sections 7 and 8, respectively.

2.. System Overview

In order to cope with unconstrained environments, we
propose a system with the following main features, that rep-
resent contributions with respect to previous works:

� Fisher color model: Instead of using the classical
���, ���1, �� � or 	
� colorspaces, we propose
the use of a colorspace efficient for the discrimination
between foreground and background classes, based on
the 2D projection of the �, � and � components on
the plane obtained from a nonparametric LDA [4].

� Multihypotheses framework: The use of a particle
filter formulation to predict the color distribution in
following iterations, offers robustness to abrupt and
unexpected changes in the color appearance.

� Integration of color and shape: The fusion of both vi-
sion modules is done in a final stage introduced to the
classical CONDENSATION algorithm, and makes our
method suitable to work in cluttered scenes.

1 Lowercase letters represent normalized components
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3.. Fisher Colorspace

The selection of the colorspace is an important initial
issue for any color-based figure-ground segmentation sys-
tem. The typical selection criterion is based on the invari-
ance of the color representation to illumination changes, and
according to this idea, color is usually represented by two
components of the ���, ��� or ��� colorspaces. How-
ever, these representations are not robust enough to cope
with abrupt illumination changes. In this paper we propose
a different criterion and select a 2D colorspace that maxi-
mizes the separability of the object and background classes.

Let � be a 3D vector with the color value of image pix-
els in 	
� space, which must be classified as foreground
(�� ) or background (��). When we are dealing with multi-
colored objects, the parameterization of color distributions
in 3D colorspace becomes very complex. To simplify, we
reduce the dimensionality to 2D by projecting the data on a
plane � � �
�� 
�� �����, that is, � � ��, where � are
the 2D linearly transformed coordinates used for classifica-
tion. The most popular way to find the best linear features is
the parametric version of the LDA method, where training
data is used to construct the within-class �� and between-
class �� scatter matrices, in the �-class problem defined as,
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where � ���� is the prior of the i�� class, �� and �� are
its expected vector and covariance matrix, �� is the over-
all mean and ����

indicates that sample � belongs to ��.
A typical criterion of class separability is formulated

by maximizing � � �����
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�����

�
�� �

�����
��

, and

seeks for the separation of the class means in the trans-
formed � -space (high ��), while the classes remain com-
pact (small ��). The classical LDA maximizes � by con-
structing the columns of � with the eigenvectors of ���� ��
having the highest eigenvalues.

As the maximum rank of �� is � � �, this will be the
maximum dimension of the projected � -space. This limita-
tion can be solved by the nonparametric LDA [4], that com-
putes �� using local information and the k Nearest Neigh-
bors (KNN) rule. In the 2-class problem that we have in
hands, this matrix (denoted ��) is defined as,
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where �� and �� are the number of samples of �� and ��,
� � �� ���, �	


 ���� is the mean of the ��� in �
 to a

Figure 1. MoG of �	 (the can) and ��. Left im-
age: empty dots and dashed lines are �	 data (pro-
jected on �) and Gaussian components, respec-
tively. Filled dots and continuous lines are �� data
and Gaussians. Lower right image: � ��	 ���, where
brighter points correspond to more likely pixels.

point ��, and �� is a weighting function for deemphasizing
samples far from the classification boundary (see [4]).

Given two sets
�
��� � � � ����

���
�

, ���� � � � ����
����

of	
� pixel values used as training data, the optimum lin-
ear mapping is obtained with the following steps:
� Calculate �� with eq. 1 and whiten the data with re-

spect to it. That is, transform � to � � �����	��,
where � and 	 are the eigenvalue and eigenvector ma-
trices of ��.

� Select k and (in the �-space) compute �� using eq. 2.
� Select the two eigenvectors
�, 
� of �� with the two

largest eigenvalues.
� The optimum linear mapping from the original 	
�

space to the discriminant subspace (we call it Fisher
colorspace) is given by � � �������	��.

In the Results Section it will be shown that with this col-
orspace we obtain better rates in pixel classification.

4. Color Model and Parameterization

The color distributions of fore and background trans-
formed to the Fisher colorspace, are represented by a Gaus-
sian mixture model. The conditional probability for a pixel
� belonging to �� is expressed as a sum of �� Gaus-

sian components as � ����� � �
�
�


��� ������ ���. Simi-
larly, the background color distribution will be represented
by a mixture of �� Gaussians (Fig. 1).

Next, the a posteriori probability that a pixel � belongs
to the �� class is computed using the Bayes rule:

� ��	 ��� �
� ����	 �� ��	 �

� ����	 �� ��	 � � � ������� ����
(3)

One of the problems when using MoG is the selection of
the number of components that better adjust the data. We
initialize this, with the modified EM algorithm proposed in
[3], that is based on a Minimum Message Length criteria
and iteratively fits and annihilates and initially large num-
ber of components (introduced by the user). Once we have
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Figure 2. Left: Various predictions for the fore-
ground MoG of Fig. 1. Continuous wider lines:
MoG from previous iteration. Continuous narrower
lines: MoG predicted with a model accounting for
smooth changes. Dashed lines: predictions done
with a model accounting for abrupt changes. Right
images: � ��� ��� for several predictions.

learnt the initial configurations for the MoG of �� and ��,
they are parameterized by:

�� � ���� ��� ��� ��� (4)

where � � ��� ��, �� contains the priors for each Gaussian
component,�� the centroids, �� the eigenvalues of the prin-
cipal directions and �� the angles between the principal axis
of each component with the horizontal.

5. Learning the Dynamical Models

In the tracking algorithm, we need to propagate the state
vector (eq. 4) in order to generate multiple hypotheses about
the future configurations of the MoG. These predictions are
done by using the following dynamic motion model,

���� � �������� ��������� ����� (5)

where the matrices��, �� represent the deterministic com-
ponent of the model and	��� is the stochastic part (learned
a priori using the standard MLE algorithm described in [1]).
In practice, we define two kinds of dynamical models, one
taking in account smooth changes and another that consid-
ers more abrupt variations (see Fig. 2).

6. The Tracking Algorithm

The basic steps of our tracking algorithm follow the pro-
cedure of the particle filters, but we introduce a modifica-
tion to the classical CONDENSATION algorithm (similar to
the ICONDENSATION technique [5]), and in order to ‘di-
rect’ the search for the next iteration we add a final stage
that concentrates the future hypotheses on those areas of
the state-space containing more information about 
 ��� ���.
Moreover, in this final stage we fuse object color and shape
information. Next, we present the steps of our algorithm:

� pdf of color distribution: At time �, a set of �

samples �
���
��� �
 � �� � � � � �� with the same struc-

ture than � (eq. 4), parameterizing � color distribu-
tions, are available from the previous iteration. Each

(a) (b) (c)

(d) (e) (f)
Figure 3. Steps to extract the exact position of the
object fusing color segmentation and accurate ad-
justment by affine snakes (commented in the text).

sample has an associated weight ����
���. The whole set

represents an approximation to 
 ����������� where
���� � ���� � � � � ����� is the history of the measure-
ments. The goal of the algorithm consists on construct
a new sample set �����

� � �
���
� � to estimate 
 ������� .

� Sampling from 
 �����������: A sampling with re-
placement is performed � times on the set �����

����,

where each element has probability ����
��� of being cho-

sen. This, will give us a set �� ����
����.

� Probabilistic propagation of the samples: Each sam-
ple � ����

��� is propagated to ��
���
� , using one of the

learned dynamic models (eq. 5):

� Measure and Weight: Each element ��
���
� has

to be weighted according to some measured fea-
tures. From the propagated samples ��

���
� we construct

the corresponding MoG, that are used to calcu-
late 
 ��� ��� for the whole image in Fisher col-
orspace, using eq. 3. The weight assigned to each sam-

ple is �
���
� �

�
��� ���� ���

��
�
�

���� ���� ���

��
, where

� is the interest region around the previous object po-
sition, and ��, �� are the number of image pixels in
and out of this interest region.

� Sample Concentration: In the last stage of our al-
gorithm, we concentrate the samples around the local
maxima, so that in the following iteration the hypothe-
ses are formulated around these more likely regions of
the state space. In our case, this is absolutely neces-
sary because the state vector � has high dimension-
ality, and if we let the samples move freely, uniquely
governed by the dynamic model, the number of hy-
potheses needed to find the samples representing a cor-
rect color configuration, is extremely high.

In this ‘concentration’ stage, firstly, the maximum
from the set of weights �����

� � is taken, and by mor-
phologic operations on its 
 ��� ��� map (Fig. 3b), a
coarse approximation of the object shape is obtained.
This, lets to eliminate noisy edges from the original
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Figure 4. Classification results obtained with var-
ious colorspaces (3 different experiments).

image (Fig. 3c,d). Next, the contour of the object in
the previous iteration, is used as initialization of an
affine snake, that is adjusted (only by affine deforma-
tions) to the image of refined edges (Fig. 3e). The fu-
sion of color and shape information increases the ro-
bustness of the system, because even when the color
hypotheses give a highly rough estimation, they can
be corrected using the contour information. Once the
boundary of the object has been accurately detected
(Fig. 3f), a MoG is fitted to its color distribution (us-
ing the EM algorithm), giving a state vector ��

� . Sam-

ples � �����
� � are ‘concentrated’ on this new distribution

with the equation �
���
� � ��� ����

���
� � ���

� , where
the parameter � governs the level of concentration.

7. Results

We start this Section by comparing the class discrimina-
tion power of the Fisher colorspace with other colorspaces
(two components of the ���, ��� or ��	). To quantify the
notion of class separability, a constant number of Gaussians
are fitted to 
� and 
� distributions of hand segmented im-
ages, for each one of the colorspaces. Next, according to
eq. 3 we segment the same images, assigning each pixel �
to the class with maximal � �
� ���. This result is compared
with the hand segmented ones. In Fig. 4 we show the re-
sults for three different sequences, where the vertical axis
represents the percentage of pixels well classified. The best
results are obtained with the Fisher colorspace (����� of
correct classification), followed by the �� components of
��� (�	���).

Next, it is shown the performance of the tracking sys-
tem in two different situations. Fig. 5 represents three sam-
ples of the results obtained on a sequence with a gradual
change of illumination and object position. In the second
experiment (Fig. 6), there is an abrupt change of both il-
lumination and object position (Fig. 6a,b are the two con-
secutive frames). At least one of the multiple hypotheses of
color distributions performs a good a posteriori probabil-
ity map (Fig. 6c) that is used to fit the contour (Fig. 6d,e).

Figure 5. Fitted contour and � ��� ��� map on a
non-stationary sequence.

(a) (b) (c)

(d) (e) (f)
Figure 6. Results of an abrupt change of illumi-
nant and object position (commented in text).

8. Conclusions

In this paper, it has been presented a new approach
to figure-ground segmentation in non-stationary envi-
ronments. We have introduced the concept of Fisher
colorspace, that has better object/background discrimina-
tion performance than typical colorspaces, and the fusion
of shape and color information in the probabilistic multi-
ple hypotheses framework of the particle filters. This in-
tegration increases the robustness of the method, and
is done in a last stage denominated ‘sample concentra-
tion’ that we have added to the CONDENSATION algorithm.
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