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Abstract
The selection of the appropriate colorspace for tracking

applications has not been an issue previously considered in
the literature. Many color representations have been sug-
gested, based on the invariance to illumination changes.
Nevertheless, none of them is invariant enough to deal with
general and unconstrained environments. In tracking tasks,
we might prefer to represent image pixels into a colorspace
where the distance between the target and background col-
orpoints were maximized, simplifying the task of the tracker.
Based on this criterion, we propose an ‘object dependent’
colorspace, which is computed as a simple calibration pro-
cedure before tracking. Furthermore, this colorspace may
be easily adapted at each frame. Synthetic and real experi-
ments show how this colorspace allows for a better discrim-
ination of the foreground and background, and permits to
track in circumstances where the same tracking algorithm
relying on other colorspaces would fail. 1

1 Introduction

An important initial issue for any color-based tracking
algorithm, concerns to the selection of the colorspace where
the data is going to be represented. Many colorspaces have
been proposed in the literature: for instance RGB, HSV ,
XY Z, Y UV , Y IQ, and its corresponding normalized ver-
sions. Unfortunately, there is not a clear consensus about
which one to use, and the different alternatives have been in-
distinctly utilized: The RGB colorspace is used in [6,9]. The
efforts described in [1,10] represent color by the normalized
RGB model. Maybe the most extensively used colorspace is
the HSV [8,11,13], and a two dimensional version consider-
ing only the HS components [3,7]. Some approaches [4,12]
are based on the YUV as well.

All this variety indicates that there is not a criterion for
the selection of the appropriate colorspace. In most of the
previously cited approaches, the selection is based on a
trial and error procedure among the various available col-
orspaces. In other circumstances, the selection is based on
the invariance of the color representation to illumination

1This work was supported by CICYT project DPI2004-05414 from the
Spanish Ministry of Science and Technology.

changes, and normalized or colorspaces where chromaticity
is separated from intensity (such as HSV , Y UV or Y IQ)
are utilized. Nevertheless, none of the existing colorspaces
is robust enough to deal with real and general environments.

In contrast to previous approaches, we propose to select
the colorspace using the following criteria focused on visual
tracking applications: 1) Since the first goal in tracking is
to discriminate the object of interest from the rest of the
scene, an important function of the colorspace should be to
maximize the separation between the target and background
color points. 2) Furthermore, in order to deal with dynamic
environments, the colorspace should demonstrate a certain
degree of invariance to illumination changes. Alternatively,
the representation of the colorspace should permit an easy
adaptation to these changing conditions.

In this work we suggest to use an ‘object dependent’
colorspace which satisfies both previous criteria. The col-
orspace, which we call Fisher colorspace, is computed as
a simple calibration procedure before tracking, based on
the Linear Discriminant Analysis (LDA) [2]. We prove,
by a set of synthetic and real experiments, that the Fisher
colorspace provides better representations of the data, in
terms of fore/background separability, than other existent
colorspaces. We also show that this colorspace is invariant
to uniform scaling and shifting of the illumination, and that
its simple parameterization may be easily updated through-
out time, thus becoming an adaptable colorspace.

2 Fisher colorspace

The representation of the target and background through
a color model maximizing the separation of both classes
(criterion 1) may be analyzed as a standard classification
problem based on Discriminant Analysis. We are interested
in the linear techniques, since as will be shown in the fol-
lowing subsection, this offers certain robustness to illumi-
nation changes (criterion 2). Therefore, using LDA [2], the
problem may be reduced to the search of the hyperplane
(Fisher plane) that best separates both classes.

The Fisher colorspace may be computed from a single
RGB training image, where the points belonging to the ob-
ject and background are manually identified. Assume that
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the set of n image pixels are arranged into a n×3 matrix C=
[c1, . . . , cn]T . nO of these pixels belong to the object O,
represented by CO=[cO,1, . . . , cO,nO ]T and the rest of nB
pixels CB=[cB,1, . . . , cB,nB ]T belong to the background B.
We wish to determine which plane is the most effective in
discriminating between these two subsets of points. Let us
denote such a plane by W = [w1,w2]

T ∈ R2×3, where w1

and w2 are vectors in the RGB space, spanning the points
lying on the plane. The projection of CO and CB onto this
plane, generates the sets FO = COWT ∈ RnO×2 and
FB = CBWT ∈ RnB×2, respectively.

The goal of the LDA is to find the best orientation of
the plane W, such that the separation of the projected sub-
sets FO and FB is maximized. In order to determine such
a plane, LDA considers the maximization of the objective
function J(W) = (WSbWT )(WSwWT )−1 where Sw is
the within class scatter matrix and Sb is the between class
scatter matrix:

Sw =
∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i − c̄ε)(cε,i − c̄ε)T (1)

Sb =
∑

ε={O,B}
nε(c̄ε − c̄)(c̄ε − c̄)T (2)

with, c̄ε = 1
nε

∑nε

i=1 cε,i being the ε-class mean vector, and
c̄ =

∑
ε={O,B}

nε

n c̄ε the total mean vector.
The classic LDA method maximizes the J objective

function by constructing the rows of W with the eigenvec-
tors of S−1

w Sb having the highest eigenvalues. Nevertheless,
this approach has a limitation, since S−1

w Sb is not a full rank
matrix, and in the two class problem discussed here, the hy-
perplane W would be a line. Although we are interested in
projecting the data onto a linear space (to increase robust-
ness to illumination changes), by projecting the data onto a
line we might lose too much information. A better choice,
consists of projecting the RGB data onto a plane. There-
fore, we will use the nonparametric version of LDA [2].
The key point of this LDA extension is that it computes the
between class scatter matrix Sb using local information and
the K-Nearest Neighbors (KNN) rule, which allows to ob-
tain a full rank S−1

w Sb matrix. For further details about the
nonparametric LDA, the reader is referred to [2].

Fig. 1 depicts the main steps to compute the Fisher plane,
for two different targets in the same image. Fig. 1a shows
the scene and in Fig. 1b all the image pixels are represented
in the RGB colorspace. Note that the Fisher colorspace is
‘target dependent’. For instance, observe in Fig. 1c the dif-
ference of the Fisher planes obtained for different targets:
the ladybird and the flower petals. For example, if we wish
to track the ladybird (Fig. 1d), the points belonging to the
object and background are initially provided (Fig. 1e), and
the Fisher plane is computed based on the non-parametric
LDA (Fig. 1f). Similar stages are depicted in Fig. 1g-i for
tracking the flower petals.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Computing the Fisher plane for two dif-
ferent targets.

2.1 Fisher colorspace in the presence of
lighting changes

Next, we will see that the Fisher colorspace is invari-
ant to certain lighting effects, such as uniform scaling and
shifting of illumination. Without loss of generality, we
will assume the parametric version of the LDA, described
by the maximization of the objective function J(W) =
(WSbWT )(WSwWT )−1 where Sw and Sb are defined
by Eqs. 1 and 2, respectively.

Lemma 1 The Fisher plane is invariant to a uniform illu-
mination scaling

Proof: Given all image points ci, i = 1, . . . , n represented
in the RGB colorspace, a uniform illumination scaling is
defined by the mapping S: ci → αci, where α is the
scaling factor.

We assume that the classification of the image points into
the object (O) and background (B) classes is available. Un-
der these circumstances, the following statements about the
total mean and the class means are satisfied:

S(c̄ε) = S
(

1
nε

nε∑
i=1

cε,i

)
=

1
nε

nε∑
i=1

αcε,i = αc̄ε

S(c̄) = S
⎛
⎝ ∑

ε={O,B}

nε

n
c̄ε

⎞
⎠ =

∑
ε={O,B}

nε

n
S(c̄ε) = αc̄

As a consequence, the transformed within class scatter
matrix and between class scatter matrix may be written as

S(Sw) = α2Sw S(Sb) = α2Sb
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(a) (b) (c) (d)
Figure 2. Fisher colorspace & lighting changes.

Finally, the objective function to be maximized is:

S(J(W)) = S
(

WSbWT

WSwWT

)
=

WS(Sb)WT

WS(Sw)WT
= J(W)

Thus, the criteria used to compute the Fisher plane for two
images related by a linear scaling are exactly the same.
Therefore, we conclude that the Fisher plane is invariant to a
uniform illumination scaling. �
Lemma 2 The Fisher plane is invariant to uniform illumi-
nation shifting

Proof: Given all image points ci, i = 1, . . . , n represented
in the RGB colorspace, a uniform lighting shifting is defined
by the mapping T : ci → ci + β, where β is the shifting
factor.

Following a similar procedure than for Lemma 1, it can
be shown that T (J(W)) = J(W), i.e, the Fisher plane is
also invariant to a illumination shifting effect. �

3 Evaluation of the Fisher colorspace

3.1 Invariance to illumination

The invariance of the Fisher plane to illumination
changes is demonstrated in the following experiment, where
the images of a still scenario illuminated by natural lighting
have been acquired during a whole day (Figs. 2(a,b) show
two representative frames).

Several foreground objects have been selected, and for
each of them, the Fisher plane has been computed through-
out the whole sequence. The results show that the Fisher
planes (represented by their normal vectors) form separate
clusters for every individual target, and the variance in each
cluster is relatively small, proving that the Fisher colorspace
is quite invariant to illumination changes. In Fig. 2d we
depict the distribution of the normals to the Fisher plane
for two different targets (indicated in Fig. 2c). The unitary
sphere represents the space of all possible configurations of
the normal to the Fisher plane. Observe how for each tar-
get, the Fisher plane distributions just occupy a small region
onto the configuration space.

3.2 Fisher versus other colorspaces

Next, we will compare the performance of the pro-
posed Fisher colorspace, versus other commonly used col-
orspaces. In order to make a fair comparison we will con-
sider only those colorspaces defined by two variables, such

(a) (b)

Fisher rg rb gb xy

xz yz HS HV SV
Figure 3. Performance of the Fisher colorspace
for camouflaging targets.

as the combination of two components of the normalized
RGB (namely rg, rb and gb), two components of the nor-
malized XYZ (xy, xz, and yz), and two components of the
HSV colorspace.

The first experiment shows an example where the fore-
ground is in some degree camouflaged with the background
(Fig. 3a shows the test image, where the central circle is
the target). In these circumstances, the Fisher colorspace
clearly performs better than other colorspaces. Fig. 3b
shows the color distributions of all image points into the
RGB colorspace. Blue dots correspond to the background
points, and red dots are the target color points. Note that
both classes are in close contact. In spite of this, the projec-
tion of the colorpoints onto the Fisher plane does not over-
lap the target and background classes. On the other hand,
when we represent the points using the other colorspaces,
the two classes are greatly overlapping, which will cause
difficulties in future tracking tasks.

A more precise comparison is obtained by computing
the distance between the target and the background rep-
resentations. Given the set of object color points FO =
{fO,1, . . . , fO,nO} and the set of background color points
FB = {fB,1, . . . , fB,nB} we compute the distance between
both sets with the following metric (which is in accordance
with the nonparametric LDA):

dist(FO,FB) =

1
nO

nO∑
i=1

1
k

k∑
j=1

‖fO,i −NN j
B(fO,i)‖2

|det(Sw)|

where NN j
B(fO,i) is the j-th nearest neighbor in the set FB

to a point fO,i, ‖ · ‖ is the Euclidean norm, and | · | the ab-
solute value function. Using this metric, we have computed
the fore/background distance for six different targets. The
results are shown in Table 1. Note that in most of the cases,
the Fisher colorspace provides the largest separation.
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T1 T2 T3 T4 T5 T6

Fisher 429.1 2445.5 202.1 133.8 9.9 74.2
rg 464.3 214.8 8.2 63.9 2.7 4.8
rb 115.5 219.1 4.0 61.6 1.8 4.9
gb 117.5 183.7 4.5 64.5 2.9 4.8
xy 141.3 275.0 2.8 54.3 1.7 4.5
xz 115.1 303.7 3.5 70.9 1.9 6.8
yz 87.7 274.1 4.7 88.0 4.2 7.9
HS 5.8 5.6 147.7 4.5 3.1 5.1
HV 5.4 1.3 156.1 0.3 5.1 16.4
SV 1.0 16.2 110.3 1.4 5.1 32.8

Table 1. Foreground/Background distances.

3.3 Integrating the Fisher colorspace into
a tracking framework

Although we have proved that the Fisher colorspace ex-
hibits a certain robustness to illumination changes, in a real
world environment we should consider much more complex
artifacts which might modify significantly the configuration
of the Fisher plane at each frame. As a consequence, an-
other important property of the proposed colorspace, is the
ease with which in can be updated and integrated into a
tracking framework.

Based on the work presented in [5], we designed a track-
ing algorithm, where the target was represented simulta-
neously by multiple cues. Among these cues, we consid-
ered the Fisher plane, parameterized by its normal vector
(n = w1×w2), and whose state was continuously updated
and estimated using a particle filter formulation.

The basic idea of this approach, consisted of approx-
imating the state of n by a set of p weighted samples
{ni, πi}p

i=1, with πi being the weight associated with sam-
ple ni. The updating procedure, had two stages. At the
beginning of a particular iteration, the most likely sam-
ples {ni}p

i=1 were randomly propagated, to the set {ñi}p
i=1.

Subsequently, these propagated samples were weighted ac-
cording to π̃i ∝ dist(FW,i,FW̄,i), where ‘dist’ is the met-
ric function previously defined. FW,i and FW̄,i are a set
of RGB points inside and outside of an image region W ,
which have been projected on the Fisher plane determined
by ñi. Region W represents an area in the image where the
object is expected to be (just a coarse estimation). Finally,
the set {ñi, π̃i}p

i=1 approximates the state of the Fisher
plane, at the end of the iteration.

Using this formulation, tracking was achieved in com-
plex scenes (with abrupt lighting changes and cluttered
backgrounds) such as those shown in Fig. 4.

4 Conclusions
In this paper, we have introduced the Fisher colorspace,

a color representation of the image points which is appro-
priate for tracking tasks. The main features of this ‘object-
dependent’ colorspace is that it offers a color representation
where the distance between the target and background is

frame#25 frame#50 frame#60 frame#90 frame#99

frame#86 frame#95 frame#96 frame#101 frame#105

Figure 4. Tracking results of complex sequences
adapting the Fisher colorspace.

maximized. This property is extremely important in order
to simplify the task of any tracking algorithm. We have also
proved that the Fisher plane offers certain robustness to il-
lumination changes. Furthermore, its simple representation
by only a 3D vector parameterizing the normal direction of
the plane, permits to integrate the colorspace representation
into a more general tracking framework, and conceive it as
any other object feature which may be updated throughout
time. Both synthetic and real experiments have proved that
the Fisher colorspace is much more effective than other ex-
istent colorpaces.
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