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Abstract—We propose a new technique for fusing multiple cues to robustly segment an object from its background in video

sequences that suffer from abrupt changes of both illumination and position of the target. Robustness is achieved by the integration of

appearance and geometric object features and by their estimation using Bayesian filters, such as Kalman or particle filters. In

particular, each filter estimates the state of a specific object feature, conditionally dependent on another feature estimated by a distinct

filter. This dependence provides improved target representations, permitting us to segment it out from the background even in

nonstationary sequences. Considering that the procedure of the Bayesian filters may be described by a “hypotheses generation-

hypotheses correction” strategy, the major novelty of our methodology compared to previous approaches is that the mutual

dependence between filters is considered during the feature observation, that is, into the “hypotheses-correction” stage, instead of

considering it when generating the hypotheses. This proves to be much more effective in terms of accuracy and reliability. The

proposed method is analytically justified and applied to develop a robust tracking system that adapts online and simultaneously the

color space where the image points are represented, the color distributions, the contour of the object, and its bounding box. Results

with synthetic data and real video sequences demonstrate the robustness and versatility of our method.

Index Terms—Bayesian tracking, multiple cue integration.

Ç

1 INTRODUCTION

TRACKING and figure-ground segmentation of image
sequences is a topic of great interest in a wide variety

of computer vision applications, extending from video
compression to mobile robot navigation. It has been
observed that the simultaneous use of redundant and
complementary cues for describing the target noticeably
improves the performance of the tracking algorithms [2],
[4], [7], [8], [14], [18], [24], [25], [26], [27].

Unfortunately, most of these approaches are still not
robust enough and suffer from various limitations. For
instance, they are usually tailored to specific applications
(frequently under controlled environments) and do not
represent a general integration methodology that might be
generalized to new experimental conditions. Most impor-
tantly, most of the works referenced above do not take
advantage of the existing relationships between different
object cues. For instance, Leichter et al. [15] present an
approach where several Bayesian filter algorithms are
integrated for tracking tasks. However, in [15], it is
assumed that the methods are conditionally independent,
that is, each algorithm estimates the state of a target

feature based on some measurements that are condition-
ally independent of the measurements used by the other
algorithms. That is, if Bayesian filter BF 1 is based on
measurements (observations) z1 to estimate the state
vector x1 (representing one object feature) and Bayesian
filter BF 2 uses measurements z2 to estimate x2 (repre-
senting another object feature), for each complete state
vector of the object X ¼ fx1;x2g, it is assumed that the
joint observation model can be separately considered for
each feature, that is, pðz1; z2jXÞ ¼ pðz1jx1Þpðz2jx2Þ.

Nevertheless, this assumption is very restrictive since it
assumes that the measurements used to estimate feature x1

are independent of the measurements used to estimate
feature x2, which often is not satisfied. For instance, a
standard method to weigh the samples of a contour particle
filter is based on the ratio of the number of pixels inside the
contour having an object color versus the number of pixels
outside the contour having a background color. This means
that the contour feature is not independent of the color
feature. In this situation, if z1 represents the observations
for the color feature and z2 represents the corresponding
observations for the contour, the latter will be a function of
both x1 and z1, that is, z2 ¼ z2ðx1; z1Þ. Based on the
definition of conditional probability, it is straightforward to
rewrite the previous equation as

pðz1; z2jXÞ ¼ pðz1jx1Þpðz2jz1;x1;x2Þ;

where we have assumed independence of z1 with respect to
x2 and z2, that is, z1 6¼ z1ðx2; z2Þ. This formulation allows us
to simultaneously adapt both features, performing more
robustly than the “independent” case.

In this work, we introduce a probabilistic framework to
integrate several object cues, which produces a detailed
representation of both the object of interest and the
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background. This enhanced representation allows us to
robustly segment the object from the rest of the image in
dynamically changing sequences, despite abrupt changes of
illumination, cluttered backgrounds, and nonlinear dy-
namics of the target movement or deformation. The key
point of our approach and the main contribution of this
paper is the consideration of the cue dependence discussed
above and the representation of each one of the features by
a different Bayesian filter. As will be explained in the
following sections, the update procedure of the Bayesian
filters may be decomposed into two stages: an initial
“hypothesis/es generation” and a subsequent “hypoth-
esis/es correction.” We will show how the consideration of
the cue dependence during the latter stage provides better
results in terms of reliability and accuracy than considering
the dependence during the “hypothesis/es-generation”
stage. Furthermore, it is worth noting that the approach
presented here is general, both in the sense that it applies to
all Bayesian filters and in the sense that it does not restrict
the total number of features to integrate, and the complexity
of the system does not increase noticeably when integrating
additional features. In the rest of the paper, we will refer to
the proposed approach as Dependent Bayesian Filter
Integration (DBFI).

The proposed framework is theoretically proven and
validated in a tracking example of synthetically generated
data. The method is subsequently applied to develop a novel
and robust tracking system that simultaneously 1) adapts the
color space where image points are represented, 2) updates
the distributions of the object and background color points,
and 3) accommodates the contour of the object. The tracking
results obtained in a wide variety of nonstationary environ-
ments demonstrate the strength of our method.

The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 introduces the mathema-
tical framework. In Section 4, a comprehensible example for
one-dimensional cues will be explained which will be used
as a benchmark to compare the performance of our method
to that of other approaches. The features used in the “real-
world” operation of the method and their dynamic models
are described in Section 5. Section 6 depicts details about the
complete tracking algorithm. Results and conclusions are
given in Sections 7 and 8. Part of this work was presented to
the computer vision community at the 10th International
Conference on Computer Vision (ICCV ’05) [19].

2 RELATED WORK

Clearly, this is not the first work to consider multiple cue
integration for tracking tasks from a Bayesian point of view.
The simplest approach to integrating several cues is to
consider an extended state vector including the parameter-
ization of all the cues. For instance, Isard and Blake [9] use a
single state vector to integrate appearance and shape in a
particle-filter framework. However, as observed by Khan
et al. in [12], to proceed by simply augmenting the state space
is problematic since it causes an exponential expansion of the
region of possible state vector configurations and the tracking
becomes extremely complex. Khan et al. [12] suggest using a
Rao-Blackwellized particle filter, where some “appearance-
related” coefficients are integrated out of the extended state

vector. This procedure considerably reduces the size of the
search space and, as a consequence, reduces the cost of the
tracking as well. Unfortunately, the generalization of this
formulation to include additional features is not feasible.
Generalization may be achieved by associating a different
filter to each feature. Along these lines, Rasmussen and Hager
[22] introduced the Joint Probability Data Association Filter
(JPDAF) for tracking several targets (note that multiple target
tracking can be compared to multiple cue and single target
tracking). Nevertheless, the work in [22] estimates each target
state independently of other targets, that is, the JPDAF
formulation does not permit us to represent the dependence
between different state vectors. As we have mentioned in
Section 1, a similar approach is presented by Leichter et al.
[15]. In particular, their work [15] integrates Kalman and
particle filters for tracking tasks, although again assuming
independence between filters, which limits the performance
of the tracking system.

The partitioned sampling technique introduced by
MacCormick et al. [16], [17] and the related approaches of
Wu and Huang [28] and Branson and Belongie [3] are
probably the works that are closest to the methodology
presented in this paper. Partitioned sampling is specifically
designed for particle filters and allows the reduction of the
curse of dimensionality problem affecting this kind of
Bayesian filters. This method applies the “hypotheses
generation” and “hypotheses correction” stages separately
for different parts of the state vector. The key difference
with respect to our method is that, in these partitioned
sampling-based approaches, cue dependence is considered
during the hypotheses generation stage, whereas we
consider it during hypotheses correction. We will show
through synthetic experiments that, by proceeding this way,
tracking accuracy and reliability are significantly improved.

3 MATHEMATICAL FRAMEWORK

In this section, we will define the mathematical background
for the proposed framework. We will start by describing the
integration process of conditionally dependent features.
Next, we will review the basic concepts for Bayesian filters,
in particular, for the particle filters and Kalman filter. Finally,
the algorithm we implemented to track an object based on
various dependent features will be explained in detail.

3.1 Integration Process

In the general case, let us describe the object being tracked
by a set of F features, the configuration of which is specified
by the state vectors x1; . . . ;xF , which are sequentially
conditionally dependent, that is, feature i depends on
feature i� 1 (later, we will see that the integration of
independent cues is straightforward). These features have
an associated set of measurements z1; . . . ; zF , where
measurement zi allows us to update the state vector xi of
the ith feature. The conditional a posteriori probability ~p1 ¼
pðx1jz1Þ; . . . ; ~pF ¼ pðxF jzF Þ is estimated using a correspond-
ing Bayesian filter BF 1; . . . ;BFF such as a Kalman filter or a
particle filter. For the whole set of variables, we assume that
the dependence is only in one direction:

zk ¼ zkðzi;xiÞ;xk ¼ xkðxi; ziÞf g () i < k: ð1Þ
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Considering this dependence relationship, we can add

extra terms to the a posteriori probability computed for

each Bayesian filter. In particular, the expression for the

a posteriori probability computed BF i will be pi ¼
pðxijx1; . . . ;xi�1; z1; . . . ; ziÞ. Keeping this in mind and

introducing the notation for the cue-augmented state vector

X1:k ¼ fx1; . . . ;xkg and cue-augmented measurement vector

Z1:k ¼ fz1; . . . ; zkg, we proceed to prove that the whole

a posteriori probability can be computed sequentially as

follows:

P ¼ pðX1:F jZ1:F Þ
¼ pðx1jZ1Þpðx2jX1;Z1:2Þ � � � pðxF jX1:F�1;Z1:F Þ
¼ p1p2 � � � pF :

ð2Þ

Proof. We will prove this by induction, applying the

definition of conditional probability and (1):

. The proof for two features is given by

pðX1:2jZ1:2Þ ¼
pðX1:2;Z1:2Þ
pðZ1:2Þ

¼ pðx2jX1;Z1:2Þpðx1;Z1:2Þ
pðZ1:2Þ

¼ pðx1jZ1:2Þpðx2jX1;Z1:2Þ:

. For F � 1 features, we assume that

pðX1:F�1jZ1:F�1Þ ¼ pðx1jZ1Þpðx2jX1;Z1:2Þ � � �
� � � pðxF�1jX1:F�2;Z1:F�1Þ:

ð3Þ

. The proof for F features is given by

pðX1:F jZ1:F Þ ¼
pðX1:F ;Z1:F Þ
pðZ1:F Þ

¼ pðxF jX1:F�1;Z1:F ÞpðX1:F�1jZ1:F ÞpðZ1:F Þ
pðZ1:F Þ

ðby Eq: 3Þ ¼ pðx1jZ1Þpðx2jX1;Z1:2Þ . . .

pðxF jX1:F�1;Z1:F Þ:
ut

Equation (2) tells us that the whole a posteriori

probability density function can be computed sequentially,

starting with BF 1 to generate pðx1jZ1Þ, which is then used

to estimate pðx2jX1;Z1:2Þ with BF 2, and so on. Note that the

inclusion of an extra feature xG (with the corresponding

measurement vector zG) independent of the rest is

straightforward. We just need to multiply (2) by the

posterior pðxGjZGÞ.
Until now, we have only considered the fusion of several

Bayesian filters from the static point of view. However, in

the iterative performance of the method, BF i receives as

input at iteration t the output PDF of its state vector xi at the

iteration t� 1. We write the time-expanded version of the

PDF for BF i as

pti ¼ p xtijXt
1:i�1;Z

t
1:i; p

t�1
i

� �
:

The expression for the complete PDF from (2) may be

expanded as

Pt ¼ pðxt1; . . . ;xtF jzt1; . . . ; ztF Þ
¼ pðxt1jZt

1; p
t�1
1 Þ � � � p xtF jXt

1:F�1;Z
t
1:F ; p

t�1
F

� �
¼ pt1pt2 � � � ptF :

ð4Þ

This equation represents the basis for the DBFI method
proposed here and, in Section 3.3, we will explain the
algorithm we implemented to approximate it. We next
review the particle-filter and Kalman-filter procedures,
explaining them in terms of Bayesian filtering. The intention
of the following section is to introduce the notation that will
be used in the rest of the paper.

3.2 Bayesian Filtering

Let us now briefly describe how the kth Bayesian filter BF k

computes the posterior pðxtkjZ
t0:t
k Þ. For simplicity, here, we

assume that the measurements are obtained based only on
observations of feature xk. In the next section, we will
consider the dependence of feature xk with respect to
features xi, 8i < k.

The formulation of the tracking problem in terms of a
Bayes filter consists of recursively updating the posterior
distribution pðxtkjZ

t0:t
k Þ according to

pðxtkjZ
t0:t
k Þ / pðztkjxtkÞ

Z
xt�1
k

pðxtkjxt�1
k Þpðxt�1

k jZ
t0:t�1
k Þdxt�1

k ;

ð5Þ

where pðztkjxtkÞ is the observation (or measurement) model, that
is, the probability of making the observation ztk given that
the target state at time t is xtk. The dynamic model pðxtkjxt�1

k Þ
predicts the state xtk at time t given the previous state xt�1

k .
Although BF k may take different forms (Kalman filter,

extended Kalman filter (EKF), particle filter, Rao-Black-
wellized particle filter, and so forth), the Bayes filter equation
(5) is updated in all of the cases through a “hypotheses
generation-hypotheses correction” scheme. Initially, based
on the dynamic model pðxtkjxt�1

k Þ and the a posteriori distribu-
tion at the previous time step pðxt�1

k jZ
t0:t�1
k Þ, the state of the

target is predicted as follows:

pðxtkjZ
t0:t�1
k Þ ¼

Z
xt�1
k

pðxtkjxt�1
k Þpðxt�1

k jZ
t0:t�1
k Þdxt�1

k : ð6Þ

This likelihood is subsequently corrected by the observation
model pðztkjxtkÞ:

pðxtkjZ
t0:t
k Þ ¼ �tpðztkjxtkÞpðxtkjZ

t0:t�1
k Þ; ð7Þ

where �t is a normalizing constant.
Next, we give an overview of two different implementa-

tions of Bayesian filters, namely, the Kalman filter and
particle filters, which are representative examples for the
continuous and discrete methodologies to approximate the
posterior densities (and which will be used to design the
“real-world” tracking algorithm).

3.2.1 Kalman Filter

In the particular case where the observation density is
assumed to be Gaussian and the dynamics are assumed to
be linear with additive Gaussian noise, (6) and (7) result in
the Kalman filter [1], [11]. The expressions for the densities
of the dynamic model and observation model are
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pðxtkjxt�1
k Þ ¼ N ðHt

kx
t�1
k ; �t

k;hÞ
pðztkjxtkÞ ¼ N ðMt

kx
t
k; �

t
k;mÞ;

ð8Þ

where the Ht
k and Mt

k matrices are the deterministic

components of the models and �t
k;h and �t

k;m are the

covariance matrices of the white and normally distributed

noise assumed for the models.
We now plug these expressions into the Bayes-filter

equations, (6) and (7), which can be analytically solved. The

hypothesis-generation stage provides the following Gaus-

sian likelihood:

pðxtkjZ
t0:t�1
k Þ ¼ N ðxtk;�; �t

k;�Þ

¼ N Htxt�1
k ; �t

k;h þHt
k�

t�1
k ðHt

kÞ
T

� �
:

Similarly, the hypothesis correction stage generates the

following Gaussian posterior density:

pðxtkjZ
t0:t
k Þ ¼ N ðxtk;�t

kÞ
¼ N ðxtk;� þKt½ztk �Mt

kx
t
k;��; ½�t

k;� �KtMt
k�

t
k;��Þ;

where matrix Kt is the Kalman gain.

3.2.2 Particle Filter

In noisy scenes with cluttered backgrounds, observations

usually have non-Gaussian multimodal distributions and

the models estimated using the Kalman filter formulation

are no longer valid. Particle filtering [5] offers an approx-

imate solution for these cases by approximating the

posterior pðxt�1
k jZ

t0:t�1
k Þ as a set of weighted samples

fst�1
kj ; �

t�1
kj g

nk
j¼1, where �t�1

kj is the weight associated to

particle st�1
kj . Therefore, the Bayes-filter equation (5) is

now represented by

pðxtkjZ
t0:t
k Þ � pðztkjxtkÞ

Xnk
j¼1

�t�1
kj pðxtkjst�1

kj Þ;

which is recursively approximated using a “hypotheses

generation-hypotheses correction” strategy. Note that, now,

the dynamic model is represented by the distribution

pðxtkjst�1
kj Þ.

During the hypotheses generation stage, a set of

nk samples stkj is drawn from the distribution:

stkj

n onk
j¼1
�
Xnk
j¼1

�t�1
kj pðxtkjst�1

kj Þ:

For implementation purposes, this stage is usually split into

two subprocesses. Initially, the set fst�1
kj ; �

t�1
kj g

nk
j¼1 is re-

sampled (sampling with replacement) according to the

weights �t�1
kj . We obtain the new set f~st�1

kj ; �
t�1
kj g

nk
j¼1, which is

propagated to the set fstkjg
nk
j¼1 based on the probabilistic

dynamic model.
Finally, based on the observation function pðztkjxtkÞ, the

set of samples fstkjg
nk
j¼1 is weighted:

�tkj ¼ pðztkjxtk ¼ stkjÞ:

The set fstkj; �tkjg
nk
j¼1 approximates the posterior pðxtkjZ

t0:t
k Þ.

3.3 Approximation of the Dependent Bayesian Filter
Integration Model

We now describe the algorithm used to approximate the

DBFI model of (4). For ease of explanation, let us assume

that our target is represented by a set of k features estimated

by particle filters and we are given the posteriors

pt1; . . . ; ptk�1 at time t for features 1 . . . k� 1. Our goal is to

compute ptk for the feature k for which we know its

posterior pt�1
k at the previous time step, approximated by a

set of nk weighted samples fst�1
kj ; �

t�1
kj g

nk
j¼1. Similarly, the

distribution Pt
1:k�1 ¼ pt1pt2 . . . ptk�1 is approximated by a set

fstk�1;j; �
t
k�1;jg

nk�1

j¼1 of weighted samples. Then, the process to

update pt�1
k may be summarized as follows:

1. Resampling the posterior for features 1 . . . k� 1. The set

fstk�1;j; �
t
k�1;jg

nk�1

j¼1 is sampled with replacement nk
times in such a way that the probability for each

particle stk�1;j of being selected is determined by its

weight �tk�1;j. Note that, by doing this resampling,

we are selecting a subset fs�k�1;jg
nk
j¼1, containing the

best hypotheses of Pt
1:k�1.

2. Hypotheses generation for feature k. The initial operation

performed over the posterior pt�1
k of feature k is based

on the usual “hypotheses generation” step performed

on particle filters. That is, set fst�1
kj ; �

t�1
kj g

nk
j¼1 is

resampled according to the weights �t�1
kj and

propagated to the set fstkjg
nk
j¼1 based on the dynami-

cal model associated to feature k.
3. Hypotheses correction for feature k. The set of particles
fstkjg

nk
j¼1 then needs to be corrected according to

some observation model. One important property of
our model is that this correction is performed
according to the posterior distribution of the features
1; . . . ; k� 1 previously considered in the algorithm.
For this purpose, we design a weighting function
that evaluates each sample for feature k assuming
that the state of features 1; . . . ; k� 1 is described by
Pt

1:k�1. For the most accurate approximation of (4),
each sample stkj should be evaluated according to the
complete posterior distribution Pt

1:k�1. However, this
procedure would be extremely computationally
expensive since each sample of feature k should be
evaluated with all the samples of the previous
features.

To reduce the computational load, we found it adequate

to evaluate each particle stkj using a single element s�k�1;j

from the previously resampled set fstk�1;j; �
t
k�1;jg

nk�1

j¼1 . Note

that Pt
1:k�1 is now approximated by the set fs�k�1;jg

nk
j¼1

containing repeated copies of those samples of features

1; . . . ; k� 1 having larger weights (high probability),

whereas those samples having a low probability may not

be represented at all. As we will show in the following

section, apart from a significant reduction in the computa-

tional load, this procedure permits concentration of the

samples around the more likely regions in the configuration
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space, avoiding an unnecessary waste of low probability

samples.1

The integration of features estimated by filters yielding a
continuous PDF (such as a Kalman filter or EKF) is
immediate. For example, when the information of a Kalman
filter feeds into a particle filter, the Gaussian posterior of the
Kalman filter is discretized and represented by a set of
samples and weights. On the other hand, when a particle
filter feeds into a Kalman filter, the posterior of the particle
filter represented by a set of weighted samples is
approximated by its mean and covariance matrix.

Fig. 1 shows an example of how cue dependence is

handled in a case with two features: x1 estimated by a

Kalman filter KF 1 and x2 estimated by a particle filter PF 2.

For this example, x2 depends on feature x1. During the

observation phase of PF 2, the multiple hypotheses fs2jgn2

j¼1

need to be weighted according to some external measure-

ment. This measurement will be based on the posterior of

feature x1 estimated by KF 1. For this purpose, the

distribution pðxt1jZ
t0:t
1 Þ is discretized into n1 weighted

particles fst1j; �t1jg
n1

j¼1. Subsequently, this set is resampled

with replacement n2 times and a set fs�1j; ��1jg
n2

j¼1 is obtained.

Finally, each sample st2j of the feature x2 is weighted using

the configuration of feature x1 represented by s�1j.
Observe in Fig. 1 that samples fst1jg with higher weights

have a higher chance of being selected several times when
evaluating the hypotheses fst2jg, allowing the more likely
samples of feature x1 with the more likely samples of
feature x2 to be grouped together. Also, it is important to
note that not all the features need to be approximated by the
same number of samples. In the example just presented, x1

is estimated by n1 ¼ 5 samples, whereas x2 is estimated by
n2 ¼ 10 samples. This is an important advantage of the
proposed framework, especially when dealing with particle
filters, since it permits adaptation of the number of

necessary samples to estimate each feature in light of its
particular requirements.

To illustrate all the mathematical foundations, in the next
section, we will apply this method to a simulated case, with
only two 1D particle filters.

4 DEPENDENT OBJECT FEATURES IN 1D

Let us assume that we want to track a single point that
changes its position and color. Both features lie on a
1D space, that is, the point is moving between the ½�1; 1�
coordinates, and the color is also represented by a single
value in the ½0; 1� interval. The movement is simulated with
a random dynamic model (centered in �pos and scaled by
�pos). We also simulate an observation model, adding
Gaussian noise to the simulated position:

post ¼ ðpost�1 � �posÞ�pos þNð�noise;pos; �noise;posÞ
obs post ¼ post þNð0; �noise;obs posÞ:

Similar equations generate the models for color change
ðcoltÞ and its observation ðobs coltÞ.

The state of each feature will be estimated by particle
filters. We will use PF 1 to track the color, with x1

representing the color state vector and PF 2 and x2 the
corresponding particle filter and state vector assigned to the
position.

At the starting point of iteration t, PF 1 receives as its

input pt�1
1 , the PDF of the color at time t� 1, approximated

with n1 weighted samples fst�1
1j ; �

t�1
1j g

n1

j¼1. This set is

resampled and propagated according to a random dynamic

model of Gaussian noise, that is, st1j ¼ ~st�1
1j þNð0; �dyn;colÞ,

where ~st�1
1j are the resampled particles.

Each one of these propagated samples is weighted

based on its proximity to the color observation:

�t1j � e
�ðkst1j�obs coltkÞ.

The set fst1j; �t1jg
n1

j¼1 is the output of PF 1 and
approximates the distribution pt1. This PDF, jointly with
pt�1

2 , feeds into PF 2, the particle filter responsible for
estimating the position of the point. As in the previous
particle filter, pt�1

2 is approximated by a set of n2 samples
and weights fst�1

2j ; �
t�1
2j g

n2

j¼1, which are resampled and
propagated using a random Gaussian dynamic model,
that is, st2j ¼ ~st�1

2j þNð0; �dyn;posÞ.
We then evaluate the several hypothesized target positions

based on the color feature. With this purpose, the set

fst1j; �t1jg
n1

j¼1 is initially sampled with replacement n2 times,

where, for each particle, the probability of being selected is

determined by its weight �t1j. This sampling procedure yields

a subset fs�1j; ��1jg
n2

j¼1 containing the best hypotheses of feature

x1. Subsequently, each position sample st2j is associated to a

color sample s�1j. The samples st2j are weighted based on the

function �t2j � e
�ðks�1j�obs coltkþkst2j�obs postkÞ, which considers

both position and color. The set fst2j; �t2jg
n2

j¼1 approximates pt2.

Finally, the complete a posteriori probability of the
system at time t may be computed by

Pt ¼ pðxt1;xt2jzt1; zt2Þ ¼ pt1pt2:
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1. If one of the features is not observable, all of its configurations in the
vector space will be equally probable. This means that the posterior
distribution of the feature will be represented by a constant PDF.

Fig. 1. Introducing cue dependence into the observation model.

Example of how cue dependence is handled in the proposed DBFI

framework in a case dealing with two features, one estimated by a

Kalman filter and the other estimated by a particle filter. The posterior of

feature x1, computed by KF 1, is represented by a set of weighted

samples fst1j; �t1jg
n1

j¼1. These particles are resampled n2 times (according

to their weights) in order to obtain the set fs�1j; ��1jg
n2

j¼1. Finally, each

sample fst2jg
n2

j¼1 of feature x2 is weighted according to the configuration

of the corresponding sample s�1j.
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4.1 Comparison with Other Approaches

The simple example just presented will be considered as a
benchmark to compare the efficiency of the DBFI method
proposed in this paper with that of previous approaches,
specifically with the conventional Condensation algorithm
[9] assuming independent cues and with the partitioned
sampling algorithm [16], [17] assuming the dependence in
the propagation stage. The comparison will be performed in
terms of the tracking accuracy (distance between the
estimated position and color features and the true values)
and in terms of the survival diagnostic [17]. The survival
diagnostic D for a particle set fsi; �igni¼1 is defined as

D ¼
Xn
i¼1

�2
i

 !�1

:

This random variable may be interpreted as the number
of particles that would survive a resampling operation and,
therefore, it is an indicator of whether the tracking
performance is reliable or not.2 A low value of D means
that the tracker may lose the target. For instance, if �1 ¼ 1
and �2 ¼ �3 ¼ . . . ¼ �n ¼ 0, then D ¼ 1. In these circum-
stances, only one particle might survive the resampling and
tracking would probably fail. On the other hand, if all of the
particles have the same weight, �1 ¼ �2 ¼ . . . ¼ �n ¼ 1=n
results in D ¼ n. This indicates that all the n particles would
survive an ideal resampling and the tracker has significant
chances of succeeding. With this clarification, we proceed to
study the performance of different algorithms in the
tracking problem proposed in this section.

In the first experiment, the problem has been addressed
by the conventional Condensation algorithm, assuming that
cues are independent. x1 and x2 are represented into a
common state vector and the hypotheses generation and
correction stages are applied simultaneously to both
features. Since the dynamic model of a specific feature has
no information about the state of the other feature, the
samples are spread over a wide area of the state space and,
as a consequence, only a few particles will be closely located
to the true state. Fig. 2a shows the a posteriori distribution
obtained in one iteration of the algorithm. The dots
represent the different samples (in the “color-position”
space) and the crosses are the true (black) and observed
(blue) values. The gray level of the particles is proportional
to their likelihood (darker levels are more probable
particles). Observe that only a small number of particles
have a large weight. As a consequence, the survival
diagnostic for this approach will have low values.

A better approach may be obtained through the parti-
tioned sampling algorithm. In this case, the dynamics and
measurements are not applied simultaneously but are
partitioned into two components. First, the dynamics are
applied in the x1 direction and, therefore, the particles are
rearranged so that they concentrate around the color
observation (by a process called weighted resampling [16],
which keeps the distribution unchanged). This arrangement

enhances the estimation by concentrating more particles
around the true state. Note in Fig. 2b this effect on the
posterior distribution. Although particles are spread in the
x2 direction, their variability along the x1 direction is highly
reduced. As a result, the number of particles having a large
weight is considerably bigger than when using the conven-
tional Condensation.

It is worth noting that, in the partitioned sampling
technique, particles are propagated in the direction x2

according to the likelihood of the samples of feature x1.
Thus, the best hypotheses of feature x1 have more chances
of being propagated in the direction x2. Although this
approach outperforms the conventional Condensation algo-
rithm, it still has a limitation in that the best samples of
feature x1 do not need to be the best samples of feature x2.
Therefore, the common association of the best samples of
feature x1 with the best samples of feature x2 is not
guaranteed.

This issue is addressed by the DBFI algorithm proposed in
the paper. The key difference with respect to the previous
approaches is that we assume a different state vector for each
feature and the hypotheses generation and correction stages
are also applied separately. In particular, the propagation of
the particles for feature xi is performed according to the
particles resampling the feature’s own probability distribu-
tion in the previous time step pðxt�1

i jZt�1
i Þ and not according

to the particles that better approximate another feature,
avoiding the aforementioned issue in partitioned sampling.
In Fig. 2c, we see that, proceeding this way, the samples are
much more concentrated around the true value than they
were for the other approaches, which noticeably improves the
survival diagnostic.

Furthermore, although partitioned sampling considers
the feature dependence during the hypotheses generation
stage, we consider it in the hypotheses correction phase,
where the posterior of a specific feature is used to weigh the
samples of another feature. This permits us to update all of
the features representing the target in the same iteration.
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2. Comparing the performance of particle filters is a difficult task.
Although the survival diagnostic used here is not an irrefutable proof that
the tracker will or will not get lost, it gives an idea of its efficiency and
reliability.

Fig. 2. A posteriori probability distributions for different particle
filter-based algorithms. Comparison of the posterior obtained for three
algorithms in the tracking example presented in Section 4 corresponding
to a point moving in the “color-position” space. The results are for a
particular iteration and show how the filters approximate the true value
(black cross) based on a set of weighted particles (gray level dots). The
gray level is proportional to the probability of the sample in such a way
that darker gray levels indicate more likely samples. Since the true value
is only ideally available, the correction of the hypotheses is done based
on the observation (blue cross), which we have simulated to be the true
value plus a Gaussian noise. The three experiments use the same
number of particles ðn ¼ 1; 000Þ and the same dynamic models.
However, note that the DBFI approach proposed in this paper is the
method that concentrates a maximum number of samples around the
true value. (a) Condensation. (b) Partitioned sampling. (c) DFBI.
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Following the diagram symbology used in [17] to
describe particle filter processes (which explains the particle
filter operation through convolution and multiplication of
PDFs), Fig. 3 depicts one time step of the conventional
Condensation, the partitioned sampling, and the DBFI
algorithms. These diagrams clearly reflect the difference
between the algorithms.

The plots in Fig. 4 show the tracking results obtained for
the three algorithms compared in this section. In Fig. 4a, the
algorithms are compared in terms of the tracking error,
where the error is computed as the distance between the
filter estimate and the true value. For instance, given a
posterior approximated by the set fsj; �jgnj¼1 and the true
state of the tracked point given by xtrue, the value of the
error is

EðnÞ ¼ kEðxÞ � xtruek;

where EðxÞ is the expected value approximated by the filter,
that is, EðxÞ ¼

Pn
j¼1 sj�j, and k � k refers to the euclidean

norm. Observe that the error produced using DBFI is clearly
smaller than the one produced by the other algorithms.

Analyzing the survival diagnostic for the same experi-
ments, we reach similar conclusions. Fig. 4b shows that the
largest survival rates and, hence, the most reliable tracking
results are obtained when using the integration technique
presented in this paper.

A final remark for this section regarding the number of
particles necessary to achieve a desired level of performance:
It is well known that the curse of dimensionality is one of the
main problems affecting particle filters, that is, when the
dimensionality of the state space increases, the number of
required samples increases exponentially [12], [16], [28].
Intuitively, the number of samples is proportional to the
volume of the search space. For instance, if a 1D space is
sampled by n particles, the same sampling density in a two-
dimensional space will require n2 particles and so on.
Nevertheless, in the proposed method, the high-dimensional
state vectors are decomposed into various small state vectors
and the sampling is particularized for each low-dimensional

configuration space. The final number of required parti-

cles corresponds to the sum of the particles used in each

of these low-dimensional spaces. For example, if a two-

dimensional state vector can be split into two one-

dimensional state vectors, the number of samples may

be reduced from n2 (required in the two-dimensional

configuration space) to 2n (required in the two one-

dimensional spaces). Furthermore, as we have previously

pointed out, the number of samples may be adapted for the

particular requirements of each particular component of the

whole state vector.

5 FEATURES USED FOR ROBUST TRACKING

In the preceding sections, the integration framework has

been presented from a general point of view and applied to

a simple example involving 1D features, which has allowed

us to highlight the important properties of the method and

compare it with other approaches. The rest of the paper will

describe a particular application of the proposed framework

for designing a tracking system able to work in real and

dynamic environments. The target is going to be repre-

sented by both appearance (normal to the Fisher plane [20]

and color distribution of the object) and geometric attributes

(contour and bounding box). In the following sections, we

will describe these features, as well as their parameteriza-

tions and dynamic models.

5.1 Object Bounding Box

The bounding box of the object is simply a rectangular

shape that gives a rough estimate about the target position.

It will be parameterized by

x1 ¼ u1; v1; a1; b1; �1½ �T2 IR5�1;

where ðu1; v1Þ are the coordinates of the center, a1 and b1 are

the lengths of the sides of the rectangle, and �1 is the angle

between a1 and the horizontal axis.
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Fig. 3. Whole process diagrams of the conventional Condensation,

the partitioned sampling, and the DBFI algorithms. The symbology

used in these diagrams is adapted from [17]: � denotes the resampling

operation,� pt1 indicates a weighted resampling operation with respect to

the importance function pt1,	 represents a convolution operation with the

dynamics, and� is the multiplication by the observation density (see [17]

for details). (a) Conventional condensation x ¼ ½x1;x2�. (b) Partitioned

sampling x ¼ ½x1;x2�. (c) DBFI.

Fig. 4. Tracking results obtained for the conventional Condensa-
tion, partitioned sampling and the proposed DBFI method. Analysis
of the three algorithms when applied to the tracking example explained
in Section 4, which was a 20-iteration sequence. The analysis is done
(a) in terms of the error in the tracking (distance between the true state
and the state estimated by the algorithm) and (b) in terms of the survival
rate. In both cases, the experiments have been realized for different
numbers of samples and, for each specific number of samples,
25 repetitions of the simulation have been performed. The results we
show correspond to the mean of these 25 repetitions, with 20 iterations
each. Observe that the results agree with the a posteriori distributions
plotted in Fig. 2 as DBFI outperforms both the Condensation and the
partitioned sampling algorithms.
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5.2 Normal to the Fisher Plane

In [20], the concept of Fisher color space was introduced and it

was suggested that, for tracking purposes, the best color

space is the one that maximizes the distance between the

object and background color points. Let the sets CRGB
O ¼

fcRGBO;i g
nO
i¼1 and CRGB

B ¼ fcRGBB;j g
nB
j¼1 be the color points of the

object and background, respectively, represented in the 3D

RGB color space. We define as the optimal color space the

one resulting from the projection of the RGB color points

onto the plane W ¼ ½w1;w2�T 2 IR2�3 (Fisher plane), com-

puted by applying the nonparametric Linear Discriminant

Analysis technique [6] over the sets CRGB
O and CRGB

B . An

RGB color point cRGB is transformed into the 2D Fisher

color space by cFisher ¼WcRGB (see Fig. 5, top).
The Fisher plane will be parameterized by its normal

direction:

x2 ¼
w1 �w2

kw1 �w2k
2 IR3�1:

5.3 Color Distribution of the Target and Background

In order to represent the color distribution of the fore-

ground and background in the Fisher color space, we use a

Mixture of Gaussians (MoG) model. With this model, the

conditional probability for a pixel cFisher belonging to a

multicolored object O may be expressed as a sum of mO
Gaussian components:

pðcFisherjOÞ ¼
XmO
j¼1

pðcFisherjjÞP ðO; jÞ;

where P ðO; jÞ corresponds to the a priori probability that
pixel cFisher was generated by the jth Gaussian component
of the object color distribution. The likelihood pðcFisherjjÞ is
a Gaussian distribution.

Similarly, the background color will be represented by a
mixture of mB Gaussians. Given the foreground ðOÞ and
background ðBÞ classes, we will use the Bayes rule to
compute the a posteriori probability that a pixel cFisher

belongs to the object O (Fig. 5, bottom):

pðOjcFisherÞ ¼ pðcFisherjOÞP ðOÞ
pðcFisherjOÞP ðOÞ þ pðcFisherjBÞP ðBÞ ; ð9Þ

where P ðOÞ and P ðBÞ represent the a priori probabilities of
O and B, respectively.

The configurations of the MoGs for O and B will be
parameterized by the vector

g" ¼ p"; ��"; ��"; ��"½ �T2 IR6m"�1; ð10Þ

where " ¼ O;Bf g, m" is the number of Gaussian compo-
nents for the class ", p" 2 IRm"�1 contains the priors for each
Gaussian component, ��" 2 IR2m"�1 contains the centroids,
��" 2 IR2m"�1 contains the eigenvalues of the principal
directions, and ��" 2 IRm"�1 contains the angles between
the principal directions and the horizontal. In Fig. 5e, all of
these parameters for a single Gaussian are depicted.

The state vector representing the color model will be

x3 ¼ ½gTO;gTB�
T 2 IR6mT�1;

where mT ¼ mO þmB.

5.4 Object Contour

Since color segmentation usually gives a rough estimation
of the target location, we use the contour of the object to
obtain a more precise tracking. In particular, the contour
will be represented by a discrete set of nc points in the
image, R ¼ ½ðu1; v1ÞT ; . . . ; ðunc ; vncÞ

T �T . We assign these
values to the contour state vector:

x4 ¼ ½ðu1; v1ÞT ; . . . ; ðunc ; vncÞ
T �T 2 IRnc�2:

5.5 Dynamic Models

The behavior over time of all of the previous state vectors
will be predicted by simple stochastic dynamic models. In
particular, the state of the bounding box x1 will be
estimated by a Kalman filter based on a Gaussian linear
dynamic model with additive white noise:

xt1 ¼ H1x
t�1
1 þ q1;h;

where H1 is a deterministic component and q1;h is a random
variable distributed as a Gaussian with zero mean and
diagonal covariance matrix �1;h.

The rest of features xi, i ¼ f2; 3; 4g, will be estimated by
particle filters with dynamic models consisting of a random
scaling and translation:

xti ¼ ðIIþ SiÞxt�1
i þ qi;
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Fig. 5. Color model. (a) Representation of all image points in the RGB
color space. In the upper left corner of the figure, the original image is
shown. (b) Manual classification of image points into foreground ðOÞ and
background ðBÞ classes. The foreground (target to track) is the leaf
appearing in the center of the image. (c) Projection of O and B on the
Fisher plane. The Fisher plane is determined from the training points.
This plane maximizes the separation of the projected classes while
keeping a low variance. (d) Mixture of Gaussians (MoG) components of
O and B in the Fisher color space. (e) Detail of the parameters used to
represent a single Gaussian component. (f) pðOjcFisherÞ. Brighter points
are more likely pixels.
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where II is the identity matrix, Si is a random scaling
matrix, and qi a random translation vector.

In all of these dynamic models, there are certain
parameters that control the stochastic performance of the
model. Their value will determine the level of dispersion of
the samples in the configuration space and, although they
are an important factor to consider when designing the
tracker, they do not need to be estimated with high
accuracy. In particular, when using particle filters, poor
estimates of these parameters may be compensated for by
selecting a larger number of particles. On the other hand, a
Kalman filter might be more sensitive to the value of the
covariance matrix �1;h defined in its dynamic model since
the prediction is based on a single hypothesis. Nevertheless,
in the tracker system explained in the following section, the
role of the Kalman filter will be to provide a coarse estimate
about the bounding box surrounding the target. Therefore,
poor estimates of �1;h are not that critical.3

With these considerations, for the experiments that will
be presented at the end of the paper, the parameters
providing the random behavior to the dynamic models
have been learned offline, based on a simple least squares
procedure over a set of hand-segmented training sequences.

6 THE COMPLETE TRACKING ALGORITHM

In this section, we will integrate the tools described
previously and analyze in detail the complete method for
tracking rigid and nonrigid objects in cluttered environments
under changing illumination. Specifically, the target is going
to be tracked based on the four features just defined: the

bounding box (estimated by a Kalman filter KF 1), the Fisher

color space (estimated through a particle filter PF 2), the
color distribution (estimated through PF 3), and the object

contour (estimated using PF 4). In the following sections,

the algorithm will be described step by step. For a better

understanding of the method, the reader is encouraged to
follow the flow diagram in Fig. 6.

6.1 Input at Iteration t

At time t, for the bounding box feature, the mean and
covariance parameters from the previous iteration are

available, which can be used to estimate its posterior

probability pt�1
1 . For the rest of the xi features, i ¼ f2; 3; 4g,

estimated through particle filters, a set of ni samples
fst�1

ij g
ni
j¼1 is available from the previous iteration. The

structure of these samples is the same as the corresponding

state vector xi. Each sample has an associated weight �t�1
ij .

The whole set approximates the a posteriori PDF of the

system Pt�1 ¼ pðXt�1jZt�1Þ, as defined in (4), where X ¼
fx1;x2;x3;x4g contains the state vectors of all the cues

utilized to represent the object and Z ¼ fz1; z2; z3; z4g refers
to the observations measured to evaluate these features.

Obviously, the input RGB image at time t, denoted by

IRGB;t, is also available.

6.2 Updating the Bounding Box PDF

The bounding box is estimated through a Kalman filter,

which basically relies on the prediction term and for which

the correction introduced by the observation has a low
significance. The reason why we do not rely on the

bounding box observation is because we wish to deal with

highly cluttered sequences and, hence, the observation done
by a single cue will probably be inaccurate. The robustness

of the system comes from the integration over all of the cues

and not from of a single cue. Therefore, the estimate of the
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3. For the experiments shown in the paper, we do not expect abrupt
changes of position. In these circumstances, a Kalman filter works properly.
In order to deal with sequences including abrupt changes of position
(besides abrupt changes of illumination), the Kalman filter estimating the
bounding box should be replaced by a particle filter.

Fig. 6. Flow diagram of one iteration of the complete algorithm. Different color lines and arrows show the paths of each feature. Observe how

the output of each filter feeds into a subsequent filter.
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bounding box state will mostly come from the prediction
done by the dynamic model.

In order to obtain a Kalman filter with such a behavior, a
large value is assigned to the covariance associated with the
measurement noise �t

m;1. Next, let us see in detail how the
Kalman filter behaves under these specifications. The basic
steps for a single iteration are detailed in Section 3.2 and are
repeated here for convenience.

6.2.1 Input Data

KF 1, the Kalman filter associated with state vector x1,
receives the bounding box estimate of the previous state,
that is, pt�1

1 ¼ Nðxt�1
1 ;�t�1

1 Þ, where x1 and �1 correspond to
the a posteriori estimates of the mean and covariance.

6.2.2 Hypothesis Generation

Using the Kalman filter equation (8), the state vector and
covariance matrix are propagated to

xt1;� ¼ H1x
t�1
1 ;

�t
1;� ¼ �1;h þH1�

t�1
1 HT

1 ;

where the matrix H1 2 IR5�5 corresponds to the determi-
nistic component of the dynamic model and �1;h 2 IR5�5 is
the covariance matrix of the process noise. Here, the
subscript symbol “�” indicates that the estimate is a priori.

6.2.3 Hypothesis Correction

In order to correct the predicted state, an observation
zt1 is computed by a simple correlation method. Let
us call the rectangular window defined by xt�1

1 ¼
½ut�1

1 ; vt�1
1 ; at�1

1 ; bt�1
1 ; �t�1

1 �
T Wt�1. The observation zt1 will be

the same window but with its centroid translated according
to the parameters ðdu; dvÞ minimizing the following Sum of
Squared Differences (SSD) criterion:

arg min
du;dv

X
u;v2Wt�1

IRGB;t�1ðu; vÞ � IRGB;tðuþ du; vþ dvÞ
� �2

:

Subsequently, the value of the observation vector is
defined as

zt1 ¼ ut�1
1 þ du; vt�1

1 þ dv; at�1
1 ; bt�1

1 ; �t�1
1

� �T
:

Following (9), the observation zt1 is used to correct the
predicted state vector and covariance matrix:

xt1 ¼ xt1;� þKt½zt1 �Mtxt1;��;
�t

1 ¼ �t
1;� �KtMt

1�
t
1;�;

where M1 is the matrix denoting the deterministic
component of the measurement model and Kt ¼
�t

1;�ðMt
1Þ
T ½Mt

1�
t
1;�ðMt

1Þ
T þ�1;m��1 is the Kalman gain,

with the matrix �1;m being the covariance associated to
the observation noise.

As we have previously commented, the bounding box
observation is highly sensitive to the presence of clutter or
lighting changes since the SSD operator is not robust under
this kind of artifact. Hence, a low responsibility needs to be
assigned to the observation measure within its contribution to
the final decision of the a posteriori probability. Kalman
filtering allows us to control the relative contribution of the

prediction term and the observation term through the values
of the dynamic model covariance matrix �1;h 2 IR10�10 and
the measurement covariance matrix �1;m 2 IR5�5. In parti-
cular, these matrices have been selected offline such that
they satisfy �1;m 
 �1;h. Note that a large measurement
covariance matrix implies a small Kalman gain, that is,
�1;m "") K ## . As a consequence, the innovation terms
introduced by the observation z1 will have a small
responsibility and the filter will mostly rely on the
prediction terms.

6.2.4 Output Data

The variables xt1 and �t
1 approximate a normal distribution

pt1 ¼ Nðxt1;�t
1Þ, which estimates the state of the bounding

box feature at the output of the filter KF 1. Since this
distribution is going to feed into subsequent particle filters
based on discrete and weighted samples of the state vector,
it is necessary to discretize pt1. Thus, the normal density pt1
is uniformly sampled and approximated by a set of
n1 weighted particles:

pt1 ¼ Nðxt1;�t
1Þ ffi

Xn1

j¼1

s1j�1j:

6.3 Updating the Fisher-Plane PDF

Whereas the bounding-box feature is approximately esti-
mated through a Kalman filter mostly relying on its
prediction component, the rest of the object cues are going
to be estimated through particle filters. In this section, the
particle filter responsible for the Fisher plane feature, PF 2,
will be described.

6.3.1 Input Data

At the starting point of iteration t, PF 2, the particle filter
associated with x2, receives pt�1

2 , the PDF of the state
vector x2 at time t� 1, approximated by n2 weighted
samples, fst�1

2j ; �
t�1
2j g

n2

j¼1. In addition, it also receives the
output of the previous filter KF 1 estimating the feature x1

by a set of n1 weighted samples, fst1j; �t1jg
n1

j¼1.

6.3.2 Hypotheses Generation

Using the standard particle filter procedure [9], the set of
particles fst�1

2j ; �
t�1
2j g

n2

j¼1 is resampled (sampling with replace-
ment) and propagated to the set fst2jg according to the
dynamic model defined in Section 5.5. Each sample repre-
sents a different configuration of the Fisher plane Wj,
j ¼ 1; . . . ; n2. Fig. 7 (top left) shows some samples of Fisher
planes obtained after the hypotheses generation stage.

6.3.3 Hypotheses Correction

The key point of the proposed DFBI approach is that cue
dependence is considered during the hypotheses correction
stage. In particular, in order to assign a weight to the
propagated samples fst2jg

n2

j¼1, the information provided
from the output pt1 of KF 1 is used. The discretized samples
fst1j; �t1jg

n1

j¼1, approximating pt1 are resampled n2 times,
resulting in the set f~st1jg

n2

j¼1. Note that this set may contain
repeated copies of the more likely samples of the bounding
box. Then, every Fisher plane sample st2j is associated with a
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bounding box sample ~st1j. Let us call Wt
j the rectangular

bounding box defined by ~st1j.
Once we have defined a bounding box W t

j for each
Fisher plane st2j, the basic idea is to weigh the latter
depending on how well it permits us to discriminate the
points inside Wt

j from the points outside Wt
j.

To this end, we randomly select two sets of RGB color

points, CRGB
W and CRGB

W , inside and outside W t
j, respec-

tively. These sets and the image IRGB;t are projected onto

the nj Fisher planes, generating the nj triplets

fCFisher
W;j ;CFisher

W;j ; IFisher;t
j g. For each triplet, we use the

EM algorithm to fit an MoG to the sets CFisher
W;j and CFisher

W;j .

Based on these MoGs, we compute the a posteriori
probability map pðW t

jjI
Fisher;t
j Þ for all of the ðu; vÞ pixels of

image IFisher;t
j using the Bayes rule (9). According to this

probability map, we assign the following weight to each
sample:

�t2j �

P
ðu;vÞ2W t

j

p W t
jjI

Fisher;t
j

� �
nW

�

P
ðu;vÞ=2Wt

j

p W t
jjI

Fisher;t
j

� �
nW

;

where nW and nW are the number of image pixels in and out
of W t

j, respectively.

6.3.4 Output Data

The output of PF 2 is the set fst2j; �t2jg
n2

j¼1 approximating the

estimate of the a posteriori probability function pt2 for the

normal to the Fisher plane.

6.4 Updating the PDFs of the Foreground and
Background Color Distributions

6.4.1 Input Data

PF 3, the particle filter associated with the state vector x3,
receives as its input pt�1

3 � fst�1
3j ; �

t�1
3j g

n3

j¼1, approximating
the PDF of the color distributions in the previous iteration,

and pt2 � fst2j; �t1jg
n2

j¼1, an approximation of the PDF of the
Fisher planes at time t.

6.4.2 Hypotheses Generation

Particles fst�1
3j g are resampled and propagated (using the

dynamic model associated with x3) to the set fst3jg
n3

j¼1. A
sample st3j represents a MoG configuration of the fore-
ground and background color points projected onto the
Fisher color space. Fig. 7 (top right) shows the appearance
of different MoG configurations resulting from the random
propagation generated by the dynamic model.

6.4.3 Hypotheses Correction

Again, in order to assign a weight to these samples, we use the

information provided from the output pt2 of PF 2. Through a

sampling with replacement procedure, the set fst2jg
n2

j¼1 is

resampled n3 times, providing the set f~st2jg
n3

j¼1. This allows

us to assign the most likely samples st2j of Fisher planes to

the samples st3j of MoGs.
The rest of the weighting process is similar to the one

described in the previous section: For a given sample st3j,
j ¼ 1; . . . ; n3, we project image IRGB;t to its associated Fisher
plane Wj parameterized by ~st2j. The new image will be
IFisher;t
j ¼ IRGB;tWT

j .

Using the MoGs of the object and background para-

meterized by the sample st3j, the a posteriori probability

map pðOjIFisher;t
j Þ is computed for all of the pixels of IFisher;t

j

and the weight �t3j is assigned by

�t3j �

P
ðu;vÞ2W t

j

p OjIFisher;t
j

� �
nW

�

P
ðu;vÞ 62 W

p OjIFisher;t
j

� �
nW

;

where W t
j, nW , and nW were defined above.

In Fig. 7 (bottom right), the a posteriori probability maps
of the target (the central leaf) are depicted. Notice how some
of the MoG configurations provide probability maps where
the target is clearly distinguished from the background.

6.4.4 Output Data

The set fst3j; �t3jg
n3

j¼1 approximates the estimate of the
a posteriori probability function pt3 for the foreground and
background color distributions.

6.5 Updating the Contour PDF

6.5.1 Input Data

The last particle filter PF 4 receives as its input
pt�1

4 � fst�1
4j ; �

ðt�1Þ
4j gn4

j¼1, which approximates the PDF of the
contours in the previous iteration, and pt3 � fst3j; �t3jg

n3

j¼1, an
approximation of the PDF of the foreground and back-
ground color distributions at time t.

6.5.2 Hypotheses Generation

Similarly to the procedure utilized for PF 2 and PF 3,
particles fst�1

4j g are resampled and propagated to the set
fst4jg

n4

j¼1, according to the dynamic model described in
Section 5.5. This dynamic model produces affinely de-
formed and translated copies of the original contours (see
some examples in Fig. 7 (bottom left) for the leaf tracking
example).
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Fig. 7. Generation of multiple hypotheses for each feature. Top left:
Fisher plane. Bottom left: Hypothesized contours. Right: Color distribu-
tion. Top right: Several hypothesized MoGs parameterizing the fore-
ground ðOÞ and the background ðBÞ color distributions. Solid line ellipses
and dashed line ellipses belong to the foreground and background
MoGs, respectively. Bottom right: A posteriori probability maps of the
object class, obtained using the corresponding color configurations
above them. Note that some of the color configurations are appropriate
to discriminate the target (central leaf) from the rest of the background,
whereas, using other configurations, the O and B regions are
undistinguishable.
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6.5.3 Hypotheses Correction

The set fst4jg is weighted based on pt3 through a similar
process as the one described for PF 2 and PF 3: Initially,
samples fst3j; �t3jg

n3

j¼1 are resampled according to the
weights �t3j, resulting in a new set f~st3jg

n4

j¼1. Then, each
color sample ~st3j, j ¼ 1; . . . ; n4, is associated to a contour
sample st4j.

The a posteriori probability map pðOjIFisher;t
j Þ assigned to

~st3j in the previous time step and the contour Rj represented
by st4j are used to compute the weights for the contour
samples as follows:

�t4j �

P
ðu;vÞ 2 Rj

p OjIFisher;t
j

� �
nRj

�

P
ðu;vÞ 62 Rj

p OjIFisher;t
j

� �
nRj

;

where nRj
and nRj

are the number of image pixels inside
and outside the contour Rj.

6.5.4 Output Data

Finally, the set of samples and weights fst4j; �t4jg
n4

j¼1

approximates the estimate of the a posteriori probability

function pt4 for the contours of the object.

6.6 Algorithm Output Generation

As we have shown in Section 3.1, the complete a posteriori
probability function can be determined by

Pt ¼ pðXt
1:4jZt

1:4Þ ¼ pt1pt2pt3pt4
¼ p1ðxt1jZt

1Þp2ðxt2jXt
1;Z

t
1:2Þp3ðxt3jXt

1:2;Z
t
1:3Þp4ðxt4jXt

1:3;Z
t
1:4Þ

� st4k st3j st2iðst1hÞ
� �� �n o

; �t1h�
t
2i�

t
3j�

t
4k

n on o
¼ fstl ; �tlg;

ð11Þ

where l ¼ 1; . . . ; n4. Equation (11) reflects the fact that
samples of the state vector x4 are computed by taking into
account samples of x3 (that is, st4k � st4kðst3jÞ) and these have
been computed by considering samples of x2 (that is,
st3j � st3jðst2iÞ) and these have considered samples of x1 (that
is, st2i � st2iðst1hÞ). Observe that the final number of samples
to approximate the whole probability Pt is determined by
n4. Considering the final weights, the average contour is
computed as

Rt
avg ¼

Xn4

l¼1

st4l�
t
l : ð12Þ

Since all of the contour samples have been generated
with an affine deformation model, we need to add an extra
final stage in order to deal with nonrigid deformations of
the object boundary. We use Rt

avg to initialize a deformable
contour that is fitted to the object boundary using the
traditional snake formulation [13]. This adjustment is highly
simplified by using the target position estimated by the
color particle filter. This is shown in Fig. 8, where the
a posteriori probability map of the color module allows us
to eliminate noisy edges from the original image, which
might disrupt the fitting procedure of the snake.

Note the advantage of using the color module: Tradi-
tional snake algorithms need to adjust a given curve to the
edges of an image. However, if the image contains a high

level of clutter (such as the image shown in Fig. 8a), a
standard edge detector may detect a lot of noisy edges that
might disturb the snake during the fitting procedure. For
instance, Fig. 8b shows the edges detected by a Canny filter
in the previous image. Under this type of edge image,
traditional snake algorithms are likely to fail. Nevertheless,
by applying simple morphological operations on the
a posteriori probability map of the target provided by the
color module (Fig. 8c), most of the noisy edges may be
eliminated from the image (Fig. 8d). Then, the fitting
procedure is made considerably easier. Figs. 8e and 8f show
the initialization of the snake (by the averaged contour Rt

avg)
and the final result of the adjustment, respectively.

7 EXPERIMENTAL RESULTS

In this section, we present the results of different experi-
ments on both synthetic and real video sequences and
examine the robustness of our system to several changing
conditions of the environment in situations where other
algorithms may fail.

Before discussing the obtained results, we would like to
point out that, in the particular case of integrating several
particle filters, the structure of the DBFI framework allows
us to considerably reduce the number of samples necessary
to approximate the PDF that represents the state of the
target. As we have previously argued in Section 4.1, this
ability addresses the problem of the curse of dimensionality
undergone by particle filters when the size of the state
vector is increased. That is, if we integrate N features using
n particles for each one, the complexity of the proposed
methodology would be OðnNÞ, whereas if all the features
were integrated in a single particle filter, its complexity
would be OðnNÞ. In terms of computation times, it is worth
mentioning that the algorithm takes less than a minute per
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Fig. 8. Simplification of the snake fitting procedure using color
information. (a) Original cluttered image. (b) Edge features of the
image obtained with a Canny edge detector. Observe the large quantity
of noisy spurious edges detected, which might disrupt a traditional snake
procedure from converging to the true object contour. (c) Foreground a
posteriori probability map obtained using the color module. (d) Refined
edge image, where most of the noisy edges have been removed by
considering a mask obtained by applying simple morphological
operations on image (c). (e) Contour Rt

avg used as initialization for a
snake fitting procedure. (f) Results of snake fitting.
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frame (Pentium IV, 2.0 GHz), implemented in an inter-

pretative language (Matlab) and using about 100 samples

per feature. The most time-consuming part of the algorithm

corresponds to the Fisher plane update since it requires

running the EM algorithm for each particle. However,

several approximations might reduce the computation time

for this step, such as using a relatively small number of data

points or predefining the number of Gaussians that are used

to fit the MoG models.
In the following sections, some experimental results will

be reported. The first set of experiments deals with

sequences where the lighting conditions or the appearance

of the target changes continuously. In the last group of

experiments, abrupt illumination changes will be consid-

ered. In both cases, examples of targets that deform rigidly

and nonrigidly are included.

7.1 Tracking under Continuous Lighting Changes

The first experiment corresponds to the tracking of a

synthetically generated sequence of an ellipse that ran-

domly changes its position, color, and shape in a cluttered

background. In Fig. 9 (top), we depict the path followed by

the color cue. Observe the nonlinearity of the trajectory. As

was shown in [9], this kind of nonlinear path may be

estimated by filters based on multihypothesis, such as

particle filters. Results show that the DBFI method

proposed in this paper, based on multiple-multihypothesis

algorithms, allows us to segment and track the ellipse, even

when the background and target have similar colors

(observe the frame before the last).

In the second experiment (Fig. 10), we show how our
method performs in a real video sequence of an octopus
changing its appearance while camouflaging. Observe that
the foreground a posteriori probability maps of the color
module give a rough estimate about the target position,
especially when the octopus appearance is quite similar to
that of the background. Nevertheless, a detailed detection of
the target may be obtained by correcting the color estimate
using the shape module.

In order to emphasize the importance of simultaneously
adapting color and contour features using particle filters, in
the rest of the experiments, the performance of the discussed
algorithm will be compared to a tracking technique that uses
multiple hypotheses to predict the contour of the object and
accommodates the color with a predictive filter based on a
simple smooth dynamic model such as

gt ¼ 1� �ð Þgt�2 þ �gt�1; ð13Þ

where g is the parameterization of the color distribution
(with the same structure as in (10)) and � is a mixing factor.
Actually, this approach is quite similar to the ICondensation
technique described in [10].

Experiment 3 corresponds to the tracking of the nonrigid
boundary of a bending book in a video sequence, where the
lighting conditions smoothly change from natural lighting to
yellow lighting. Fig. 11 shows some frames of the tracking
results. Note that, despite the smooth change of illuminant,
the smooth dynamic model is unable to track the contour of
the object. The reason for the failure is that the smooth
dynamic model cannot cope with the effect of self-shadowing
produced during the movement of the book.

7.2 Tracking under Abrupt Lighting Changes

In Experiment 4, the color distribution of the bending book
sequence previously presented is manually modified in order
to simulate an abrupt change of illumination. The top row in
Fig. 12 shows three consecutive frames presented to the
algorithm. Note that the abrupt illumination changes
occurred between frames t� 1 and t. Results prove the
inability of the smooth color model to predict such a change
since the a posteriori probability map of the foreground
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Fig. 9. Experiment 1: Tracking of a synthetic ellipse that randomly
changes its color, position, and shape. Top: Path followed by the
color distribution of the ellipse. Bottom: Some sequence frames: original
frames (first row), tracking results (second row), and a posteriori PDF
maps of the color module (third row). The proposed method of
integrating position prediction, optimal color space selection, color
distribution estimate, and contour estimate is able to segment the
tracked ellipse even when the background contains highly disturbing
elements. Observe in the frame before the last how the tracked ellipse is
surrounded by another ellipse with a similar appearance. In spite of that,
the tracker does not lose the target.

Fig. 10. Experiment 2: Tracking a camouflaging octopus. Top row:

Original sequence. Middle row: Results using the proposed method.

Bottom row: A posteriori foreground PDF maps obtained by the color

module ðPF 3Þ.
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region depicted in Fig. 12 (bottom left) does not discriminate

between the foreground and background. On the other hand,

a good result is obtained with the DBFI approach proposed is

this paper (Fig. 12, bottom center and bottom right).
In the final experiment (Experiment 5), we have tested

the algorithm with the sequence of a moving leaf used as an

example in previous sections. Although this is a challenging

sequence because it is highly cluttered, the illumination

changes abruptly and the target moves unpredictably, we

can perform tracking using the proposed method. Fig. 13

shows some frames of the tracking results. Observe the

abrupt change of illumination between the first and second
frames, which leads to failure when we try to track using a
contour particle filter with a smooth color prediction.

8 CONCLUSIONS AND FUTURE WORK

Enhancing target representation by using multiple cues has
been a common strategy for improving the performance of
tracking techniques. However, most of these algorithms are
based on heuristics and ad hoc rules that only work for
specific applications.

In this paper, we describe a general probabilistic frame-
work allowing to integrate any number of object features. The
state of the features may be estimated by any algorithm based
on a “hypotheses generation-hypotheses correction” strategy
(for instance particle filters or a Kalman filter). The key point
of the approach is that it permits us to consider cue
dependence and obtain precise estimates for each of the cues.

The proposed framework has been theoretically proven
and validated in a tracking example with synthetic data,
which has been used as a benchmark to compare the
performance of our method with other well-known algo-
rithms from the field. The best results in terms of accuracy
and reliability are obtained by the DBFI method presented
here. Furthermore, in the specific case where the integrated
features are estimated by particle filters, our method does not
suffer from the curse of dimensionality problem, which usually
affects particle filter formulations, producing exponential
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Fig. 11. Experiment 3: Tracking results of a bending book in a
sequence with a smooth change of illumination. Top row: Results
using only a contour particle filter and assuming a smooth change of
color. The method fails. Middle row: Results using the proposed
method. Bottom row: A posteriori object probability maps of the color
module ðPF 3Þ.

Fig. 12. Experiment 4: Tracking results of a nonrigid object (a

bending book) in a sequence with abrupt changes of illumination.

Top row: It�2, It�1, and It are three consecutive images. Note the abrupt

change in illuminant between frames t� 1 and t. Bottom left:

pðOjItÞ map obtained assuming a smooth dynamic model of the color

feature. There is no good discrimination between the foreground and

background. Bottom center: pðOjItÞ map provided by the proposed

framework. The foreground and background discrimination is clearly

enhanced with respect to the smooth dynamic model case. Bottom right:

Tracking results obtained after using pðOjItÞ to eliminate false edges

from the image and fitting a deformable contour to the object boundary.

Fig. 13. Experiment 5: Tracking results of a leaf. Tracking results of a
cluttered sequence, where the target moves following unexpected
paths. Furthermore, the sequence suffers from an abrupt change of
illumination (observe it between frame #95 and frame #96). Top row:
Results using a contour-based particle filter and assuming a smooth
change of the color feature. The method fails. Middle row: Successful
results obtained using DBFI. Bottom row: A posteriori PDF maps of the
color module ðPF 3Þ. Observe how the tracked leaf is clearly detected
and the unexpected illumination change does not destabilize the tracker.
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increases in computation time when the dimensionality of
the state space increases.

Furthermore, this framework has allowed us to design a
tracking algorithm that simultaneously accommodates the
color space where the image points are represented: the
color distributions of the object and background and the
contour of the object. The effectiveness of the method has
been proven by successfully tracking objects from synthetic
and real sequences presenting high content of clutter,
nonrigid object boundaries, unexpected target movements,
and abrupt changes of illumination.

In the proposed approach, we only have considered the
integration of multiple cues for single object tracking. In
future research, we plan to extend this formulation to
multiple object and multiple cues integration. Further
integration of other features into the framework, such as
texture, contrast, depth, and key point features, is also part of
future work. It is also worth mentioning that the sequential
ordering of the features needs to be selected in an “a priori”
phase where the algorithm is designed. We are currently
exploring ways to incorporate automatic methods for select-
ing the most appropriate features and its ordering in function
of the scenarios where the tracking is going to be applied. We
also believe that it is interesting to extend the algorithm in
order to deal with reciprocal dependencies between cues and
avoid the assumption of sequential dependency. For this
purpose, the estimation at each frame could be computed
iteratively and the posterior of all of the cues might be looped
back into the system for a second refinement.
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