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Abstract

In this paper we propose a new technique to perform figure-ground segmentation
in image sequences of moving objects under varying illumination conditions. Unlike
most of the algorithms that adapt color, there is not the assumption of smooth
change of the viewing conditions. To cope with this, we propose the use of a new
colorspace that maximizes the foreground/background class separability based on
the ‘Linear Discriminant Analysis’ method. Moreover, we introduce a technique that
formulates multiple hypotheses about the next state of the color distribution (some
of these hypotheses take into account small and gradual changes in the color model
and others consider more abrupt and unexpected variations) and the hypothesis
that generates the best object segmentation is used to remove noisy edges from the
image. This simplifies considerably the final step of fitting a deformable contour
to the object boundary, thus allowing a standard snake formulation to successfully
track nonrigid contours. In the same manner, the contour estimate is used to correct
the color model. The integration of color and shape is done in a stage called ‘sam-
ple concentration’, introduced as a final step to the well-known CONDENSATION
algorithm.

Key words: tracking, deformable contours, color adaption, particle filters.

Preprint submitted to Elsevier Science 3 February 2006



Fig. 1. Abrupt change of illumination. Left: Two consecutive frames from a sequence.
Light conditions have changed abruptly (from natural to red illuminant). Center and
right: Corresponding Color distributions of the foreground (the can). Φ1 and Φ2 are
the coordinates in a 2D colorspace.

1 Introduction

Color and deformable contours have been extensively used in computer vi-
sion applications, such as object detection and tracking tasks [1,2]. Usually,
these methods are based on a first step where the object is roughly (but ro-
bustly) located by the color module. This simplifies the subsequent step of
accurately fitting the contour model to the rigidly or non-rigidly deformed
object boundary. In environments with controlled lighting conditions and un-
cluttered background, color can be considered a reliable and invariant cue,
which can be robustly used for tracking. However, when dealing with real
scenes with changing illumination and confusing backgrounds, the apparent
color of the objects might considerably vary over time, and in these circum-
stances, an important challenge for any figure-ground segmentation system, is
the ability to accommodate color and appearance changes (Fig. 1).

In the literature, the techniques that cope with change in color appearance can
be divided in two groups. On the one side, there is a group of approaches that
search for color constancy (e.g. [3]); but in practice, these methods work mostly
in artificial and highly constrained environments. On the other hand, there
are the techniques that generate a stochastic model of the color distribution,
and adapt this model over time. In this sense, in [4], color is represented
by a histogram that is adapted online, as the weighted function of previous
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histograms and a predicted histogram. Yang and Lu [5], parameterize object
color by a unique gaussian, the mean and covariance of which are estimated
using a linear combination of the parameters in previous gaussians. Raja and
McKenna [6] approximate color with a mixture of gaussians, and dynamically
update it using a weighted sum of previous estimates with estimates based on
new data.

The drawback in all these approaches is that they assume that color varies
slowly and that it can be predicted by a dynamic model based in only one
hypothesis. However, this assumption does not suffice to cope with general
scenes, where the dynamics of the color distribution might follow an unknown
or unpredictable path.

The main contributions of this paper are summarized below. They are the
building blocks of a system which does not impose constraints on the illumi-
nant color of the scene:

• Fisher colorspace: Instead of using the classical RGB, rgb, XY Z or HSV
colorspaces, we propose the use of a colorspace efficient for the discrimina-
tion between foreground and background classes. This colorspace will be the
2D projection of the R, G and B components on the plane obtained from a
nonparametric Linear Discriminant Analysis (LDA) [7].

• Multihypotheses framework: The use of a particle filter formulation to
predict the color distribution in subsequent iterations, offers robustness to
abrupt and unexpected changes in the color appearance of the object. In
previous work [8] we have suggested a similar multihypotheses framework
to track objects in which color could be approximated by a unimodal dis-
tribution, represented by a histogram. In the present work, we deal with
multicolored objects, approximated by a mixture of gaussians (MoG). Note
the difference between our work and all previous tracking approaches using
a particle filter formulation (e.g. [2,9,10]). While in these approaches the
multihypotheses are formulated about the object position, in our method
we formulate the multihypotheses about the color distribution of the object.

• Integration of color and deformable contours in a particle filter
framework: The color estimation is used to generate a rough estimation
about the object position and remove noisy edges from the image. This
simplifies the stage of fitting a deformable contour to the object boundary,
and even with a standard snake formulation [11], nonrigid objects can be
accurately tracked in cluttered backgrounds with abrupt changes of illumi-
nation. The fusion of the multihypotheses color model and the deformable
contour is done in a final stage that we have introduced to the well-known
CONDENSATION algorithm [2].

The basic steps of the algorithm are depicted in the flow diagram of Fig. 2, and
in the following sections, a detailed description of each one of the modules will
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Fig. 2. Flow diagram of the proposed algorithm. It is the input RGB image at time
t. IFISHER

t represents the input image in the Fisher colorspace. S̃t and St are the
set of color distributions of the foreground and background, before and after the
‘concentration’ stage, respectively. Ct is the resulting contour at time t.

be given. Fisher colorspace is described in Section 2. In Section 3 the object
color model and initialization step are presented. The dynamic model for gen-
erating multiple hypotheses of the (object and background) color distributions
is depicted in Section 4. Section 5 deals with the global and local deformable
model fitting process. In Section 6, the complete tracking algorithm and model
adaptation is explained in detail, and results and conclusions are presented in
Sections 7 and 8, respectively.
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2 Fisher Colorspace

The selection of the colorspace is an important initial issue for any color-
based figure-ground segmentation system. The typical selection criterion is
based on the invariance of the color representation to illumination changes,
and according to this idea, color is usually represented by two components
of the rgb, HSV or xyz 1 colorspaces. However, these representations are not
robust enough to cope with abrupt illumination changes. In this paper we
propose a different criterion and select a 2D colorspace that maximizes the
separability of the object and background classes.

Let x be a 3D vector with the color value of image pixels in RGB space, which
must be classified as foreground (O) or background (B). When we are dealing
with multicolored objects, the parameterization of color distributions in 3D
colorspace becomes very complex. To simplify, we reduce the dimensionality
to 2D by projecting the data on a plane Φ = [φ1, φ2] ∈ M3×2, that is, y = Φx,
where y are the linearly transformed 2D coordinates used for classification.
The most popular way to find the best linear features is the parametric version
of the Linear Discriminant Analysis method [12], where training data is used
to construct the within-class Sw and between-class Sb scatter matrices, in the
Nc-class problem defined as,

Sw =
Nc∑
i=1

P (Ci) E
[
(x|Ci − µi) (x|Ci − µi)

T
]

=
Nc∑
i=1

P (Ci) Si

Sb =
Nc∑
i=1

P (Ci) E
[
(x − µo) (x − µo)

T
] (1)

where P (Ci) is the prior of the ith class, µi and Si are its expected value vector
and covariance matrix, µo is the overall mean and x|Ci

indicates that sample
x belongs to Ci class.

A typical criterion for class separability is formulated by the maximization

of J = trace
((

ΦT SwΦ
)−1 (

ΦT SbΦ
))

, and searches for the separation of the

class means in the transformed Y -space (high Sb), while at the same time
the classes remain compact (small Sw). The classic LDA method maximizes J
by constructing the columns of Φ with the eigenvectors of S−1

w Sb having the
highest eigenvalues.

One of the limitations associated with this approach is that it produces at
most Nc − 1 feature projections, i.e, since Sb is computed from only Nc class
means, S−1

w Sb will have at most Nc−1 non-zero eigenvalues, and the maximum

1 When the colorspace is represented by lowercase letters, the sum of the 3 color
components has been normalized to one.
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 3. Fisher Colorspace. (a) Training image. (b) Foreground. (c) Background. (d)
Representation of image points in the RGB colorspace. (e) Hand-made classification
of image points in foreground (O) and background (B) classes. (f) Normalization of
colorpoints, equivalent to a projection on the plane R + G + B = 1. The projected
classes are not properly separated. (g) The projection of colorpoints on the Fisher
plane gives a better discrimination between the O and B classes.

dimension of the projected Y -space will be Nc − 1. This can be solved by the
nonparametric LDA [7], that computes Sb using local information and the
k Nearest Neighbors (KNN) rule. In the 2-class problem discussed here, this
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matrix (denoted Σb) is defined as,

Σb =
1
N

Nf∑
i=1

wi

(
xi|O − Mk

b (xi|O)
) (

xi|O − Mk
b (xi|O)

)T

+
1
N

Nb∑
i=1

wi

(
xi|B − Mk

f (xi|B)
) (

xi|B − Mk
f (xi|B)

)T

(2)

where Nf and Nb are the number of samples of O and B, N = Nf + Nb,
Mk

j (xi) is the mean of the k nearest neighbors in class Cj to a point xi, and
wi is a weighting function for deemphasizing samples far from the classification
boundary (see [7]).

Given two sets
{
x1|O, · · · ,xNf |O

}
,
{
x1|B, · · · ,xNb|B

}
of RGB pixel values used

as training data, the optimum linear mapping is obtained with the following
steps:

• Calculate Sw with Eq. 1 and whiten the data with respect to it. That is,
transform x to z = Λ−1/2ΩTx, where Λ and Ω are the eigenvalue and eigen-
vector matrices of Sw.

• Select k and (in the Z-space) compute Σb using Eq. 2.
• Select the two eigenvectors Ψ1, Ψ2 of Σb with the two largest eigenvalues.
• The optimum linear mapping from the original RGB space to the discrim-

inant subspace (we call it Fisher colorspace) is given by y = ΨT Λ−1/2ΩTx.

In Fig. 3 we show the concept of Fisher colorspace. In the Results Section
it will be shown that we obtain better rates of class classification using the
Fisher colorspace than using other 2D colorspaces.

For the rest of the paper we will represent the pixel values in the Fisher
colorspace with the 2D vector y.

3 Color Model

After having selected the colorspace, the next step is to choose a model
for representing the color distribution of the object and background. For a
monochrome object, color histograms have been demonstrated to be an ef-
fective technique (e.g.[8]). However, when the object to be modelled contains
regions with different colors, the number of pixels representing each color can
be relatively low and a histogram representation may not suffice. In this case,
a better approach is to use the MoG model, that expresses the conditional
probability for a pixel y belonging to a multi-colored object O as a sum of Mo

gaussian components: p (y|O) =
∑Mo

j=1p (y|j) P (j). Similarly, the background
color will be represented by a mixture of Mb gaussians.
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Fig. 4. Gaussian mixture components of O (the can) and B. Left image: Solid dots
and lines are O data points (in Fisher colorspace) and the variances of the gaussian
components, respectively. Hollow dots and dashed lines are B data and gaussians.
Lower right image: p (O|y), where brighter points correspond to more likely pixels.

Given the foreground (O) and background (B) classes, the a posteriori prob-
ability that a pixel y belongs to object O is computed using the Bayes rule:

p (O|y) =
p (y|O) P (O)

p (y|O) P (O) + p (y|B) P (B)
(3)

where P (O), P (B) represent the a priori probabilities of O and B, respec-
tively. These prior values are approximated to the expected area ratios of the
foreground and background classes in the image (see Fig. 4).

As in the problem of selecting the number of bins in histogram models, using
MoG conceals the challenge of choosing the number of gaussian components
that better adjust the data. We initialize this, with the modified EM algo-
rithm proposed in [13], that is based on a Minimum Message Length criterion
and iteratively fits and annihilates an initially large number of components
(introduced by the user).

The initial configurations of the MoG for O and B, after learning, are param-
eterized by:

Gε = [pε, µε, λε, θε] (4)

where ε = {O,B}, pε contains the priors for each gaussian component, µε

the centroids, λε the eigenvalues of the principal directions and θε the angles
between the principal directions with the horizontal. G = {GO,GB} will be the
state vector representing the color model.
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4 Dynamic Color Model

Let Yε,t−1 = [y1,t−1, . . .yNε,t−1]
T , be the vectors containing the set of points

(in Fisher colorspace coordinates) belonging to the classes O and B, at time
t − 1. The third stage of the tracking algorithm (see Section 6), consists of
propagating the components Gε,t−1 of the state vector to G̃ε,t, given a specific
dynamical model and the image at time t, denoted as Zt. Instead of applying
the dynamic model directly to Gε,t−1, we apply it to the distribution Yε,t−1,
to obtain the estimation Ỹε,t, that will be used later to reestimate G̃ε,t. With
this aim we define the following affine random dynamic model:

Ỹε,t = AεYε,t−1 + vε

In the case of representing color distributions in a 2-dimensional colorspace,
matrix Aε and translation vector vε are written as:

Aε =

⎡
⎢⎣ 1 + aε,11 aε,12

aε,21 1 + aε,22

⎤
⎥⎦ vε =

⎡
⎢⎣ vε,1

vε,2

⎤
⎥⎦

Variables aε,ij and vε,i are approximated by normal random distributions,

aε,ij ∼ N
(
0, σaε,ij

)
, vε,i ∼ N

(
µvε,i

, σvε,i

)
. The parameters σaε,ij

and σvε,i
are

learned a priori by a least-squares procedure, from a training hand segmented
sequence of the object when still, under an illumination change. It is inter-
esting to point out that even if the testing sequences were not available, the
variances σaε,ij

and σvε,i
could be empirically set to values sufficiently high in

order to cope with abrupt changes of illumination. In that case, however, the
number of particles should be increased, since they should sample a wider area
of the state space. With respect to the rest of parameters, µvε,i

accounts for
the expected displacement between the class distributions in t − 1 and t, and
is approximated by the translation vector between the centroids of the sets
Yε,t−1 and Yt. Note that the vector Yt = [YO,t,YB,t]

T representing the color
distribution of the whole image Zt is known, but the subsets YO,t and YB,t are
unknown.

Using the EM algorithm initialized on Gε,t−1, a new mixture of Gaussians
G̃ε,t is fitted to each predicted distribution Ỹε,t, and used to compute the a
posteriori probability maps for the foreground class, following Eq. 3. In Fig. 5
we show several hypotheses (with the corresponding p (O|y) maps) used to
estimate the abrupt change of illumination that exists in the pair of images
of Fig. 5. Observe that some of the hypotheses are able to provide a ‘good’
foreground/background discrimination.
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Fig. 5. Several hypotheses and their respective p (O|y) map, corresponding to the
abrupt illumination transition presented in Fig. 1.

5 Global and Local Deformable Model Fitting

As color segmentation usually only gives a rough estimation about the object
location, we use a deformable model [10,14] to fit its boundary and obtain
more precise information about its position. This process is highly simplified
by using the data that is estimated by the color model (Section 4) in order
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to preprocess the contour image and to remove those noisy edges that might
disturb the deformable model fitting process. This simplification allows us to
obtain good tracking results in rigid and nonrigid objects, even when using
the simple well-known snake algorithm [11]. During the boundary adjustment
process, first a global fit of an affine contour is performed, which deals with
object translation and orientation (rigid motion), followed by local deforma-
tions that apply to nonrigid motions. The following are some details of these
processes:

Let the contour of the object be parameterized by a curve r(s) = [u(s), v(s)],
s ∈ [0, 1], that moves through the image. In the traditional snake formulation
[11], the problem of snake fitting can be viewed as a force balance equation:

Fint (r (s)) + Fext (r (s)) = 0 (5)

where Fint (r (s)) = α∂2r(s)
∂s2 + β ∂4r(s)

∂s4 are the internal forces that control the
bending and stretching of the snake (α and β are the elasticity and rigid-
ity parameters, respectively). Fext (r (s)) are the external forces that pull the
curve towards the edge image features. In the literature, there exist several
definitions for this external function. In particular, we use the Gradient Vector
Flow (GVM) external force proposed in [15], because it has a larger capture
range and better convergence performance in boundary concavities than other
methods.

Eq. 5 is solved by making the snake a function of both space and time, i.e.,
r(s, t) (we will write rt) and iterating over the following expression:

rt − rt−1

�t
= α

∂2rt−1

∂s2
+ β

∂4rt−1

∂s4
+ Fext (rt−1)

When the solution stabilizes (rt−1 = rt), Eq. 5 is satisfied.

For the numerical implementation we approximate the derivatives with finite
differences, and discretize the curve r(s, t) with NP points, so that the previous
gradient descent method can be rewritten as:

Rt = (I −�tQ)−1 (Rt−1 + �tFext (Rt−1)) (6)

where R = [(u1, v1, 1) , . . . (uNP
, vNP

, 1)]T contains the homogeneous coordi-
nates of the NP discretized points of the snake, Q is a NP ×NP pentadiagonal
matrix including the α and β parameters, and I is the NP−identity matrix.

Iterating over Eq. 6 the snake is locally fitted to the image edges, governed
only by its internal and external forces.

However, previous to local fitting stage we perform a global deformation in
order to find the suitable translation and orientation of the snake. For this
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fitting, the following additional constraint of affine deformation is introduced
to Eq. 6:

Rt = Rt−1HA = Rt−1

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 v1

a21 a22 v2

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(7)

Combining Equations 6 and 7, we obtain the following iterative procedure for
the affine snake deformation:

(1) HA =
(
J TJ

)−1 J T (Rt−1 + Fext (Rt−1))
where J = Rt−1 −�tSRt−1

(2) Normalize HA using the component HA (3, 3)
Set HA (3, 1) = HA (3, 2) = 0

(3) Rt = Rt−1HA

Steps 1−3 are iterated until the convergence of Rt and Rt−1. In Fig.6 we show
the results of the global and local fitting in a nonrigid movement.

6 Tracking Algorithm

In this Section, we will use the tools described previously to explain in detail
the whole method for tracking rigid and nonrigid objects in a cluttered envi-
ronment and under changing illumination. The basic steps of the tracking al-
gorithm follow the particle filter procedure, but we introduce a modification to
the classic CONDENSATION algorithm (analogous to the ICONDENSATION
technique [2]), and in order to ‘direct’ the search for the next iteration we add
a final stage that concentrates the future hypotheses on those areas of the
state-space containing more information about p (O|y) (see Fig. 7). Moreover,
in this final stage we fuse object color and shape information to obtain precise
results about object pose. Next, we present the steps of our algorithm:

(1) Probability Density Function of the color point set: At time t,

a set of N samples S(n)
t−1 (n = 1, . . . , N) with the same structure as G

(Eq. 4), is available from previous iteration. This set, parameterizes N

color distributions. Each sample has an associated weight π
(n)
t−1 and a

classification Y (n)
t−1 = [Y(n)

O,t−1,Y(n)
B,t−1]

T of the image colorpoints in the fore-
ground and background sets. The whole set represents an approximation
to p (Gt−1|Zt−1) where Zt−1 = {Z0, . . . ,Zt−1} is the history of the images.

The algorithm aims to construct a new sample set {S(n)
t , π

(n)
t } to estimate

p (Gt|Zt) .
(2) Sampling from p (Gt−1|Zt−1): A sampling with replacement is per-

formed N times on the set {S(n)
t−1}, where each element has probability
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Global and local fitting procedures: (a) Original image and contour from
previous iteration. (b) Edge features image. The process of contour fitting in such an
image is quite difficult because of noisy edges. (c) Foreground a posteriori probability
map obtained using the color module. (d) Refined edge image (foreground detail). (e)
Contour fitted after global deformations. (f) Contour fitted after local deformations.

π
(n)
t−1 of being chosen. This will give us a set {S ′(n)

t−1}.
(3) Probabilistic propagation of the samples: Each sample S ′(n)

t−1 is prop-

agated to S̃(n)
t , using the dynamic model explained in Section 4. Note that,

as it was pointed out, the dynamic model is not directly applied to the
MoG’s parameters of the color distributions, but rather, to the associated
color distribution points. Subsequently, the predicted color distribution
points are used to compute the corresponding MoG’s parameters.

(4) Measure and Weight: Each element S̃(n)
t has to be weighted according

to some measured features. Based on the propagated MoG samples S̃(n)
t

we compute p (O|y) for the whole image using the Bayes rule (Eq. 3).
With this probability map, we assign the following weight to each sample:

π
(n)
t =

∑
y∈W p (O|y)

Nw

−
∑

y/∈W p (O|y)

Nw

where W is the interest region around the previous object position (where
we predict the object will be), and Nw, Nw are the number of image pixels
in and out of this interest region, respectively.

(5) Sample Concentration: In the last stage of our algorithm, we concen-
trate the samples around the local maxima, so that in the subsequent
iteration the hypotheses are formulated around these more likely regions
of the state space. In our case, this is absolutely necessary because the
state vector G has high dimensionality, and if we let the samples move
freely, uniquely governed by the dynamic model, the number of hypothe-

13



Fig. 7. Left: Steps of the classic CONDENSATION algorithm (Figure adapted
from [10]). Right: In our implementation we have included a final stage called ‘sam-
ple concetration’.

ses needed to find the samples representing a correct color configuration,
is extremely high.

The concentration is performed by taking the sample with maximum
weight, π∗

t = max{π(1)
t , · · · , π

(n)
t } and based on the a posteriori map gen-

erated by this sample, the object of interest is accurately segmented from
the image using the deformable model fitting procedure explained in Sec-
tion 5. The various substeps of this stage, can be summarized as follows:
(a) Using morphologic operations on the probability map image, a coarse

approximation of object shape is obtained that allows us to eliminate
noisy edges from the original image (Fig. 6b,c,d).

(b) The contour of the object in the previous iteration, is used as ini-
tialization of an affine snake, that is adjusted (only by affine defor-
mations) to the image of refined edges (Fig. 6e) in order to solve the
global deformation. Next, to cope with nonrigid deformations the
process is repeated with a non-affine snake (Fig. 6f).

(c) Once the boundary of the object has been accurately detected, the
color estimates are refined. Inner image pixels are separated from

outer pixels and the vector Y∗
t =

[
Y∗

O,t,Y∗
B,t

]T
is generated. Mixtures

of gaussians are fitted to these color distributions (using the EM

algorithm), giving a state vector S∗
t , around which samples {S̃(n)

t }
are ‘concentrated’ with the equation S

(n)
t = (1− a)S̃

(n)
t + aS∗

t , where
the parameter a governs the level of concentration. Similarly, weights
{π̃(n)

t } and distributions {Ỹ(n)
t } associated to these samples, are con-

centrated around π∗
t and Y∗

t .
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Fig. 8. Classification results of image pixels into classes O and B using different
colorspaces. The horizonal axis represents the image index for each one of the exper-
iments, and the vertical axis represents the percentage of pixels correctly classified.
Note that the results for the HSV , rgb and xyz colorspaces, correspond to the best
result obtained when we pick two of the three components of these colorspaces.

7 Experimental Results

We initially compare the class discrimination power of the Fisher colorspace
to that of other colorspaces (two components of the rgb, HSV or xyz). To
quantify the notion of class separability, a constant number of Gaussians are
fitted to foreground and background distributions of hand segmented images,
for each one of the colorspaces. Next, according to Eq. 3 we segment the same
images, assigning each pixel y to the class with maximal p (O|y). The hand
segmented image is used as ground truth to evaluate the rate of correctly clas-
sified points. We have performed this test on three different video sequences,
undergoing a change of illumination. In Fig. 8 we plot the results of these
experiments, where the vertical axis represents the percentage of pixels well
classified. Taking into account the mean of all the sequences, the best results
are obtained with the Fisher colorspace with a 68.1% of pixels correctly clas-
sified, followed by the HV components of HSV colorspace with a 67.1% rate.
Although the difference is not significant, the main advantage of the Fisher
colorspace is that it directly provides the best linear transformation of the
data. If we used some other color space (rgb, HSV or xyz), we would not
know a priori which combination of 2D coordinates are the best for a specific
problem of fore/background segmentation. In table 1 we show the results of
the complete experiment.
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Colorspace
Seq.1 Seq.2 Seq.3 Mean

µ σ µ σ µ σ µ σ

Fisher 0.770 0.033 0.630 0.035 0.602 0.016 0.681 0.082

HV 0.748 0.025 0.609 0.035 0.624 0.016 0.671 0.071

HS 0.706 0.033 0.587 0.017 0.554 0.012 0.628 0.072

rg 0.709 0.031 0.589 0.018 0.545 0.014 0.627 0.076

xy 0.701 0.030 0.587 0.019 0.557 0.013 0.627 0.069

rb 0.705 0.033 0.589 0.017 0.546 0.009 0.626 0.074

gb 0.707 0.032 0.588 0.019 0.543 0.009 0.626 0.076

yz 0.694 0.032 0.583 0.020 0.557 0.013 0.622 0.067

xz 0.694 0.029 0.582 0.020 0.557 0.013 0.622 0.060

sv 0.628 0.045 0.571 0.022 0.561 0.013 0.592 0.045

Table 1
Details of the results presented in Fig. 8. Each column represents the average over
all images in a single experiment, and the last column is the mean of the three
experiments. Every value, is the percentage of pixels correctly classified (mean and
variance), using a particular colorspace.

Next, two different experimental results are presented in order to illustrate
the robustness of our system to several changing conditions of the environ-
ment. Since the algorithm has been implemented in an interpretative language
(MATLAB), we cannot discuss time performance issues, instead we focus on
the effectiveness of the method. Time performance depends linearly on the
number of hypotheses used to estimate the color distributions.

In the first experiment, we track the boundary of a bending book (nonrigid
motion) in a video sequence where the lighting conditions change smoothly
from natural lighting to yellow lighting. In this case, as the displacement of
the color distribution in color space was relatively small, we have used ‘only’
5 hypotheses. Fig. 9 shows some frames of the sequence with the obtained
results, the corresponding edge images and the a posteriori probability maps
of the foreground (the book). The sequence of edge images contains a lot of
noisy boundaries that pose difficulties for the tracking process and for the
adjustment of a deformable model to the edges of the object. However, the
integration with color information gives a first estimate of the object position,
that allows us to eliminate many false edges and reduce the complexity of the
deformable model fitting procedure.

Whereas in the first experiment we demonstrate the need for integration of
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Fig. 9. Tracking results of a non-rigid object in a sequence with smooth lighting
changes. First row: Tracking results. The tracked contour is superimposed on the
original images. Second row: Edge map. The task of fitting a deformable model
to the contour of the object is extremely difficult because of the presence of noisy
edges. Third row: Foreground a posteriori map obtained using the proposed multi-
hypotheses color model. This map provides a rough estimate of the object position
and remove most of the noisy edges, so that the deformable contour fitting procedure
is highly simplified.

the different vision modules, in the second experiment we demonstrate the
need for a multihypotheses model to face abrupt changes in the illuminant.
For this experiment, we have computed the prediction of the color distribu-
tion using 20 hypotheses. In Fig. 10 we compare the results obtained using
a smooth color dynamic model and our multihypotheses model, for a rigid
object moving in an environment in which the lighting changes abruptly. The
MoG for frame t predicted by the smooth model, is based on a weighting
function Gt = (1 − a)Gt−2 + aGt−1, where G is the parameterization of the
color distribution and a is the mixing factor. Results prove the inability of the
smooth color model to predict the change (the a posteriori probability map
of the foreground region does not discriminate between fore and background,
Fig. 10e) whereas a good result is obtained with the method proposed in the
paper (where simple morphologic operations over the a posteriori probabil-
ity map, allow obtain a good estimation of the object position, Fig. 10f). In
Fig. 11 we show similar results for the contour tracking of a nonrigid object
under an abrupt change of illumination.

8 Conclusions

Most of the methods that adapt color are based on the assumption of smooth
change on the color model, so that the predicted color of the target is computed
based on a weighting function of previous color distributions. In this paper we
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 10. Performance comparison of a smooth prediction color dynamic model and
the multihypotheses one, for an abrupt change in illumination and rigid object
motion. (a),(b),(c) Frames t − 2, t − 1 and t are three consecutive images of the
sequence. Note the abrupt change in illuminant between frames t− 1 and t. (d) El-
lipses correspond to the foreground and background MoG predicted with a smooth
color dynamic model. The real distributions of points in colorspace are also shown.
(e) p (O|y) map obtained with the smooth model. There is no good discrimination
between fore and background. (f) MoG of the best sample using the multihypothe-
ses color dynamic model. (g) p (O|y) map obtained with this color model. There
is good fore/background discrimination. (h) Tracking results obtained after using
p (O|y) to eliminate false edges from image and fitting a deformable contour.

have presented a method where this constraint is no longer needed, and the
dynamic model is based on the formulation of multiple hypotheses about the
next state of the target color distribution. The best of these hypotheses is used
to obtain a rough estimate of the object position, and eliminate false and noisy
edges, so that the task of fitting a deformable contour to the object bound-
ary is considerably simplified. Reciprocally, this boundary is used to refine
the color estimation. Moreover, we propose the use of the Fisher colorspace,
that has a better object/background discrimination performance than typical
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 11. Performance comparison of a smooth prediction color dynamic model and
the multihypotheses one, for an abrupt change in illumination and nonrigid object
motion. See Fig. 10 for interpretation of results.

colorspaces. The algorithm has been used to obtain a precise figure-ground
segmentation in rigid and nonrigid objects, moving in an environment with
abrupt light changes (where smooth dynamic color models fail). In future work
we plan to integrate the parameters of the Fisher plane into the particle filter
formulation, and also adapt the Fisher plane to abrupt changes of illumina-
tion. Furthermore, we plan to continue this work by integrating other cues
such as texture and optical flow techniques to improve the robustness of the
method and apply our multihypotheses framework into tracking of objects in
3D.
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