
A method to generate stable, collision free configurations for tensegrity

based robots
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Abstract— Tensegrity structures appeared in the science
community about half a century ago, but they have already
been applied to several heterogeneous research fields, such as
architecture, civil engineering, space and even biology. Such
structures keep a stable volume in space due to an intricate
balance of forces between a disjoint set of rigid elements (bars)
and a continuous set of tensile elements (cables).

The use of tensegrity structures in robotics is still new and
there exist only a handful of works about this subject. Some
of their main features such as light weight, flexibility, energetic
efficiency and redundancy, make them interesting candidates
for both mobile robots and manipulators. In this paper, a new
method to detect and avoid both internal collisions between the
structure members and external collisions with the environment
is presented. In this way, we are providing a fundamental tool
to develop more complete form-finding procedures and path-
planning strategies for tensegrity structures.

I. INTRODUCTION

Robotics is a wide area of research in which very different

kinds of robots have been proposed, from classical wheeled

differential robots to modern parallel manipulators. Recently,

a special class of pre-stressed structure called tensegrity has

been introduced into the robotics domain ([1]) as a possible

kind of new architecture in which to base a whole new type

of robots.

The word tensegrity is an abbreviation for tensile integrity

which was coined by Buckminister Fuller in the early 60’s

[2]. Tensegrities were created by people coming from the

art community [3], being rapidly applied to other disciplines

such as in the architectural context, for structures such as

geodesic domes [4], or later in space engineering to develop

deployable antennas [5] and masts [6].

Perhaps the most accepted definition for a tensegrity

structure was given by Pugh [7]: A tensegrity system is

established when a set of discontinuous compressive compo-

nents interacts with a set of continuous tensile components to

define a stable volume in space. The original definition only

take into account two kind of elements: struts (compressive)

and cables (tensile), with struts completely isolated from

each other.

Afterwards, some authors have extended the original defi-

nition to include a third kind of element, the bar, which can

withstand both tension and compression ([8]), and also to
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allow up to k rigid bodies to be attached to a single node,

which is known as class k tensegrity ([9]).

From its origin, tensegrity structures have been mainly

used for static applications where the length of all members

is kept constant and actuation is only performed to com-

pensate for external perturbations ([10], [11]). In the last

decades, the tensegrity framework has been also used to

build deployable structures ([6], [5]), although the tensegrity

paradigm has not been fully exploited yet.

More recently, there has been an increasing interest on

tensegrity structures from the robotics community which has

lead to the first results in tensegrity based robots. [12] found

the minimum time or minimum energy trajectory along a

predefined path using several basic tensegrity structures put

together to build a redundant manipulator.

[13], [1] developed locomotion algorithms for tensegrity

based robots using genetic algorithms, and [14] proposed a

self-propelled tensegrity worm which was actuated by the

propagation of a longitudinal wave through the structure.

However, only [1] actually built a working prototype.

Due to the increasingly complex tasks required for tenseg-

rity structures, the need for a general motion planning

algorithm arise. The first steps towards this goal were carried

out by [15] and [16]. They defined the desired trajectory

for the structures’ center of mass ([15]) or for some of the

structures’ nodes ([16]) in the work space. Then, they divided

the trajectory in a number of small segments, and for each

of them, a stable configuration of the structure was found

using optimization techniques.

Despite all these efforts, only [1] take collisions into

account when simulating the behavior of each of the evolved

locomotion algorithm in order to compute its fitness. The

collision avoidance problem is important from two different

points of view; first to avoid collision between elements

of the structure (self-collision), and second, to be able to

adapt the structure’s shape to avoid contact with any external

object.

We introduce in this paper a method to simultaneously de-

tect and avoid both, self-collisions of the structure members,

and collisions with environment obstacles (both modeled

as simple geometrical shapes), while keeping the structure

stable. The method is based on adding constraints to the

form-finding optimization process which take into account

all collision related issues.

This paper is organized as follows. First, the necessary

theoretical concepts about tensegrity structures and standard

path-planning techniques are presented in section II. Then,

the proposed method to detect and avoid collisions while
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finding an stable solution for the structure is explained in

detail in section III. In section IV two particular cases are

presented: self-collision and obstacle collision avoidance.

Finally, section V outlines some conclusions and future work.

II. THEORETICAL BACKGROUND

A. TENSEGRITY STRUCTURES

A tensegrity structure is fully parameterized by the spatial

position of its nodes and by either the stresses or the rest

lengths of its edges. In order for the structure to exist, these

parameters have to be carefully chosen in order to comply

with a restrictive set of constraints.
These constraints are given by the static equilibrium

equations in all of its nodes (Eq. 1a), and the stress and
geometrical compatibility of its edges (Eqs. 1b and 1c),

∑

j∈A

kij(1 −
dij0

dij

)(pi − pj) = f
ext
i , A = {n ∈ N | ij ∈ E}, (1a)

Uij 6 dij 6 dij0 6 Lij ij ∈ C, (1b)

Uij 6 dij0 6 dij 6 Lij ij ∈ S, (1c)

where N is the set of all nodes, E is the set of all edges

(including the sets of cables C, bars B and struts S), Uij and

Lij are respectively the upper and lower distance bounds for

each edge, pi are the spatial coordinates for the i− th node

and dij and dij0 are the real and rest length for the ij edge

respectively. Additional shape and symmetry constraints can

be added as necessary. For a more detailed static review of

tensegrity structures see [17].

Even for the most simple tensegrity structure in R
3 (shown

in Fig. 3), the dimension of the parameterization space,

defined by the nodal positions and the edge rest lengths,

is relatively high (24, if rigid movements are not taken

into account). Additionally, due to the equality constraints

presented in Eq. 1, most of the structure’s parameters are

tightly coupled, thus reducing the dimension of the solution

space [15] (the space of feasible combinations of parameter

values).

Due to the non-linear nature of the constraints in Eq. 1, it

is not possible, in general, to find closed form expressions

which take into account the couplings between the parame-

ters of a tensegrity structure. Also, because of the reduced

dimension of the solution space compared to the dimension

of the parameterization space, the probability of randomly

generating a feasible solution (a set of compatible nodal

positions and feasible edge stresses) goes to 0. From the

authors point of view, this issue is one of the most important

open problems of tensegrity structures.

B. PROBABILISTIC PATH-PLANNING

The most common probabilistic path-planning approaches

(PRM [18] and RRT [19]), are all based on sampling the

configuration space for valid configurations.

The PRM approach first generates a great number of

collision free samples inside the configuration space and then

tries to link them by collision free paths. This process results

in a roadmap of the collision free configuration space that

can be used for fast multiple path-finding queries.

On the other hand the RRT approach grows a tree from

the start or goal configuration (or both) until a collision free

path is found. This method has to grow a new tree for each

pair of start and goal configurations, and is more suited for

single path-finding queries.

Both approaches depend on two main features: efficiently

sampling the collision free configuration space, and effi-

ciently finding a collision free path between feasible configu-

rations (local planner). Both features are hard to accomplish

for tensegrity structure because:

• All randomly generated configurations will not be ini-

tially feasible, so an optimization process is necessary

for each of them. Furthermore, the resulting configura-

tion might be discarded due to collisions.

• Due to the characteristics of the configuration space,

finding feasible and collision free paths is difficult

since the feasibility and collision constraints have to

be checked for each point in the path.

So, developing a collision detection and avoidance method

for tensegrity structures is the first step towards developing

path-planning algorithms for tensegrity based robots.

III. PROBLEM FORMULATION

In order to solve the optimization problem, first the con-

strained problem is transformed into an unconstrained one

(Eq. 2) by using quadratic and exponential penalty functions

for the equality and inequality constraints respectively [20,

sections 4.2.1 and 4.2.5].

min
x

fcost(x) + c
∑

i

‖ hi(x) ‖2 +
∑

i

1

c
(e−cgi(x) − 1), (2)

where x is the vector of optimization variables, hi(x) are the

equality constraints, gi(x) are the inequality constraints and

fcost(x) is the cost function in terms of the elastic energy of

the structure.

The parameter c in Eq. 2 is a positive penalty factor

which weights the violation of the constraints and it is

iteratively increased at each iteration. The possible values

of this parameter range from 0.01 to 10000, however the

upper bound is never reached in any simulation.

Then a Quasi-Newton method is used to find the feasible

solution to the unconstrained problem, which coincides with

the solution to the original problem. In this case the inverse

Hessian matrix is iteratively approximated by the BFGS

method ([20, section 1.7]), and the Armijo rule is used to

adaptively change the step size of the algorithm ([20, page

29]).

Additionally, it is possible to guarantee that the opti-

mization algorithm always converges to a minimum of the

function in Eq. 2, if it exists at all. This is achieved by some

simple algebraic modifications to the problem constraints in

Eq. 1 in order to eliminate some singular points as well as

use some general results from non-linear programming.

Due to the relatively high computational cost associated to

finding a single feasible configuration, it would be inefficient

to ignore those configurations with collisions. Even so,

without additional information, the optimization process will
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not be able to modify a potentially stable configuration to

avoid collision.

It is necessary to include both the collision detection and

avoidance inside the optimization procedure used to find

stable configurations, so the solution configuration from the

optimization process, if any, will be both stable and collision

free.

To detect and avoid any possible collision, new constraints

are added to the optimization problem. These new con-

straints, keep the minimum distance of two geometric objects

greater or equal than 0, or any given positive value (clearance

between objects),

Dmin(objecti, objectj) > ǫ , ∀ǫ > 0. (3)

During the optimization process, the value of the minimum

distance is used as a monitor for detecting collisions, and its

mathematical expression, in terms of the parameters of the

structure, is used to move away from collision configurations.

At the moment only two kinds of collisions are taken into

account:

• Collision between rigid members of the tensegrity

structure (bars). Bars are modeled as infinite cylinders,

parameterized as shown in Fig. 1 by the line equation

P (s) = P0 + s(P1 −P0) = P0 + su, ∀s and the radius

(rc)

Fig. 1. Geometrical model for the bar-bar collision. Bars are modeled as
infinite cylinders.

From Fig. 1, and using the fact that the minimum

distance between two lines is defined by their common

orthogonal vector, the minimum distance between two

cylinders is

D(P, Q) =

∣

∣

∣

∣

w0 +
(be − cd)u − (ae − bd)v

ac − b2

∣

∣

∣

∣

> rcp + rcq,

(4)

where a = uuT , b = uvT , c = vvT , d = uwT
0 and

e = vwT
0 .

Eq. 4 is undefined when any two of the cylinders are

parallel ( 0
∞

), and the optimization method will not be

able to handle this condition. To solve this problem,

both sides of the inequality are multiplied by (ac−b2)2.

Also, the 2-norm on the left handside of the inequality

involves a square root which may introduce discon-

tinuities in its gradient, so both sides are squared to

guarantee the convergence of the optimization method

[20]. After all the modifications, the bar-bar collision

avoidance constraint is
∣

∣w0(ac − b2) + (be − cd)u − (ae − bd)v
∣

∣

2
−

−(ac − b2)(rcp + rcq) > 0
. (5)

It is important to note that tensegrity bars, even if

they are actuated, have a finite length, but Eq. 5 is

only valid for infinite cylinders. However, for single

staged tensegrity structures, such as the ones presented

later in section IV, the artificial prolongation of the

bars introduced by the constraints will not report any

false bar-bar collisions, since the condition of minimum

distance is always achieved inside the structure, in

general stable configurations.

To avoid any possible collision between bars, it is

necessary to check Eq. 5 for every pair of bars, so if

a given tensegrity structure has b bars, it is necessary

to include ncil = b(b−1)
2 constraints of this type to the

optimization process.

• Collision between the nodes of the structure and

obstacles. Environmental objects are modeled as infinite

planes, parameterized by the normal vector Np =
(nP

x , nP
y , nP

z ) and its position in the space Op =
(oP

x , nP
y , nP

z ). The nodes of the tensegrity structure are

modeled as spheres centered at Os = (oS
x , oS

y , oS
z ) with

radius rs, as shown in Fig. 2.

Fig. 2. Geometrical model for the node-obstacle collision. Obstacles are
modeled as infinite planes and nodes as spheres.

In this case, the distance between a sphere and an

infinite plane can be easily computed by evaluating the

equation of the plane at the center of the sphere,

nP
x (oS

x − oP
x ) + nP

y (oS
y − oP

y ) + nP
z (oS

z − oP
z )− rs > 0.

(6)

By modeling the environment obstacles as infinite

planes, it is enough to check collision with the nodes of

the tensegrity structure. This is because they define the

convex envelope of the structures used, and therefore,

are the first part of the structure to contact any possible

obstacle.

To avoid such collisions, it is necessary to check each

node of the structure against each plane, so the total
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number of constraints that need to be included into the

optimization process is nplane = np, where n is the

number of nodes and p is the number of planes.

As introduced before in this section, both Eq. 5 and Eq. 6

must be included as inequality constraints to the optimization

process presented before in Eq. 2.

IV. COLLISION AVOIDANCE

The tensegrity structure shown in Fig. 3 has been used to

validate the proposed method. It has its lower nodes fixed to

ground, the 3 bars (thick blue lines) and the 3 vertical cables

(red lines) are actuated, and the 3 upper nodes (A,B and C)

are free to move and are linked to each other by springs,

with rest length fixed to 0.1 m.
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Fig. 3. Tensegrity structure used to validate the proposed method to avoid
collisions.

In the next simulations, all actuated members (both bars

and vertical cables) have a range of motion from 0.1 m to

2 m, the diameter of the bars is 3.5 cm, the diameter of

the cables is negligible, the mass of the tensegrity structure

is assumed to be located only at the nodes, and the Earth

gravitational field is also considered. Also, the execution of

the trajectory is assumed to be quasi-static, without taking

into account any dynamics of the structure.

A. OBSTACLE COLLISION AVOIDANCE

The first case of study is the avoidance of collisions

between environment obstacles and the structure. First, the

structure holds its position with the center of mass of

the upper triangle at pgoal = (0, 0, 0.5) and an obstacle

is approached, forcing the tensegrity structure to change

its shape in order to stay at the desired position. Fig. 4

shows some configurations of the structure when an obstacle

approaches.

In Fig. 4 it is possible to see how the tensegrity structure

keeps the desired position (the center of mass of the upper

triangle stays at pgoal = (0, 0, 0.5)), while its configuration

is changed (compared to the default configuration shown in

Fig. 3) in order to avoid the collision of the nodes with the

plane.

Fig. 4. Example of static tensegrity structure and mobile obstacles with
collision avoidance

In this case a clearance of 1cm has been used at each node

to avoid direct contact between the nodes and the obstacle.

Also, the diameter of the bars has been reduced to 1 cm to

allow more range of motion to avoid the obstacle.

In a second simulation, the roles are reversed: the objects

are static and the tensegrity structure is free to move through

the work space. As shown in Fig. 5(a), two planes are placed

on the work space as obstacles, and the structure tries to

reach a position for the center of mass near them (marked

as a red dot in Fig. 5(a)).

(a) Simulation setup with two
planes as obstacles and the desired
position (red dot).

(b) Collision free and stable con-
figuration at the desired position.

Fig. 5. Example of static obstacles and moving tensegrity structure with
collision avoidance.

As shown in Fig. 5(b), the structure is capable of reaching

the desired position for the center of mass while avoiding any

collision with the obstacles. Note that the final configuration

of the structure is quite different form the minimum energy

configuration.

For probabilistic path-planning methods, this kind of ob-

stacle collision avoidance is crucial to find random, feasible

and collision free configurations of the tensegrity structure

throughout the work space. Those configurations can then

be connected together to build a roadmap. Then, by using

the bar-bar collision avoidance presented later in section

IV-B as a local planner, it would possible to find feasible,

collision free trajectories between any two configurations of

the roadmap.

Also, since the obstacle collision avoidance is integrated

into the optimization process, it is possible to take advantage

of the high level of flexibility this kind of structures have,

thus maximizing the reachable space of the structure.

B. SELF-COLLISION AVOIDANCE

The second case of study is the avoidance of collisions

between the elements of the structure themselves (self-
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collision). The simulation consists on obtaining the length

variation of the actuated members required to follow a

straight trajectory of the upper triangle’s center of mass.

The desired trajectory goes from the initial configuration at

pstart = (0, 0, 0.5) to a final position at pgoal = (0, 0.5, 0.5)
(plotted in green in both Fig. 6 and Fig. 7).

In order to compare the different configurations achieved

by the structure when the self-collision of its members is

considered, the proposed method is compared to the previous

methods available on the literature ([15]). Fig. 6 shows the

initial (dotted lines) and the final (solid lines) configurations

of the tensegrity structure moving along the desired trajectory

when collision avoidance is not taken into account. On the

other hand, Fig. 7 shows the same information when the

collision avoidance method proposed is used.
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Fig. 6. Initial (dotted) and final configurations of the tensegrity structure
moving along the desired trajectory (in green) without any self-collision
avoidance.
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Fig. 7. Initial (dotted) and final configurations of the tensegrity structure
moving along the desired trajectory (in green) using the proposed self-
collision avoidance method

In Fig. 7 the final configuration has changed compared to

the one in Fig. 6 in order to avoid the collision of two bars (b1
and b2), but the structure was still able to reach the desired

final position for the center of mass. In the second case (using

the collision avoidance method) it would be possible to use

the obtained length variations of the actuated members to

control a real prototype safely, while in the first case, the

experiment may result in the destruction of the prototype

due to excessive forces.

Fig. 8 shows the evolution of the relative distance between

all three bars of the tensegrity structure with (in blue) and

without (in red) the proposed collision avoidance method. In

this figure it is easier to appreciate that the behavior of the

structure is the same in both cases until the relative distance

between bars b1 and b2 reaches 0.07 m (the two cylinders

touch). From this point forward, the behavior of the structure

is completely different.
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Fig. 8. Comparison of the relative distances between all three bars with
(in blue) and without (in red) the proposed collision avoidance method.

It is important to note that in some cases, taking into

account bar-bar collisions may prevent the structure to reach

the goal configuration. Also, in the example shown in Fig.

7, bars b1 and b2 actually touch each other but the relative

distance keeps constant so preventing any damage to the

structure. As introduced before, it is possible to avoid this

by including a minimum clearance between any two bars.

The bar-bar collision avoidance is useful to plot a collision

free trajectory between two feasible, collision free configu-

rations. Therefore, it can be used as a local planner in one

of the standard probabilistic methods presented in section II.

In the case that it would not be possible to go from one

configuration to the other due to collisions of the edges of the

structure themselves, it would be necessary to try to connect

to nearby feasible and collision free configurations.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new method to deal with the collision

avoidance, both between the tensegrity structure edges and

between the structure and environment obstacles, has been

presented. To our knowledge, it is the first attempt to actively

avoid collision for tensegrity structures.

Simulations of the collision avoidance method applied

to a simple tensegrity structure have also been presented

which have allowed us to validate the proposed algorithm. It

has been shown how this rather simple collision avoidance

method for tensegrity structures can be used to find stable,

collision free configurations in a given environment and also,

as a local planner to find valid trajectories between any two

of those configurations.
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The integration of the obstacle collision avoidance con-

straints into the optimization process also allows us to

maximize the reachable space of a tensegrity based robot,

because the configuration of the structure can be modified to

fit narrow passages or overcome other obstacles impossible to

avoid otherwise. However, bar-bar collision avoidance may

invalidate some previously feasible configurations.

The method proposed in this paper models the obstacles

as infinite planes and the bars of the structure as infinite

cylinders. This has been enough to validate the proposed

algorithm, but it will be necessary to take into account the

finite length of all objects in the future. To do that it would be

necessary to consider piecewise continuous functions, which

increase the difficulty of the optimization process. In the

future we also want to include the collision detection and

avoidance of more complex objects in order to perform more

complex tasks.

Currently, our group has a working prototype of a tenseg-

rity structure (shown in Fig. 9) with only 3 actuators (the

bars). This prototype is insufficient to test the proposed

algorithm because it lacks enough controllable degrees of

freedom. We are currently working on a new prototype which

will have all edges actuated, both cables and bars, and will

enable us to test the method in a real application.

Fig. 9. Prototype developed by the tensegrity group at IRI.

Finally, if some kind of obstacle detection sensor can be

integrated into the structure (such as ultrasonic or infrared

rangers), it would be possible to actively change the shape

of the tensegrity based robot in real time to avoid an

approaching obstacle, because the time required to find the

new configuration is under 0.2 s, if a solution exists.
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