
Real-time Software for Mobile Robot

Simulation and Experimentation

in Cooperative Environments

Andreu Corominas Murtra1, Josep M. Mirats Tur1,
Oscar Sandoval1, Alberto Sanfeliu1,2 ⋆

1 Institut de Robòtica i Informàtica Industrial, IRI (UPC-CSIC). C/Llorens i Artigas,
4-6, 2nd floor. Barcelona, Spain. www-iri.upc.es

2 Universitat Politècnica de Catalunya, UPC. Barcelona, Spain.

Abstract. This paper presents the software being developed at IRI (In-
stitut de Robòtica i Informàtica Industrial) for mobile robot autonomous
navigation in the context of the european project URUS (Ubiquitous
Robots in Urban Settings). In order that a deployed sensor network and
robots operating in the environment cooperate in terms of information
sharing, main requirements are real-time performance and the integra-
tion of information coming from remote machines not onboard the robot.
Moreover, the project involves a group of eleven industrial and academic
partners, therefore software integration issues are critical. The proposed
software framework is based on the YARP middleware and has been
tested in real and simulated experiments.

Key words: Mobile robot software, real-time, sensor networks

1 Introduction

Research in robotics is experiencing a steady incoming of new hardware com-
ponents, platforms and devices, with the aim of overcoming perception and ac-
tuation limitations of current robotic systems. These hardware novelties need
software to be operative, but developing such a software is a time consuming
and error prone task. Therefore, good practices in software development are re-
quired in robotic laboratories in order to economize engineering time and share
results and modules between research teams. Also, simulation of robot systems is
a generalized task that saves a lot of power and human energies, but the danger
of recoding algorithms for both simulation and experimentation arises. All these
topics have been recently discussed within the robotic research community [1–4].

⋆ Research conducted at the Institut de Robòtica i Informàtica Industrial of the
Universitat Politècnica de Catalunya and Consejo Superior de Investigaciones
Cient́ıficas. Partially supported by Consolider Ingenio 2010, project CSD2007-00018,
CICYT project DPI2007-61452, and IST-045062 of the European Community Union.
[acorominas,jmirats,osandoval,asanfeliu]@iri.upc.edu



2 Corominas Murtra, A., Mirats Tur, J.M., Sandoval, O., Sanfeliu, A.

In the last years some interesting middlewares have been presented which
can be downloaded as open source software [5–8]. These projects coincide on
being real-time oriented and based on fully independent processes running in
the same machine or in a network of computers, thus they require a fast and
robust inter-process communication tool to operate.

Our context is that of the URUS european project [9] involving open research
fields such as network robot systems and cooperative robotics. Different exper-
iments, as transport of goods or evacuation of people, are envisaged in outdoor
urban scenarios, involving a camera network recently deployed on the URUS
environment and a team of heteregeneous robots running in it. In order to be
successful with the software integration and experimentation a good software
practice and a process communication approach are mandatory.

In this work we present a software framework based on the YARP middleware
[10]. YARP was initially written for people working with humanoid robots hence
involving a lot of hardware devices to be controlled. We do use YARP in our
context to provide communication capabilities between different processes of the
whole system, whether these processes are running onboard the same robot or
not. Therefore, our framework is developed with the aim of being executed in
a decentralized network of computers, being flexible to accept an heterogeneous
set of devices and algorithms and being independent of whether the data sources
are real or simulated platforms and devices, or files with stored off-line data.

This paper is organized as follows: section 2 overviews the whole software
structure, section 3 presents the knowledge basis of our system while section 4
focuses on the involved processes and their designed hierarchy. In section 5 the
graphical user interface is presented. Real-time experiments, both simulated and
real, are presented in section 6, validating the operability of the presented soft-
ware. Finally, section 7 summarizes the main conclusions of the work.

2 Framework Overview

The proposed software framework has the main goal of providing a mobile robot
with autonomous navigation capability. Moreover, our mobile robot is thought
to be running in a cooperative environment, that is, an area where other mobile
robots are also operating and where a sensor network is deployed. The whole
system should provide a set of services in an urban environment such as trans-
portation of goods and people, cleaning or surveillance. Figure 1 shows the
proposed navigation software framework in this context including hardware de-
vices providing data (grey boxes), processes running concurrently (white boxes),
and YARP connections (black arrows) building a network of processes that ex-
change data. This figure also indicates with an asterisc the processes that are
running in a remote machine (not on-board the robot) and, thus, a wireless link
is required to connect them to on-board processes. The running mode variable
indicates if the robot is tele-operated (RM=0), executing a path (RM=1) or
following a visual target (RM=2).



Real-time Software for Mobile Robot Sim. & Exp. in Coop. Environments 3

Fig. 1. Network of processes building up the proposed software framework for au-
tonomous navigation in cooperative environments. Grey boxes are devices while white
boxes are processes. Processes running in a remote machine are marked with *.

Our design divides the proposed software in three parts: knowledge-basis,
processes and graphical user interface. The knowledge basis is a set of classes
implementing the data base and methods to deal with it, representing all that
the mobile robot ’knows’. In our context, this refers to the environment model
(map) and the methods to efficiently operate with it. Process classes implement
the core of this software design. These classes are organized in a three-level
hierarchy in order to exploit C++ modularity and inheritance. This set of classes
implements the basic process loop (layer 1), the process network (layer 2) and
the specific device drivers and algorithms (layer 3). Finally, the graphical user

interface (GUI) provides a mean to display real-time data while allowing the
user to drive the robot in a tele-operation running mode.

3 Knowledge Basis

The set of classes implementing the a priori knowledge of the robot builds up the
knowledge basis. In our map-based navigation case, this a priori knowledge is
given by a map of the environment and different geometric methods to operate
with it. This map could also be implemented off-board, as a data server provid-
ing answers to requests about distances, angles or line-of-sights. However, since
some navigation algorithms perform thousands or even millions of operations
per second related to the map, the “server approach” is unfeasible for real-time



4 Corominas Murtra, A., Mirats Tur, J.M., Sandoval, O., Sanfeliu, A.

applications. This fact forces us to load the knowledge basis to the local memory
of the computers where processes requiring it are running.

In the context of our network robot system the map is described in a data
file of about 40KB, using a compatible format with Geographical Information
Systems (GIS). The model represents the environment as a list of obstacles, each
one described with metric and semantic information. When a robot initializes,
it requests the map to a map server. The map server replies sending the map file
and the robot loads it to a program variable, thus the knowledge basis is now in
the local memory and processes requiring it have faster access to their methods.

For other applications this knowledge basis could be a dictionary, as a set
of objects to be identified, or a set of faces to be recognized (parameterized
or not). Obviously, if there were no real-time constraints in our application, we
could implement this knowledge basis as a data base server running in a machine
not onboard the robot.

4 Processes

The hierarchy of the classes implementing processes is organized in three lay-
ers. The first layer defines a basic process class. A second layer implements the
interfaces, defining data packets and connections between processes, thus the
process network is completely stablished. This second layer is based on the com-
munication capabilities of the YARP middleware. Finally, the third layer of the
hierarchy implements specific algorithms and drivers to control devices.

Figure 2 shows the C++ class hierarchy for the involved processes in our
framework. In the next subsections we detail each layer of this hierarchy.

4.1 Layer 1: Basic Process Class

This single class defines a generic process as an independent thread. The pro-
tected variables of this class are listed below:

int status; //=0 when process runs ok. Otherwise is an error code

int partnerId; //id of the partner responsible of that process

int machineId; //id of the machine where this process is running

char label[20]; //short label identifying the process

int sleepPeriod; //sleep period [us] to regularize loop period

ofstream logFile; //file to print log messages

ofstream dataFile; //file to print data

timeval timeStamp; //time stamp of the process output data

int processThreadID; //thread id

pthread_t processThread; //thread variable

This variable set has been found as the minimum common set that all our
processes need to be operative. The variable status indicates if a process is
running with no trouble (status=0) or if some error or unexpected situation is



Real-time Software for Mobile Robot Sim. & Exp. in Coop. Environments 5

Fig. 2. Hierarchy of classes involved in the process implementation. Claser and Cplat-
formAq (acquisition) basic interfaces are unfolded to their related specific classes for
illustrative purposes. Boxes are classes and arrows imply inheritance relation.

encountered (status=errorCode). The variable partnerId identifies which partner
is responsible of the process among a group of partners working in the project.
The variable machineId carries the identification of the machine on which the
process is running. The label string is used to shortly define the process as,
for instance, ’gps’, ’frontLaser’ or ’obstacleAvoidance’. The sleepPeriod integer,
defined in microseconds, is the pause that the process will execute to regularize
its output to a given output frequency, specially for those cases where process
stuff is very low and data output is not required to be fast. Two files are also
members of a process, one to keep log messages during execution and the other
to save process data. Both, log messages and process data are always printed
with a time stamp value provided by the variable timeStamp (TS). Last two
variables are needed to run the process as a separate thread.

For this basic process class, we have the following public member functions:

ClogDataProcess(int ptid, int rid, char *labelStr); //constructor

virtual ~ClogDataProcess(); //destructor

int writeLogFile(char *msg);//prints message with TS to logFile

int writeDataFile(char *msg);//prints message with TS to dataFile

virtual void printAlive(); //prints alive message to std output

virtual void process()=0; //Main method processing the data

virtual void printData()=0; //prints data content to dataFile



6 Corominas Murtra, A., Mirats Tur, J.M., Sandoval, O., Sanfeliu, A.

virtual void sendData()=0; //sends data content (publish data)

void startRun(); //Throws the thread calling the run() method

void endRun(); //Cancels the run() this process

static void *run(void *thisPnt); //Main loop

The proposed set of public member functions is also designed to satisfy the
minimum common needs for all the processes. The constructor initializes the sta-
tus to −1, sets the variables partnerId, machineId and labelString, and opens the
logFile and the dataFile. Destructor will close these files. We have also the mem-
ber functions writeLogFile() and writeDataFile(), that print a given message in
the log/data file with the current time stamp. The virtual member function
printAlive() prints a basic alive message to the standard output. If desired, it
can be overridden to print a more specific alive message. After that, we find
three pure virtual member functions that are just named in this class but not
implemented. The process() member function will contain all the process work
and it will be implemented in the last layer of the hierarchy, that of the de-
vice/algorithm specific classes. The other two functions will be implemented in
the second layer of the hierarchy: the printData() member function printing the
whole data packet that the process outputs to the dataFile, and the sendData()
member function sending a data packet through a communication channel (pub-
lishes data). Finally, there are three member functions implementing the starting
of the thread, its main loop and its end or cancel condition. The run() member
function is the main loop of the thread and it is detailed in the following code:

while (1)

{

thisProcess->process();//main job of this process

thisProcess->printData();//prints data to data file

thisProcess->sendData();//writes data to output ports

sleep(thisProcess->sleepValue);//adjusts output frequency

}

Please note that in this basic process class neither the process connections
nor the data packets are still defined, since each process uses a different number
of inputs and outputs and works with different kind of data. The second layer
of the hierarchy will define and manage these issues.

4.2 Layer 2: Basic Interface classes

Classes in the second layer implement communication between processes, that is,
they define the network connecting processes and data packets passing through
that network. This layer is motivated by the fact that several implementations of
a given algorithm or sensor driver use the same inputs and outputs and manage
the same data packets. The idea within this layer is to define, for each interface
class, which are the required inputs, the provided outputs, and the format of



Real-time Software for Mobile Robot Sim. & Exp. in Coop. Environments 7

the data packets going through these inputs and outputs. It is only in this layer
where YARP, the chosen middleware, is used to support the communication
network. Such a layer is critical since we are working in a project involving
several industrial and academic partners, and is in this layer where integration
guidelines must be carefully respected [11]. Only if we faithfully follow these
guidelines we will enjoy the integration work as an assembling of “little black
boxes”.

As an illustrative example we show the localization basic class, implementing
the communication layer for all specific localization algorithms. Figure 3 shows
this class as a black box accepting inputs from several real-time observations
and outputing a data packet containing the estimations of the robot pose, ve-
locities and related uncertainties. Hence, the localization basic class is in charge
of putting a localization specific module in the right place within the network of
processes.

Fig. 3. Concept of the localization basic class. Inputs, outputs and data packets are
defined at this basic interface layer.

To fully implement an interface, we need to define the format of the data
packets provided by each interface. With this aim, we have designed a set of
structs named xPacket for each content format travelling throughout the process
network. Moreover, we have a set of classes inheriting yarp ports, specialized to
send or receive a given data packet. In figure 3, the localization basic class
has, for instance, a laserReceiverPort, an object in charge of receiving real-time
observations from a laser driver process, always storing the last one. In the output
side, the localization process, publishes a localization data packet through a
localizationSenderPort, with the format specified in figure 4.

In terms of integration, and following the illustrative localization case, a
given process P requiring real-time localization data only has to incorporate
a “localizationReceiverPort” object and connect it to the output port of the
localization process. Doing this, the process P has available in its local memory
the last estimation of the robot position, published by the localization process.

However, these interface classes do not implement the process() member func-
tion presented at section 4.1, thus they ’do nothing’, but the robot has to sense
and move. The next section details the third layer of the presented software
framework, where specific algorithms and drivers are implemented.



8 Corominas Murtra, A., Mirats Tur, J.M., Sandoval, O., Sanfeliu, A.

Fig. 4. Output data packet for the localization. All specific localization algorithms
publish the same data packet. Grey fields form the common header of all data packets.

4.3 Layer 3: Specific device/algorithm classes

This last layer of the hierarchy implements the specific processes of drivers con-
trolling hardware and algorithms for navigation tasks, that is, it implements the
member function process() that remainded a pure virtual function in the first
and second layers of the hierarchy. It is precisely in this layer where robotic
researchers have to program their own algorithms to solve the different naviga-
tion tasks. The only restriction when programming a specific device or algorithm
class is to agree with the related interface, a fact that appears naturally in object
oriented languages as C++, when class inheritance is used.

For each basic interface related to a device family, we have a class im-
plementing a simulation of that device family, a class reading off-line data
for that device family, and a class for each physical device that we have in
our laboratory. For instance, the basic class being in charge of the acquisition
of the platform data (CplatformAq), has four inherited classes implementing
the above mentioned cases: CplatformAqSim, CplatformAqOffLine, Cplatfor-
mAqSegwayRMP200, CplatformAqP3AT (see figure 2).

The key point of the proposed software architecture is that all these four
specific classes inherit the basic CplatformAq class, thus from the point of view
of communications, these four classes have the same interface and manage the
same data packets, and, therefore, for a process requiring platform data it is
completely transparent which kind of platform (simulated, off-line or real) is
currently providing the real-time data. To keep the real-time in off-line exe-
cutions, the sleepPeriod of the process reading a data file is adapted at each
iteration according to the time stamp increment between the two last data rows.

This approach facilitates also the integration work. For instance, a team
requiring the localization data for its task allocation research do not worry on
which specific algorithm is performing the localization. This team only needs to
incorporate a localizationReceiverPort to its module and to connect this port to
the output port of the localization process.



Real-time Software for Mobile Robot Sim. & Exp. in Coop. Environments 9

5 Graphical User Interface

The developed graphical user interface allows monitoring the navigation exper-
iments. Figure 5 shows a snapshot of this GUI for a simulated case.

On the right side of the screen snapshot in figure 5 we can see a map rep-
resenting the 10000m2 campus outdoor area where the robots are expected to
operate. In this map, we can see three robots (R0..R2) as red dots and five fixed
cameras (C0..C4) as black squares. We can also see simulated GPS data for
robots R0 and R2 positions as green spots on the map layout (R1 was out of
gps coverage), and how the camera network process is detecting robot R1 with
camera C4 and is sending range-bearing observations, each one depicted as a
green segment.

Fig. 5. GUI snapshot.

On the left of the snapshot (figure 5), we can see the simulated onboard
sensor data for the selected robot (R0 in this case). Leds near each sensor label
indicate whether the status of the sensor driver is ok (green) or if some problem
occurs on providing data (red). In the shown case, the cameraNetwork led is in
red since there are no detections for R0 (the selected robot), since it is out of the
camera network coverage. On the bottom left there are also the control buttons
to move the robots and to change the selection of the current robot.



10 Corominas Murtra, A., Mirats Tur, J.M., Sandoval, O., Sanfeliu, A.

6 Real-time experiments. Position Tracking example

6.1 Simulated experiments

We first show a simulated experiment on position tracking. The localization fil-
ter is a process fusing data coming from six simulated device processes: platform
acquisition (odometry), front laser, back laser, compass, gps and camera net-
work observations. Moreover, during this execution we have a process moving
the platform and updating the simulated ground truth and the GUI. All these
processes run in real-time, providing and receiving data through the YARP net-
work. The localization filter process do not worry about where are the computers
providing data arriving to its data ports (see figure 3) and whether these data is
simulated or real. This localization process is completely ready to be exported
to a real experiment with no change on the code. Figure 6 shows the map frame
after the execution of this simulated experiment.

Fig. 6. Simulation of a position tracking experiment. Red poses are for ground truth.
Blue poses are the output of the filter. Green poses form the odometry path. Little
green dots are GPS data. Green segments are camera detections.



Real-time Software for Mobile Robot Sim. & Exp. in Coop. Environments 11

6.2 Real-world experiments

This experiment is a position tracking experiment of the segway platform RMP-
200 of figure 7 (left). This position tracking is processed at real-time, since the
filter output rate was about 3Hz and the maximum robot speed was about
0.5m/s. Since the overall camera network infrastructure and robot detection al-
gorithms are not yet fully operative, the localization filter only fuses onboard
sensor data, coming from a front laser, a back laser and the odometry of the
platform. However, the robot position is sent throughout the ouput port(see fig-
ure 3) and a remote computer connected to this port can see the position of
the robot. In this experiment we have validated that the proposed software is
operative in real conditions, but also we have ascertained that integration of the
provided localization service can be easily done if a receiver process incorporates
a localizationReceiverPort object and connects it to the output port of the lo-
calization process. Figure 7 (right) shows the map frame after the execution of
this real experiment.

Fig. 7. Left: The segway robot with two lasers and one computer onboard. Right:Real
position tracking experiment. Blue poses are the output of the filter. Green poses form
the odometry path.

7 Conclusions

This paper presents a software architecture to solve navigation tasks for au-
tonomous mobile robots operating in cooperative environments. We mean by a



12 Corominas Murtra, A., Mirats Tur, J.M., Sandoval, O., Sanfeliu, A.

cooperative environment an area where a sensor network is deployed and a team
of robots operates in it. This network robot system is the context of the URUS
european project where eleven industrial an academic partners are developing
joint research. Both engineering and social contexts of this project force to de-
velop software following three main aims: real-time constraints for mobile robot
navigation techniques, easiness on integration software modules and decentral-
ized computing approach.

Real-time constraints in navigation techniques is a mandatory issue if we
want that the robots operate autonomously in such environment. Easiness on
integration is due to the fact that the proposed experiments demonstrating the
validity of the whole project involve several partners and several robotic fields
such as computer vision, data fusion or human-robot interaction. Finally, a net-
work robot system approach implies that a set of computers are physically (wired
or wireless) and logically connected to share any kind of data that each process
requires and provides.

The proposed approach, based on the YARP middleware, satisfies these three
aims and has been already tested in simulation and in a preliminary real outdoor
experiment, showing its potentialities, specially in terms of integration.

References

1. H. Bruyninckx, “Robotics Software: The Future Should Be Open,” IEEE Robotics
and Automation Magazine, vol. 15, pp. 9–11, March 2008.

2. D. Brugali, C. Schlegel, T. Stumpfegger, and S. Tansley, “Third International
Workshop on Software Development and Integration in Robotics, SDIR 2008,”
(Pasadena, USA. May, 2008.).

3. P. Fitzpatrick, G. Metta, and L. Natale, “Towards Long-Lived Robot Genes,”
Journal of Robotics and Autonomous Systems, vol. 56, pp. 29–45, January 2008.

4. A. Makarenko, A. Brooks, and T. Kaupp, “On the Benefits of Making Robotic
Software Frameworks Thin,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), (San Diego, California. October,
2007.).

5. http://orca-robotics.sourceforge.net/.
6. http://www.orocos.org.
7. http://playerstage.sourceforge.net/.
8. http://eris.liralab.it/yarp/.
9. A. Sanfeliu and J. Andrade-Cetto, “Ubiquitous networking robotics in urban set-

tings,” in Proceedings of the IEEE/RSJ IROS Workshop on Network Robot Sys-
tems, (Beijing, China. October, 2006.).

10. G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot Platform,”
International Journal on Advanced Robotics Systems, vol. 1, no. 3, pp. 43–48, 2006.

11. M. Barbosa and M. Ransan, “URUS Communication Protocol,” tech. rep., Septem-
ber 2007.


