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Abstract. The aim of this paper is to present a new method to compare histograms. The main 
advantage is that there is an important time-complexity reduction respect the methods presented 
before. This reduction is statistically and analytically demonstrated in the paper. 
The distances between histograms that we present are defined on a structure called signature, 
which is a lossless representation of histograms. Moreover, the type of the elements of the sets 
that the histograms represent are ordinal, nominal and modulo. 
We show that the computational cost of these distances is O(z’) for the ordinal and nominal 
types and O(z’2) for the modulo one, being z’ the number of non-empty bins of the histograms. 
The computational cost of the algorithms presented in the literature depends on the number of 
bins of the histograms. In most of the applications, the obtained histograms are sparse, then 
considering only the non-empty bins makes the time consuming of the comparison drastically 
decrease. 
The distances and algorithms presented in this paper are experimentally validated on the 
comparison of images obtained from public databases and positioning of mobile robots through 
the recognition of indoor scenes (captured in a learning stage). 

1. Introduction 

A histogram of a set with respect to a measurement represents the frequency of 
quantified values of that measurement among the samples. Finding the distance or 
similarity between histograms is an important issue in pattern classification or 
clustering and image retrieval. For this reason, a number of measures of similarity 
between histograms have been proposed and used in computer vision and pattern 
recognition. Protein classification is one of the common histogram applications [9]. 
Moreover, if the ordering of the elements in the sample is unimportant, the histogram 
obtained from this set is a lossless representation of it  and can be reconstructed from 
its histogram. Then, we can compute the distance between sets in an efficient way by 
computing the distance between their histograms. 
The probabilistic approaches use histograms based on the fact that the histogram of a 
measurement provides the basis for an empirical estimate of the probability density 
function [1]. Computing the distance between probability density functions can be 
regarded as the same as computing the Bayes probability. This is equivalent to 
measuring the overlap between probability density functions as the distance. The B-
distance [2], proposed by Kailath, measures the distance between populations. It is a 
value between 0 and 1 and provides bounds on the Bayes misclassification 
probability. An approach closely related to the B-distance was proposed by Matusita 
[3]. Finally, Kullback generalised the concept of probabilistic uncertainty or 
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“entropy” and introduced the K-L-distance measure [1,4] that is the minimum cross 
entropy. 
Most of the distance measures presented in the literature (there is an interesting 
compilation in [5]) consider the overlap or intersection between two histograms as a 
function of the distance value but they do not take into account the similarity on the 
non-overlapping parts of the two histograms. For this reason, Rubner presented in [6] 
a new definition of the distance measure between histograms that overcomes this non-
overlapping parts problem. It was called Earth Mover’s Distance and it is defined as 
the minimum amount of work that must be performed to transform one histogram into 
the other one by moving distribution mass. They used the simplex algorithm [8] to 
compute the distance measure and the method presented in [7] to search a good 
initialisation. Latter, Cha presented in [5] three algorithms to obtain the distance 
between one-dimensional histograms that use the Earth Mover’s Distance. These 
algorithms computed the distance between histograms when the type of 
measurements where nominal, ordinal and modulo in O(z), O(z) and O(z2) 
respectively, being z the number of levels or bins. 
Often, for specific set measurements, only a small fraction of the bins in a histogram 
contain significant information, that is, most of the bins are empty. This is more 
frequent when the dimensions of the element domain increase. In that cases, the 
methods that use histograms as fixed-sized structures obtain poor efficiency. For this 
reason, Rubner [6] presented the variable-size descriptions called signatures. In that 
representations, the empty bins where not explicitly considered. 
If the statistical properties of the data are a priori known, the similarity measures can 
be improved by the smoothing projections as it was shown in [10]. Moreover, these 
projections can be applicable for reduction of the dimensionality of the data and also 
to represent sparse data in a more tight form in the projection subspace. 
Given two histograms, it is often useful to define a quantitative measure of their 
dissimilarity with the intent of approximating perceptual dissimilarity as well as 
possible. To that aim, we consider that a good definition of a distance between 
histograms needs to take into consideration a distance between the basic features of 
the elements of the set. That is, similar pairs of histograms defined from different 
basic features may obtain different distance value between histograms. We call the 
distance between set elements the ground distance. 
In [12], they performed image retrieval based on colour histograms. Do to the 
distance measure between colours is computationally expensive, they presented a low 
dimensional and easy to compute distance measure. They show that this measure is a 
lower bound on the colour-histogram distance measure. 
An exact histogram-matching algorithm was presented in [13]. The aim of this 
algorithm was to study the influence of various image characteristics on colour 
reproduction by perturbing them in a known way. Furthermore, this perturbation 
would be done in a way whereby a set of heterogeneous images would be the starting 
point and this set would be transformed so as to make their histogram the same for all 
the images. The aim of the algorithm was not the comparison of histograms but to 
arrive to a transformation look up table and transform the target image according to it. 
It was presented in [11] an algorithm to compute the distance between histograms that 
used the intersection function, L1 norm, L2 norm and X2 test. The main feature of this 
algorithm was that the input was a built histogram (obtained from the target image) 
and another image. Then, it was not necessary to build the histogram of the image of 
the database to compute the distance between histograms. 
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Finally, the applications of the references commented before use the histograms as 
global information of images. Histograms can also be used in structural pattern 
recognition. For instance, Serratosa defined the Function-Described Graphs [14], 
which is structure that represents a cluster of Attributed Graphs in which there is a 
probability density function in each node of the structure described by a histogram. 
Thus, to compare clusters (that is, to compare Function-Described Graphs), it is 
needed a distance between histograms to compare each of their nodes. Latter, the 
same authors defined the Second-Order Random Graphs [15]. This structure 
represents also a cluster of Attributed Graphs but there is much amount of information 
since there is a joint probability in each node described by a 2-dimensional histogram. 
The computational cost of comparing graphs is exponential respect the number of 
nodes in the worst case. There are some efficient algorithms that obtain sub-optimal 
distances in polynomial cost respect the number of nodes [16]. For this reason, it is 
important to reduce the time consuming comparing their nodes. 
In this paper, we present the algorithms to compute the distances between histograms 
that the computational cost depends only on the non-empty bins instead of the number 
of bins as it is in the algorithms presented in [5,6]. The type of measurements where 
nominal, ordinal and modulo and the computational cost where O(z’), O(z’) and 
O(z’2) respectively, being z’ the number of non-empty bins of the histograms. We 
show that these distances obtain the same value than the distances between 
histograms presented in [5] although the computational time for each comparison 
decreases when the histograms have a large size or they are sparse. Furthermore, we 
suppose that we do not have a priori probabilistic information of the histograms. For 
this reason, the methods presented in [10] are not useful. 
The subsequent sections are constructed as follows. First, we define the histograms 
and signatures. Then in section 3 we present three possible types of measurements 
and their related distances. These distances will be used in the next section to define 
the distances between signatures. In section 5, we depict the basic algorithms to 
compute the distances between signatures. In section 6 we validate our algorithms on 
two different scenarios. The histograms to be compared are obtained from images 
obtained from databases and indoor scenes, respectively. Finally, we conclude with 
emphasis of the advantage of using the distance between signatures and using the 
proposed algorithms. 

2. Histograms & Signatures 

In this section, we formally give a definition of histograms and signatures. The 
section finishes with a simple example to show the representations of the histograms 
and signatures given a set of measurements. 

2.1. Histogram definition 

Let x be a measurement which can have one of T values contained in the set 
X={x1,...xT}. Consider a set of n elements whose measurements of the value of x are 
A={a1,...an} where at∈X. 
The histogram of the set A along measurement x is H(x,A) which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As 
we are interested only in comparing the histograms and sets of the same measurement 
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x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤T, 
denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,HT(A)] 
where  

                               ( ) ∑
=

=
n

t

A
tii CAH

1
,                         (1)  
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The elements Hi(A) are usually called bins of the histogram. 

2.2. Signature definition 

Let H(A)=[H1(A), …,HT(A)] and S(A)=[S1(A), …,Sz(A)] be the histogram and the 
signature of the set A, respectively. Each Sk(A), 1≤k≤z≤T is composed by a pair of 
terms, Sk(A)={wk ,mk}. The first term, wk, shows the relation between the signature 
S(A) and the histogram H(A). Thus, if the wk=i then the second term, mk,  is the 
number of elements of A that have value xi, that is, mk=Hi(A) where wk<wt ⇔ k<t and 
mk>0. 
The signature of a set is a lossless representation of its histogram in which the bins of 
the histogram that has value 0 are not expressed implicitly. From the signature 
definition, we obtain the following expression, 
                              ( ) zkwheremAH kwk

≤≤= 1                        (3)  
 

2.3. Extended Signature 

The extended signature is a signature in which the minimum number of empty bins 
have been added to assure that, given a pair of signatures to be compared, the number 
of bins is the same. Moreover, each bin in both signatures represents the same bin in 
the histograms. 

2.4. Example 

In this section we show a pair of sets with their histogram and signature 
representations. This example is used to explain the distance measures in the next 
sections. Figure 1 shows the sets A and B and their histogram representations. Both 
sets have 10 elements and values are contained from 1 to 8. Horizontal axis in the 
histograms represents the values of the elements and the vertical axis represents the 
number of elements that have this value, that is mi. Empty bins are the ones that mi=0. 
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Figure 1. Sets A and B and its histograms. 
 
Figure 2 shows the signature representation of the sets A and B. The length of the 
signatures is 4 and 3, respectively. The vertical axis represents the number of 
elements of each bin and the horizontal axis represents the bins of the signature. The 
set A has 2 elements with value 6 since this value is represented by the bin 4 (W4

A=6 ) 
and the value of the vertical axis is 2 at bin 4. In the signature representation there is 
not any empty bin. 
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Figure 2. Signature representation of the sets A and B. 
 
Figure 3 shows the extended signatures of the sets A and B with 5 bins. Note that the 
value that the extended signatures represents for each bin, wi, is the same for both 
signatures. Moreover, in A’ and B’, one and two empty bins have been added, 
respectively. 
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Figure 3. Extended Signatures A’ and B’. The number of elements mi are represented 
graphically and the value of its elements is represented by wi. 
 

3. Type of measurements and distance between them 

We consider three types of measurements called nominal, ordinal and modulo.  In a 
nominal measurement, each value of the measurement is a name an there is not any 
relation between them such as great than or lower than (e.g. the names of the 
students). In an ordinal measurement, the values are ordered (e.g. the age of the 
students). Finally, in the modulo measurement, measurement values are ordered but 
form a ring due to the arithmetic modulo operation (e.g. the angle in a circumference). 
Corresponding to the three types of measurements mentioned before, we define three 
measures of difference between two measurement levels a∈ X and b∈ X as follows: 
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a) Nominal distance:  

                              ( )
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The distance value between two nominal measurement values is either match or 
mismatch, which is mathematically represented by 0 or 1. 
b) Ordinal distance: 
                               ( ) babadord −=,                         (5)  
The distance value between two ordinal measurement values is computed by the 
absolute difference of each element. 
c) Modulo distance: 
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The distance value between two modulo measurement values is the interior difference 
of each element. 
 
Metric Property. The three measures in equations (4)-(6) satisfy the following 
necessary properties of a metric: 
a) Reflexivity: d(a,b)=0. 
b) Non-negativity: d(a,b)≥0. 
c) Commutativity: d(a,b)= d(b,a). 
d) Triangle inequality: d(a,c)≤ d(a,b)+ d(b,c). 
 
Proof. Since they are straightforward facts, we omit the proofs. Moreover, the proof 
of the triangle inequality for the modulo distance is depicted in [5]. 

4. Distance between Signatures 

The aim of this section is to present the new distances between signatures. To do so 
and for each type of elements (nominal, ordinal and modulo), we first show de 
definition of the distance between histograms and then we move on the new 
definitions of the distance between signatures. The algorithms used to obtain the 
extended signatures and the three distances are described in the algorithms section. 
For the following definitions of the distances and also for the algorithms section, we 
assume that the extended signatures of S(A) and S(B) are S(A’) and S(B’), 
respectively, where ( ) { }'' ,' A

i
A
ii mwAS =  and ( ) { }'' ,' B

i
B
ii mwBS = . The number of 

bins of S(A) and S(B) is zA and zB and the number of bins of both extended signatures 
is z’. 

4.1. Nominal Distance 

The nominal distance between histograms presented in [5] is the number of elements 
that do not overlap or intersect. It is defined as follows, 
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We define this distance through their extended signatures as follows, 
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Theorem 1. The nominal-distance value between signatures is the same than the 
nominal-distance value between histograms. 
 
Proof theorem 1. The bins in the histograms that are not represented explicitly in the 
signatures are the ones that in both histograms are empty, Hi(A) = Hi(B) = 0. Then, 
the addition of these bins does not affect on the distance value. 
 
Example. We consider the extended signatures A’ and B’ shown in figure 3. The 
nominal distance is defined as the addition of the difference between the number of 
elements. In this case it is 2+2+4+2+2=12. 

4.2. Ordinal Distance 

The ordinal distance between two histograms was presented in [6] as the minimum of 
work needed to transform one histogram to the other. Histogram H(A) can be 
transformed into histogram H(B) by moving elements to left or right and the total of 
all necessary minimum movements is the distance between them. There are two 
operations. Suppose an element a that belong to the bin i. One operation is move left 
(a). This operation results that the element a belong to bin i-1 and the cost to do so is 
1. This operation is impossible to the elements that belong to the bin 1. Another 
operation is move right (a). Similarly, after the operation, a belongs to the bin i+1 and 
the cost is 1. The same restriction applies to the right most bin. These operations are 
graphically represented by right-to-left arrows and left-to-right arrows. Figure 4 
shows the arrows needed to transform (a) histogram H(A) to histogram H(B) and (b) 
the extended signature S(A’) to S(B’). The total number of arrows is the distance 
value. It is the shortest movement and there is no other way to move elements in 
shorter steps and transform one histogram to the other. The distance between 
histograms was defined in [5] as follows, 

                      ( ) ( ) ( )( )∑∑
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= =
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1 1
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j
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There is a slight difference between equation (9) and the equation of the distance 
presented in [5]. They calculated the case i=T, we have not considered it in equation 
(9) since the addition of all the arrows is always 0 when the sets have the same 
number of elements. 
We have defined our new distance between signatures similarly to the distance 
between histograms as follows, 
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The main difference is that we have to take into consideration that the difference 
between bins is not constant. In equation (9), the number of arrows that goes from bin 
i to bin i+1 is described by ( ) ( )( )∑

=

−
i

j
jj BHAH

1

 and the cost of one arrow (or the operation 

move right or move left) is 1 as described before. Our arrows have not a constant size 
(or constant cost) but they depend on the distance between bins. If element a belongs 
to the bin i, the operation move left (a) results that the element a belong to bin i-1 and 
the cost to do so is 1−− ii ww . Similarly, after the operation move right(a), the 

element a belongs to the bin i+1 and the cost is ii ww −+1 . In equation (10), the 
number of arrows that goes from bin i to bin i+1 is described by ( )∑

=

−
i

j

B
j

A
j mm

1

''  and the 

cost of these arrows is ii ww −+1 . 
In the extreme case in which the signature and the histogram have equal number of 
bins, all the arrows have length 1 do to 11 =− −ii ww  and we obtain similar 
expressions in both distances. 
 
Example. Figure 4 shows the graphic representation of the arrows in the histogram 
distance (a) and in the signature distance (b). They represent the minimum necessary 
movements. In the case of the distance between histograms, the distance is the 
number of arrows. But in the signature case, the distance is the number of arrows 
multiplied by the length of the arrows (shown under the arrows). For instance, in the 
first arrows, the length is 3 since w1

A’-w2
A=4-1=3. The distance value between 

signatures is 3x2+1x4+2x2=14, which is the number of arrows in the histogram 
distance. 

1  2  3  4  5  6  7  8 

Dord(H(A),H(B)) Dord(S(A’),S(B’))

1  2  3  4  5  

 X3   X1  X1  X2  

 
(a)                     (b) 

Figure 4. Arrow representation of the ordinal distance using (a) histograms and (b) 
signatures. 
 
Theorem 2. The ordinal-distance value between signatures is the same than the 
ordinal-distance value between histograms. 
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The following lemma makes easier the demonstration of the theorem. First, suppose 
that the relation between the bins of the extended signatures and histograms is wk=i 
and wk+1=p being p>i. 
 
Lemma 1. The accumulative addition of the difference between histograms is the 
same than the accumulative addition of the difference between extended signatures 
when wk=i. 
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Proof lemma 1. This is a straight-forward fact since the terms that Hj(A)= Hj(B)=0 
are not considered in the extended signatures and also Hj(A)- Hj(B)=0. 
 
Proof theorem 2. 
By definition of the extended signatures we have, 
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. This expression is true for all the 

bins, so we obtain equation (10) by adding all the terms. 
 

4.3. Modulo Distance 

One major difference in a modulo type histograms or signatures is that the first bin 
and the last bin are considered to be adjacent to each other, and hence, it forms a 
closed circle, due to the nature of the data type. Transforming a modulo type 
histogram or signature to another while computing their distance should allow cells to 
move from the first bin to the last one or vice versa at a cost of a single movement. 
Now, cells or blocks of earth can move from the fist bin to the last bin with the 
operation move left (1) in the histogram case or move left (w1) in the signature case. 
Similarly, blocks can move from the last bin to the first one with the operations move 
right (T) in the histogram case or move right (wz’) in the signature case. 
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The cost of these operations are calculated similarly to the cost of the operations in 
the ordinal distance except for the movements of blocks from the first bin to the last 
one or viceversa. In the case of the distance between histograms, the cost is one, as in 
all the movements. In the case of the distance between signatures, it has to be 
considered the real distance between bins or the length of the arrows. Thus, the cost of 
these movements are the addition of three terms (see figure 5). (a) The cost from the 
last bin of the signature, wz’, to the last bin of the histogram, T. (b) The cost from the 
last bin of the histogram, T, to the first bin of the histogram, 1. (c) The cost from the 
first bin of the histogram, 1,  to the first bin of the signature, w1. Then, the costs are 
calculated as the lenght of these terms. The cost of (a) is T-wz’, the cost of (b) is 1 
(similarly to the cost between histograms) and the cost of (c) is w1-1. Therefore, the 
final cost from the last bin to the first one or viceversa between signatures is w1-
wz’+T. 

 
Figure 5. The three terms that have to be considered to compute the cost of moving 
blocks from the last bin to the first one or viceversa in the modulo distance between 
signatures. 
 
Example. Figure 6 shows graphically the minimum arrows necessary to get the 
modulo distance in (a) the histogram case and (b) the signature case. The distance is 
obtained similarly to the ordinal example except that arrows from the first bin to the 
last one are allowed or vice versa. The value of the distance between signatures is 
2x1+2x1+2x1=6. In ths signature representation, the cost of the two arrows that go 
from the first bin to the last bin is one. This is do to the fact that w1=1 (first bin in the 
histogram representation) and w5=8 (last bin in the histogram representation, T=8). 
Then this cost is 1-8-8=1. 

Dmod(H(A),H(B))

1  2  3  4  5  6  7  8 

Dmod(S(A’),S(B’))

1  2  3  4  5  

 X1          X1  X1  

 
(a)                        (b) 

Figure 6. Arrow representation of the modulo distance using (a) histograms and (b) 
signatures. 
 
Due to the modulo properties explained before, we can transform one signature or 
histogram into another one in several ways. Among these ways, there exists a 
minimum distance whose number of movements (or the cost of the arrows and the 
number of arrows) is the lowest. If there is a border line between bins that has both 
directional arrows, they are cancelled out. These movements are redundant and so the 
distance cannot be obtained through this configuration of arrows. To find the 
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minimum cofiguration of arrows, we can add a complete chain in the histogram or 
signature of same directional arrows, then the opposite arrows on the same border 
between bins are cancelled out. Figure 7 shows the operation of adding a chain of left 
arrows to an arrow representation. The cost of the first representation is 3x2+ 1x4+ 
1x0+ 2x2= 14 and the cost of the last representation is 1x1+ 3x1+ 1x3+ 1x1+ 2x1= 
10. 
 

1  2  3  4  5  

  X3   X1  X1  X2  

1  2  3  4  5 

+ 
1  2  3  4  5 

= 
X1 X3 X1 X1 X2 X1 X3 X1 X1 X2 

 
        (a)                             (b)                       (c) 
Figure 7. (a) Arrow representation of the modulo distance between signatures. (b) 
Addition of a chain of left arrows. (c) The final arrow representation. 
 
An algorithm to compute the modulo distance between histograms was presented in 
[5] although it was not described the mathematical expression of the distance. We 
propose here a new expression for the modulo distance that their algorithm calculates, 
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where c represents the chains of left arrows or right arrows added to the current arrow 
representation. The absolute value of c at the end of the expression is the number of 
chains added to the current representation. It comes from the cost of the arrows from 
the last bin to the first one or vice versa. 
The modulo distance between signatures is defined similarly as follows, 
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This expression is similar to the one for the histograms. The main difference is that 
the cost of moving a block of earth from one bin to another one is not 1 but it is the 
length of the arrows or the distance between the bins (as it was explained in the 
ordinal distance between signatures). The cost of the movement of blocks from the 
first bin to the last one or viceversa is w1-wz’+T and the costs of the other movements 
is wA’

i+1-w A’
i. 

 
Example. Figure 8 shows five different transformations of signature S(A) to signature 
S(B) and their related costs. In the first transformation, one chain of right arrows are 
added (c=1). In the second one, no chains are added (c=0), thus the cost is the same 
than the ordinal distance. In the third to the last ones, 1, 2 and 3 chains of left arrows 
are added, respectively. We can see that the minimum cost is 6 and it is the case that 
c=-2, then the distance value is 6 for the modulo distance and 14 for the ordinal 
distance. 



- 12 - 

1  2  3  4  5 

X1 X3 X1 X1 X2 

1  2  3  4  5   

  X3   X1  X1  X2  

1  2  3  4  5 

X1 X3 X1 X1 X2 

1  2  3  4  5 

X1 X3 X1 X1 X2 

1  2  3  4  5 

X1 X3 X1 X1 X2 

 
     c=1                      c=0               c=-1                 c=-2                   c=-3 
    cost=22            cost=14          cost=10            cost=6                 cost=12              
Figure 8. Five different transformations of signature S(A) to the signature S(B) with 
their related c and the obtained cost. 
 
Theorem 3. The ordinal-distance value between signatures is the same than the 
ordinal-distance value between histograms. 
 
Proof theorem 3. The proof that both distances are the same is very similar to the one 
for the ordinal distance. We assume the situation of equation (12), then, we have that 
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. So, if we add the absolute value of these 

terms as follows, ( ) ( )( )∑ ∑
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, we get that this expression is similar to 
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. If we substitute ( )ip −  by ( )kk ww −+1  and we use 

equation (11) we arrive to the following expression 

( ) ( )( ) ( ) ( )∑∑ ∑
=

+
= =

−+−=−+
k

j

B
j

A
j

A
k

A
k

p

it

t

j
jj mmcwwBHAHc

1

''''
1

1

. This expression is true for all 

the bins, so we obtain equation (14) by adding all the terms. 

5. Algorithms 

We present the pseudo code of 4 algorithms. The first one extends two signatures, 
which is the first step to compute the distances between signatures. The other 
algorithms compute the distance between signatures. 

5.1. Extended Signatures 

Given two signatures, the process Extended_Signature obtains two minimum 
extended signatures and the number of bins of both extended signatures. The two 
extended signatures have the same number of bins but each one have the same 
information than the original signature. To do so, some bins with the null value have 
to be added. 
 
{S(A’),S(B’),z’} = Extended_Signature {S(A),S(B)}
1. i=0 j=0 z’=0
2. while(i<zA or j<zB)
3. if(wi

A < wj
B or j = zB)

4. wz’
A’ = wz’

B’ = wi
A
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5. mz’
A’ = mi

A mz’
B’ = 0

6. i++ z’++
7. else if(wi

A > wj
B or i = zA)

8. wz’
A’ = wz’

B’ = wj
B

9. mz’
A’ = 0 mz’

B’ = mj
B

10. j++ z’++
11. else // wi

A = wj
B and i < zA and j < zB

12. wz’
A’ = wz’

B’ = wi
A

13. mz’
A’ = mi

A mz’
B’ = mj

B

14. i++ j++ z’++

 
Correctness of the procedure 
The aim of the algorithm is to fill the extended signatures with the values of both 
signatures taking into consideration the order of the positions of the bins. We can 
discern into three different cases. In the first one, (lines 3 – 6), the extended signature 
A’ is filled with information and B’ with an empty bin. This is because the order of 
the bin in the signature A is smaller than the one in B or because there are no more 
bins in B. In the second one, (lines 7 - 10), we have the inverse situation. And in the 
last case, (lines 11 – 14), both bins in the signatures are non-empty and so their 
extended signatures are filled with the same value. The worst-case time complexity of 
this procedure is O(z), being z the length of both histograms. This is the case when the 
intersection of the signatures is null and the union of them has not any non-empty 
bins. Then, the execution of the procedure never goes through lines 11 – 14 and the 
extended signatures have z bins. The best-case time complexity appears when both 
signatures and also the union of them have the same number of bins. 

5.2. Nominal Distance 

The process Nominal_Distance obtains the value of the nominal distance of two 
signatures. 
 
Dnom = Nominal_Distance {S(A),S(B)}
{S(A’),S(B’),z’} = Extended_Signature {S(A),S(B)}
1. Dnom = 0
2. for (i = 1 to z’)
3. Dnom += abs(mi

A’ - mi
B’)

 
Correctness of the procedure 
Since it is a straight-forward fact, we omit the proof. The time complexity of this 
procedure is O(z’), being z’ the number of bins of the extended signatures. The worst 
case appears when the length of the extended signatures is the length of the 
histograms, z’=z. 

5.3. Ordinal Distance 

The process Ordinal_Distance obtains the value of the ordinal distance of two 
signatures. 
 
Dord = Ordinal_Distance {S(A),S(B)}
{S(A’),S(B’),z’} = Extended_Signature {S(A),S(B)}
1. Dord = 0 p = 0
2. for (i = 1 to z’-1)
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3. p += mi
A’ - mi

B’

4. Dnom += (wi+1
A’ - wi

A’) * abs(p)

 
The algorithm computes, for each bin, the sum of the product of two terms. The first 
one is the length of each arrow (distance between the ith bin and the i+1th), represented 
by (wi+1A’ - wi

A’)  and the second one is the number of arrows between the bins, 
represented by the absolute value of p. 
 
Correctness of the procedure 
The following lemma is crucial for the demonstration of the correctness of the 
algorithm. First, suppose that we have successfully constructed the arrow 
representation of the histograms such that the distance is the minimum. 
 
Lemma 2. Let the variable of the algorithm p at step i, denote the number of arrows 
from the bin i to the bin i+1 of the extended signatures. It is positive if arrows are 
heading to right or negative otherwise. The algorithm computes p as follows, 

                      ( )∑
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''               (15)  

 
Proof lemma 2. Consider two extended sub-signatures, S1..i(A’) and S1..i(B’) where 
bins are 1 to i. After transforming, population of S1..i(A’)+p must be equal to that of 

S1..i(B’). If p ≠ ∑
=

i

j

A
im

1

'  - ∑
=

i

j

B
im

1

'  then there is no way to transform S1..i(A’) to 

S1..i(B’)+p. By contradiction, equation (15) holds. 
 
Theorem 4. The procedure Ordinal_Distance correctly finds the minimum distance 
between two signatures. 
 
Proof theorem 4. Note that, given a pair of signatures, the distribution of the arrows 
is the only variable of the distance since the length of the arrows is a constant. As 
equation (15) is true for all levels and it is the only way to transform one sub-
signature to another one, the distance has to be obtained as this distribution of arrows. 

Therefore, the distance is obtained by  ( )[ ]∑
=

−
i

j

B
i

A
i pmm

1

'' . This is equivalent to the 

equation of the distance (14) if p is substituted using equation (15). 
The time complexity of this procedure is O(z’) as in the nominal case. 

5.4. Modulo Distance 

The process Modulo_Distance obtains the modulo distance of two signatures. 
 
Dmod = Modulo_Distance {S(A),S(B)}
{S(A’),S(B’),z’} = Extended_Signature {S(A),S(B)}
1. Dmod = 0 p[0] = m0

A’ - m0
B’

2. for (i = 2 to z’) p[i] = mi
A’ - mi

B’ + p[i-1]
3. for (i = 1 to z-1’) Dmod += (wi+1

A’ - wi
A’) * abs(p[i])

4. do
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5. D2=0
6. c = min positive {p[i] for 1≤i≤z’}
7. Temp[i]=p[i]-c for 1≤i≤z’
8. for (i = 1 to z’-1) D2 += (wi+1

A’ - wi
A’) * abs(Temp[i])

9. if (Dmod > D2) Dmod = D2
10. p[i]= Temp [i] for 1≤i≤z’
11. while(Dmod > D2)
12. do
13. D2=0
14. c = max negative {p[i] for 1≤i≤z’}
15. Temp[i]=p[i]-c for 1≤i≤z’
16. for (i = 1 to z’-1) D2 += (wi+1

A’ - wi
A’) * abs(Temp[i])

17. if (Dmod > D2) Dmod = D2
18. p[i]= Temp [i] for 1≤i≤z’
19. while(Dmod > D2)

 
Correctness of the procedure 
The arrow representation of minimum distance can be achieved from any arbitrary 
valid arrow representation by combination of two basic operations: Increasing the 
chains of right arrows (when the value of c is positive) or increasing the chains of left 
arrows (when the value of c is negative). The distance value can increase infinitely 
but there exists only one minima among valid representations. In order to reach to the 
minima, first the algorithms tests for increasing positively c if whether it gives higher 
or lower distance value. If the distance reduces, keep applying the operations until no 
more reduction occurs. Then, the algorithms does the same operations but increasing 
negatively c. With these two actions, the algorithm guarantees that all possible 
combinations of correct representations of arrows are tested. 
The procedure runs in O(z’2) time. The lines 1 to 3 obtains the ordinal distance. In the 
lines 4 – 11 chains of right arrows are added to the current arrow representation until 
there is no more reduction to the total number of arrows. This increment is considered 
in the algorithm by the variable c. Next, chains of left arrows are added in the similar 
manner (lines 12 – 19). 

6. Validation of the method and algorithms 

The method and algorithms presented in this paper are applied on histograms, 
independently on the kind of the original set from which they have been obtained, i.e. 
images [20], discretized probability-density functions [14],… The only condition to 
use our method is to know the type of elements of the original set: ordinal, nominal or 
modulo. 
In this paper, we validate our method on the comparison of images. We use the 
distance between histograms as a metric to compare images. It is important to note 
that we are not interested in the sophisticated techniques of image retrieval, i.e. 
[17,18,19]. We show that, using our algorithms, the classification of images through 
their histograms is really fast and keeps a high ratio of correctness. Some image 
retrieval techniques could be applied using our technique as the distance between 
images. 
In the next two sections, we first experiment on images obtained from databases and 
second on indoor scenes. In both experiments, we show that there is an important 
reduction of the run time when the signature distance is used respect the histogram 
distance, although the ratio of recognition does not decrease. 
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6.1. Experiment with colour images 

To show the validity of our new method, we have first tested the ordinal and modulo 
distances between histograms and between signatures. We used 1000 images (640 x 
480 pixels) obtained from public databases. To validate the ordinal distance, we 
calculate the histograms from the illumination coordinate with 28 levels (table 1) and 
with 216 levels (table 3). And also, to test the modulo distance, the histograms 
represent the hue coordinate with 28 levels (table 2) and with 216 levels (table 4). Each 
of the tables below shows the results of 5 different tests. In the first and second files 
of the tables, the distance where computed between histograms and signatures, 
respectively. In the other three, the distance was computed between signatures but, 
with the aim of reducing the length of the signature (and so to increase the speed), the 
bins that had less elements than 100, 200 or 300 in tables 1 and 2 and less elements 
than 1, 2 or 3 in tables 3 and 4 where removed. The first column is the number of bins 
of the histogram (first cell) or signatures (the other four cells). The second column 
represents the increase of speed if we use signatures respect histograms. It is 
calculated as the ratio between the run time of the histogram method and the signature 
method. The third column is the average correctness. The last column represents the 
decrease of correctness due to using the signatures with filtered histograms. It is 
obtained as the ratio of the correctness of the histogram by the correctness of each 
filter. 

 
 Length Increase 

Speed 
Correct. Decrease 

Correct. 
Histo. 265 1 78% 1 
Signa. 235 1.12 78% 1 
Signa. 
100 

157 1.68 78% 1 

Signa. 
200 

106 2.50 69% 0.88 

Signa. 
300 

57 4.64 57% 0.73 

Table 1. Illumination 28 bins. Ordinal histogram. 
 
 Length Increase 

Speed 
Correct. Decrease 

Correct. 
Histo. 265 1 86% 1 
Signa. 215 1.23 86% 1 
Signa. 
100 

131 2.02 85% 0.98 

Signa. 
200 

95 2.78 73% 0.84 

Signa. 
300 

45 5.88 65% 0.75 

Table 2. Hue 28 bins. Modulo histogram. 
 

 
 Length Increase 

Speed 
Correct. Decrease 

Correct. 
Histo. 65,536 1 81% 1 
Signa. 245 267.49 81% 1 
Signa. 
1 

115 569.87 81% 1 

Signa. 
2 

87 753.28 67% 0.82 

Signa. 
3 

32 2048.00 55% 0.67 

Table 3. Illumination 216 bins. Ordinal histogram. 
 
 Length Increase 

Speed 
Correct. Decrease  

Correct. 
Histo. 65,536 1 89% 1 
Signa. 205 319.68 89% 1 
Signa. 
1 

127 516.03 89% 1 

Signa. 
2 

99 661.97 78% 0.87 

Signa. 
3 

51 1285.01 69% 0.77 

Table 4. Hue 216 bins. Modulo histogram. 

 
Tables 1 to 4 show us that our method is much useful when the number of levels 
increases since the number of empty bins tends to increase. Moreover, while 
comparing the histogram of the hues, the increase is much important do to the 
algorithm has a quadratic computational cost. Note that in the case of the first filter 
(third experiment in the tables), there is no decrease in the correctness although there 
is much increase in the speed respect the signature method (second experiment). 
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6.2. Experiment on indoor scenes 

Signatures have also been compared with histograms using indoor scenes. These 
scenes were used for robot positioning. In the learning stage, the robot is guided 
through the offices and corridors while the exact position is introduced and the robot 
captures the scenes. In the recognition stage, the robot assumes to be in the position 
that captures the most similar scene obtained in the learning stage. The main 
advantage of this technique (also reported in [21,22]) is that any mechanic method is 
not needed. Moreover, image retrieval techniques are neither used, since the new 
scene is not compared on all the scenes of the database, but only on the ones that are 
known to be near of the supposed position of the robot. Finally, if the scene is not 
recognised, the last position of the robot is assumed to be the present one and another 
image is captured. In [22], a same robot-positioning method was used. The main 
difference is that they used structural information of the image and they needed to 
segment the image. For this reason, the ratio of recognition was supposed to be higher 
but also the computational time. The main advantage of our method is that the image 
has not to be processed, only the histogram of it is needed. 
Figure 9 shows 8 different scenes. From each scene, we have taken 3 images with a 
slight difference of the position. Furthermore, we show the histogram of the 
luminance and the hue of these images. We have used the histograms of the 
luminance to test the cardinal and ordinal distance ant the other histograms to test the 
modulo distance. Note that there is a similarity between the three histograms of the 
same scene and also that the hue histograms are much sparse than the luminance ones. 

   

   

 
              Image 1                                 Image 2                        Image 3 
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              Image 4                                 Image 5                        Image 6 
 

   

   

 
              Image 7                                 Image 8                        Image 9 
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              Image 13                                 Image 14                        Image 15 
 

   

   

 
              Image 16                                 Image 17                        Image 18 
 

   

   

 
              Image 19                                 Image 20                        Image 21 
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              Image 22                                 Image 23                        Image 24 
Figure 9. Images from indoor scenes. Below each image, its luminance and hue 
histogram. 
 
Table 5 shows the mismatched images and the ratio of recognition using the cardinal 
and ordinal distances for the luminance histogram and the modulo distance for the hue 
histogram. We consider a mismatched image if the three images that obtained smaller 
distance are not from its scene. As it is expected, the hue histograms obtain better 
results. Nevertheless, there is not a big difference these images are not much saturated 
and so there is little information on the hue. This is the reason because the hue 
histograms are sparse. 
 

Histogram Distance Mismatched images Recognition 
Luminance Cardinal 1,3,8,12,16,17,18 70.8% 
Luminance Ordinal 3,16,19 87.5% 

Hue Modulo 15,17 91.6% 
Table 5. Mismatched images and ratio of recognition using luminance and hue 
histograms and the three distances: Cardinal, Ordinal and Modulo. 
 
Table 6 shows the run time and ratio of recognition obtained from three experiments. 
The first one (a), the results where computed using the cardinal distance on the 
luminance histograms. The second one (b), the cardinal distance was changed by the 
ordinal distance. And the third experiment (c), the modulo distance was computed on 
the hue histograms. From each experiment, we obtained the run time and the ratio of 
recognition in four cases. 1: Comparing histograms. 2: Comparing signatures. 3: 
Comparing filtered signatures. The threshold of the filter was situated as much higher 
as possible, when that the ratio of recognition began to decrease. 4: The same as the 
third case but with a higher threshold of the filter. In all the cases, the run time was 
normalised such that the run time of the histogram in the first case was 100. 
It is interesting to realize the decrease on the run time in the case of the modulo 
distance when filter a is applied. There is a decrease from 526 to 78. 
 

  Card. Dist.   Ord. Dist.   Mod. Dist.  
 Histo.  Sign.  Histo.  Sign.  Histo.  Sign.  
  No 

filter 
Filter 

a 
Filter

b 
 No 

filter
Filter

a 
Filter

b 
 No 

filter 
Filter 

a 
Filter 

b 
Run time 100 85 51 24 105 87 45 21 526 233 78 69 
% Recog. 70.8 70.8 70.5 55.3 87.5 87.5 87.3 75.2 91.6 91.6 91.4 87.2 

  (a) Luminance      (b) Luminance       (c) Hue 
Table 6. Run time and ratio of recognition obtained from three experiments on the 
luminance histograms (a) and (b) and on the hue histograms (c). 
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7. Conclusions and future work 

We have presented the nominal, ordinal and modulo distance between signatures and 
the algorithms used to compute them. We have shown that signatures are a lossless 
representation of histograms and that computing the distance between signatures is 
the same than between histograms but with a lower computational time. We have 
validated these new algorithms with a huge amount of real images and we have 
realised that there is an important time saving do to most of the histograms are sparse. 
Moreover, if we apply filtering techniques on the histograms, the number of bins of 
the signatures reduces and so the run time of their comparison. 
Albeit the signatures and histograms that we dealt with in this paper are one-
dimensional, it can be useful in many applications the comparison between multi-
dimensional histograms. The only difference in our equations of the distances would 
be the definition of the ground distance (nominal, ordinal or modulo). Nevertheless, 
defining the algorithms to compute the distance between multi-dimensional signatures 
is non-trivial because the increase of possible assignments. We leave the design of 
fast algorithms to compute these distances as open problems. 
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