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Abstract. In this paper we propose a new technique to perform figure-
ground segmentation in image sequences of scenarios with varying illu-
mination conditions. Most of the algorithms in the literature that adapt
color, assume smooth color changes over time. On the contrary, our tech-
nique formulates multiple hypotheses about the next state of the color
distribution (modelled with a Mixture of Gaussians -MoG-), and val-
idates them taking into account shape information of the object. The
fusion of shape and color is done in a stage denominated ’sample con-
centration’, that we introduce as a final step to the classical CONDEN-
SATION algorithm. The multiple hypotheses generation, allows for more
robust adaptions procedures, and the assumption of gradual change of
the lighting conditions over time is no longer necessary.

1 Introduction

Color is a visual cue that is commonly used in computer vision applications, such
as object detection and tracking tasks. In environments with controlled lighting
conditions and uncluttered background, color can be considered a robust and
invariant cue, but when dealing with real scenes with changing illumination and
confusing backgrounds, the apparent color of the objects varies considerably
over time. Thus, an important challenge for any tracking system to work in real
unconstrained environments, is the ability to accommodate these changes. In
the literature, the techniques that cope with change in color appearance can
be divided in two groups. On the one side, there is a group of approaches that
search for color constancy (e.g. [2]). But in practice, these methods work mostly
on artificial and highly constrained environments. On the other hand, there are
the techniques that generate a stochastic model of the color distribution, and
adapt this model over time, usually based on weighting functions of previous
color distributions [6][7][8]. The drawback in all of these approaches is that they
assume that color varies slowly and that it can be predicted by a dynamic model
based in only one hypothesis. However, this assumption is not enough to cope
with general scenes, where the dynamics of the color distribution might follow
an unknown and unpredictable path.

In order to cope with these drastic changes, we propose a framework that
uses multiple hypotheses about the future state of the color distribution. In



Fig. 1. Example frames of a sequence with time-varying color illuminant and its cor-
responding color distributions (in normalized rg color space).

a previous work [5], we have suggested a similar multihypotheses framework to
track objects in which color could be approximated by an unimodal distribution,
represented by a histogram. The main contribution of the present paper consists
of applying the fusion of shape and color information in a final stage of the
CONDENSATION algorithm (that we call ‘sample concentration’) in order to
deal with multicolored objects. To achieve this, the color of the object (and
background) has been approximated by a MoG, which number is automatically
initialized by an unsupervised algorithm. At each iteration, an offline learned
dynamic model will generate the hypotheses about probable future states of the
Gaussian mixture, that will be weighted depending on ‘the quality’ of the a
posteriori probability map of the object computed with each of them.

A detailed description of the method is explained in the following sections.
In Section 2 the object color model and initialization is given. The process of
adjusting the color parameters over time to a dynamic model is explained in
Section 3. And next, in Section 4, the complete tracking algorithm and model
adaption is described in detail. Results and conclusions are presented in Sections
5 and 6, respectively.

2 Color Model

In order to represent the color distribution of a monochrome object, color his-
tograms have been demonstrated to be an effective technique (e.g. [5]). However,
when the object to be modeled contains regions with different color, the number
of pixels representing each color can be relatively low and a histogram represen-
tation may not suffice. In this case, a better approach is to use Gaussian Mixture
models. The conditional probability for a pixel x belonging to a multi-colored
object O is expressed as a sum of M, Gaussian components:

M,
p(x|0) = le (x13) P (4) (1)
j=
Similarly, the background color will be represented by a mixture of M}, Gaussians.

2.1 Model Order Selection

Similar to the problem of selecting the number of bins in histogram models, using
MoG conceals the challenge of choosing the number of Gaussian components that
better adjust the data. In [7], the model order is selected by iteratively applying



@ (b) ©

Fig. 2. Fitting a MoG to color data in rg colorspace. (a) Initialization with K = 6
components. (b),(c),(d) are three intermediate steps. The best estimate is the one
corresponding to K = 4 components.

the EM algorithm and splitting those components having lower a posteriori
probability p (O|x). We have observed that this method generates too many
components, some of them unnecessary, increasing the computational cost of
the segmentation stage.

We suggest the use of the method proposed in [3], based on a Minimum Mes-
sage Length (MML) criteria that is implemented by a modified EM algorithm.
This algorithm performs much more stable and generates an initial set with a
lower number of gaussian components than in [7]. In Fig. 2, we show several
steps of the fitting process. The algorithm begins with a large number of compo-
nents (introduced by the user), and iteratively performs an annihilation of those
components that are not supported by the data.

2.2 Figure-Ground Segmentation

In order to segment the object of interest from the background we model both
color distributions by MoGs and compute the a posteriori probability that a
pixel x belongs to the object using the Bayes rule:

p(x|0) P(0)
(x|0) P(O) +p(x|B) P (B)

p(Olx) = (2)
| p

where B refers to the background, and P (O), P (B) represent the prior proba-

bility of object and background, respectively. These values are approximated to

the expected area of the object in the search region (Fig. 3).

(a) (b) (c)
Fig. 3. MoGs of O (the can) and B, and probability density maps. (a) Original image.
(b) Crosses and dashed lines correspond to B pixels and B Gaussian components,
respectively, and points and continuous lines are O pixels and Gaussians. (¢) p (x|O)
(d) p (x|B) (e) p(O|x). Brighter points correspond to more likely pixels.

(e)



2.3 Model Paramaterization

Once we have learnt the initial configuration of the MoG for O and B, we pa-
rameterize them with the following state vector:

Xe = [p67 Hes Ae, 05] (3)

where ¢ = {0, B}, and p. = [pgl), R ,ngE)] contains the prior probabilities of

each component, p. = [ugl), e ,ugME)] are the centroids of each gaussian, the

eigenvalues of the principal directions are represented by A\. = [/\S), e AgME)]
and 6. = [021), e ,Gng)] are the angles between the principal axis of each com-
ponent with the horizontal. Observe the interest of having a low number of
gaussian components in order to reduce the dimensionality of this state vector.
The algorithm described in section 2.1 works properly in the sense that allows
us to select the lowest number of gaussian components that best represent the
data.

3 Learning the Dynamical Model

One of the stages of the tracking algorithm, consists of propagating the state
vector from Eq. 3, in order to generate multiple hypotheses about the future
configuration of the MoG. In order to formulate these hypotheses we formalize a
dynamic motion model in terms of an auto-regressive Markov process. We model
color dynamics as a 2nd order process, represented by the expression:

Xer = ApgXe oo + A1 X 11 + Do + Bowy (4)

where the matrices Ag, A1 represent the deterministic component of the model,
Dy is a fixed offset, and Byw; is the stochastic component, with w; a vector of
standard normal random variables with unit standard deviation and BoB{ is
the process noise covariance. The parameters Ag, A1, By and Dy are learned a
priori using the MLE algorithm described in [1]. In order to generate the training
data we use a hand-segmented sequence, where the initial MoG configuration is
fitted using the unsupervised algorithm described in Section 2.1 and to fit the
subsequent components we use the EM algorithm. In Fig. 4 we show the evolution
of the training parameters for the O and B color distributions.
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Fig. 4. Evolution of the Foreground parameters for the color distribution of a hand-
segmented training sequence. There are shown the results for the 4 components of the
MoG.
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Fig. 5. One iteration of the implemented tracking algorithm for the one-dimensional
case. The weight of each sample is represented by its gray level. The classical imple-
mentation of the CONDENSATION algorithm uses the steps (a)-(e). In our algorithm,
we have added the ‘concentration’ step, where the samples are redirected to the local
maxima.

4 The Tracking Algorithm

The basic steps of the tracking algorithm follow the typical procedure of the
particle filters, but we introduce a modification similar to the idea presented
in the algorithm ICONDENSATION [4], and in order to ‘direct’ the search for
the next iteration we concentrate the future hypotheses on those areas of the
state-space containing more information about the posterior probability p (x|O)
(Fig. 5). Moreover, in this final stage we fuse object color and shape information.
Next, we will briefly describe each one of the steps of the tracking algorithm:

1. Probability Density Function of Color Distribution At time ¢, there

are available from the previous iteration a set of N samples St(f)l (n=1,...,N)
with the same structure than X' (eq. 3), parameterizing N color distributions
(Fig. 5a). Each sample has an associated weight Wt(f)l. The whole set rep-
resents an approximation of the a posteriori density function p (X;—1|Z—1)

where Z;_1 = {z0,...,2:—1} is the history of the measurements. The goal of
the algorithm consists of constructing a new sample set {St(n) , W,En)} for time
t.

2. Sampling from p (X;_1|Z:—1) The next step in the estimation of p (X;|Z;)
consists of sampling with replacement N times the set {St(f)l}, where each

element has probability Wt(f)l of being chosen (step (b) from Fig. 5). This,

will give us a set {S’ ET_L)I} of MoG's parameterizations. Those samples having
higher weights may be chosen several times, so the new set can have identi-
cal copies of elements. On the other hand, those distributions having lower
weights may not be chosen.

3. Probabilistic propagation of the samples Each sample S'En) is prop-
agated according to the dynamic model learnt during the training stage
(eq. 4):

S = 4,8\, + A418"™, + Do + Bow, (5)



Fig. 6. Left: Ten samples of MoG from the set {St(f)l} The gray level is proportional to
the weight of the samples. Right: Posteriori probability maps p (O|x), computed with
different MoGs.

4.

Measure and Weight In this step, each element S’t(n) has to be weighted

according to some measured features. From the propagated samples St(n) we
construct the corresponding MoG, that are used to compute the probability
maps p (O]x), for each sample (Fig. 6). The goal is to assign higher weights

to the samples 5’,5”) generating ‘better’ segmentations of the tracked object.
This is done assigning to each sample S‘t(”) the following weight:

(n) _ 2xewP(O1X) 3w P (OX)
m = N, — N

(6)

where W is the interest region around the previous object position (where
we predict that will be the object), and N,,, N, are the number of image
pixels in and out respectively, of this interest region.

Sample Concentration In the last stage of the algorithm (Fig. 5f) we
concentrate the samples around the local maxima, so that in the following
iteration the hypotheses are formulated around these more likely regions of
the state space. In our case, this is absolutely necessary because our state
vector X' has high dimensionality (proportional to the number of gaussian
components), and if we let the samples move freely, uniquely governed by the
dynamic model, the number of hypotheses needed to find the samples repre-
senting a correct color configuration, is extremely high. The ‘concentration’
is performed with the following steps:

(b) (c) (d) (e)
Fig. 7. Steps to extract the exact position of the object fusing color segmentation and
accurate adjustment by deformable contours (commented in the text).




Fig. 8. Fitted contour and p (O|x) map on a sequence with gradual change of illuminant
and object position.

(a) The maximum from the set of weights {Wt(f)l}, n=1,..., N is taken, and
using morphologic operations over its probability map image (Fig. 7b),
a coarse approximation of the object shape is obtained.

(b) With this rough shape, we eliminate noisy edges from the original image
(Fig. 7c,d).

(¢) The contour of the object in the previous iteration, is used as initializa-
tion of a snake, that is adjusted to the previous edge image (Fig. 7e). The
fusion of color segmentation and shape information increases the robust-
ness of the system, because even when the color hypotheses give a highly
rough estimation, they can be corrected using the contour information.

(d) Once the object has been accurately detected (Fig. 7f), its color distri-
bution is extracted. A MoG is fitted to this distribution (using the EM
algorithm), giving a state vector S;. Samples S‘t(n) are ‘concentrated’ on
this new distribution as follows:

S = (1-a)S™ +aS; (7)

where the parameter a governs the level of concentration. In our exper-
iments we have set a = 0.8.

5 Results

In this section, three different experimental results are presented in order to
illustrate the robustness and different capabilities of our system. In the first ex-
periment (Fig. 8) we show how the method is able to face a gradual change of
illumination and object position. The second experiment (Fig. 9) corresponds to
a sequence with an abrupt change of both position and illumination. Fig. 9a and
Fig. 9b correspond to the two consecutive frames presented to the algorithm.
The a posteriori map of the best hypothesis (Fig. 9c) is used to discriminate
false edges and fit a deformable contour (Fig. 9d,e). In this experiment we have
constrained the fitting process to affine deformations. Finally, in the third ex-
periment (Fig. 10) we show the performance of our system in a natural and
cluttered scene, where we track the movement of an hippopotamus in the water.
Observe that although the high level of noise and clutter from the scene the
algorithm is able to perform a good tracking.



Fig. 9. Results of an abrupt change of illuminant and object position (commented in
text).

Fig. 10. Fitted contour and p (O|x) map of a natural sequence.

6 Conclusions

In this paper we have presented a new approach to the multi-colored object
tracking under varying illumination environments that dynamically accommo-
dates the color and shape of the object of interest. The main contribution of this
work is the fusion of the shape and color information in the probabilistic frame-
work offered by the particle filter formulation. We also introduce the concept of
‘concentration’ in the last stage of the CONDENSATION algorithm, what makes
the system able to cope with a state vector of high dimensionality.
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