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Abstract. In mobile robotics, it is necessary to have a robust and ef-
ficient way of describing the visual stream provided by a vision system
to be used afterwards in tasks such as object recognition. Color his-
tograms are a useful tool to capture and represent color properties of
sets of images taken from a certain position. Since those images were
obtained at different time and light conditions, their appearance have
greatly changed, reducing the performance of the color descriptor. In
this work, we develop a color constancy algorithm that copes with the
color variation among sets of images taken from nearly the same place.
We show that the performance of the color histogram descriptor rises af-
ter color constancy, becoming a more robust and useful color descriptor.
In the results section, we support that claim with several sets of images
of scenes belonging to different positions.
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1 Introduction

Suppose a mobile robot equipped with a camera which is moving about an area
in a way that is able to take images of the environment and associate them to
a pose p consisting in a position (x, y) ∈ R2 and an orientation θ ∈ [0, 2π),
expressed in a chosen framework O.

Consequently, after some time of moving, the robot will have provided a
huge database of images of such area indexed through the pose p. Any time a
query is carried out to know what the robot is likely to see when located at
a pose p, given an uncertainty ε, the system answer will be a set of images
Ip = {Ip1 , · · · , IpM such that ‖p− pi‖ < ε}.

The set Ip encompasses the whole visual knowledge of the system at a cer-
tain pose which can be useful in a number of tasks in mobile robotics, such as
recognition of an object or person in the scene. Furthermore, if the set were
stable and distinctive enough it could be used in the reversed way. Once in an
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unknown position, identify where the robot is located matching what it sees with
the descriptors of different locations in a database previously gathered.

Aforementioned tasks require that any set Ip should be described in a simple,
generic and computationally inexpensive way. Additionally, the images in Ip

must be mutually comparable, i.e., look similar at close poses, and so their
descriptors. In other words, any descriptor accounting for the visual information
of Ip should be representative of the actual content of the scene at p and be
unaffected by the presence of variations.

There are three main sources of variation in Ip. First, ‖pi − pj‖ < ε implies
the points of view where the images were taken from are not exactly the same,
so are not the images Ipi and Ipj . Secondly, some objects may have appeared,
disappeared or just changed their relative position in images taken at different
times due to independent movement or mutual occlusions. Third, objects can
look differently due to changes in the position relative to light sources, but also
to a variation through time of those lights.

This paper focuses on a framework to describe sets of images in a simple,
generic and compact way coping with the previous sources of variation. First,
we employ the α–trimmed average histogram to integrate the images in one
descriptor by analogy to the problem of representing a group of frames in a video
by their color histograms [1]. Since our images have greater color variation, we
apply a color constancy technique to improve the descriptor stability. At the
end, we show the performance of the descriptor and its improvement after using
the color constancy step. This way, we get a robust representation of an area
build up by different color histograms reduced to a canonic light conditions and
combined in a way that outliers and light variation have been greatly reduced.

2 Descriptor of a Set of Images (SoI)

Our problem is close to that of finding a general framework for an efficient
representation of video sequences, where the goal is usually to develop fast and
robust algorithms for the identification of the video segment to which a query
belongs [2]. In both cases, there is a set of images to be reduced to an efficient,
robust and stable descriptor which can be used in a content-based query.

A generic mechanism to describe the content in a video sequence is the shot-
based representation model. Once the shot is selected, it is customary to describe
the visual and color content of shots using key frames and key frame histograms,
respectively. Another framework is the groups of frames that are collections of
frames selected according to a certain criterion. It is more flexible and general
than the shot-based approach and well-suited for representing the sequential and
hierarchical nature of video data.

Although the key frame histogram is a very simple descriptor of the color
content of a shot, it is highly dependent on the selection criterion of the represen-
tative frame(s) and may lead to unreliable results. A more favourable approach
is to consider the color content of all frames within a shot. Considering different
strategies to get this cumulative color histogram, the simplest approach is the
mean histogram, though potential problems with its sensitivity to outliers may
make advisable the use of the median [1].
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An alternative approach for computing the histogram of a set of images (SoI)
is to define a family of α-trimmed average histograms [1], obtained by sorting the
set of image histogram values for each bin in ascending order and averaging only
the central M − 2�αM� elements of the ordered array, where M is the number
of images in the SoI. Then, each bin j is computed as

αTrimHist(j, α) =
1

M − 2�αM�

M−�αM�∑

i=�αM�+1

H̃i(j) (1)

where {H̃1(j), . . . , H̃M (j)} is the sorted array of image histogram values for the
jth bin, i.e., {H1(j), . . . ,HM (j)}. The trimming parameter α ∈ [0, 1

2 ], controls
the number of data points excluded from the average computation. While α = 0
corresponds to the mean histogram, α = 1

2 computes the median one.
The interest of the above aggregation scheme is that of reducing the effect of

outliers such as those belonging to objects that appear or disappear in the frames
embodied in a SoI while easily encompassing either the mean or the median
by tuning the α parameter. Additionally, the use of histograms minimizes the
importance of relative positions of the objects in the scene. This way, two out of
three main variation sources are reduced using those descriptors.

The third source of variability, illumination, needs special consideration. The
kind of sequences in video data [1] have a relatively small light variation within
a shot since a great effort in the visual uniformity of sequences has been put
during the shooting and post-production. Nevertheless, in the case of images
taken from a mobile robot, no control on the illumination can be done and
the images belonging to the same SoI may have been taken at different times
implying greater light variations which affect the color of the objects in the scene,
as appreciated in Fig. (1).

3 Color Constancy in a Set of Images

Images in a SoI may present some degree of color variation due to changing light
conditions. Our approach consists in reducing this variation before aggregating
their color histograms using Eq. (1). On that purpose, we compute for every
image in a SoI the set of all feasible color mappings rendering the image back to
a canonical illumination – corresponding to a canonical image selected from the
SoI – and selecting one mapping afterwards based on a measure of its likelihood.

More precisely, let Ic and Ia be the canonic and the actual images, respec-
tively, picturing pretty much a similar scene since they are taken at nearly the
same pose under two different illuminations. Our aim is to find the most likely
color transformation T which maps the pixel colors of image Ia as close to those
of image Ic as possible, hence reducing the color variation in the SoI. We now
sketch the basis of our color constancy algorithm.

cetto
Rectangle



A Color Constancy Algorithm for the Robust Description of Images 235

Fig. 1. Images taken nearly at the same a pose.

3.1 Likelihood Function

First, we introduce some notation and definitions. We note as I ⊂ Rn a certain
set of colors. Those colors can come from a specified color gamut or an image I.
We also get the color histogram H(I) from I. If the mapping T ∈ T is applied to
every color in I, the transformed set T(I) is obtained. T is the set of all feasible
color mappings.

In general, given two color sets, Ia and Ic, a model of color change is a map-
ping T ∈ T so that T(s) = q, where s ∈ Ia and q ∈ Ic are corresponding colors.
Finally, the set of feasible mappings can be defined as T = {T = G(s,q) | ∀s ∈
Ia and ∀q ∈ Ic}, where G is a recovery scheme (a function or an algorithm)
computing one single mapping T out of two colors s and q.

The color constancy algorithm will select the most likely transformation T̂
from the set T . Therefore, if LG(T |Ia, Ic) is a function computing the likelihood
for every mapping T ∈ T , the algorithm finds the mapping that

T̂ = argmax{LG (T|Ia, Ic) , T ∈ T } (2)

A likelihood function LG can be related to a probability function Pr in the
way LG(T|Ia, Ic) = log(Pr(T|Ia, Ic)). So, first we must get a value for the
probability Pr of a certain mapping T. As an estimate of Pr(T|Ia, Ic) we use the
histogram of the set of feasible mappings, H(T ), computed from the sets Ia and
Ic and the recovery scheme G. The key idea is that the more likely a mapping
is, the more frequent it should be in the histogram H(T ).

Let G−1(T) = {(s,q) ∈ Ia×Ic |G(s,q) = T} be the set of all pairs (s,q) giv-
ing rise to a certain mapping T using the recovery scheme G. The set G−1(T) can
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be taken instead of T since G−1(T) = G−1(T′) ⇔ T = T′. Hence, Pr(T|Ia, Ic))
is estimated as Pr(G−1(T)|Ia, Ic)).

In addition, since our color sets are discrete, G−1(T) can be thought as a
finite disjoint union of singletons {(s,q)}. Each singleton {(s,q)} ∈ Ia ×Ic can
be further divided in two different pieces, namely, {s} ∈ Ia and {q} ∈ Ic, which
can be assumed to be independent. Therefore,

Pr((s,q)|Ia, Ic) = Pr(s|Ia) · Pr(q|Ic) (3)

where Pr(s|Ia) and Pr(q|Ic) estimates come from their corresponding bins in
histograms H(Ia) and H(Ic), respectively. Then,

Pr(T|Ia, Ic)) =
∑

∀(s,q)∈G−1(T)

Pr(s|Ia) · Pr(q|Ic) (4)

That is, the frequency of the bin corresponding to a mapping T in the his-
togram of feasible mappings H(T ) can be computed adding the product of fre-
quencies of the two bins in H(Ia) and H(Ic) corresponding to all the color pairs
giving rise to the mapping T by means of the recovery scheme G.

In order to improve the robustness of Eq. (4), a measure of similarity between
the transformed set T(Ia) and the canonical set Ic is taken into account which
evaluates the performance of a particular mapping. We use the Swain&Ballard
intersection measure [3] defined as ∩(H,M) =

∑
k min{Hk, Mk} ∈ [0, 1] for its

computational simplicity. This measure is helpful in practice to eliminate outlier
mappings among the set of candidates.

Finally, we joint the probability and performance of a mapping in a single
likelihood function as follows

LG(T|Ia, Ic) = log(∩(T(Ha),Hc)) · Pr(T|Ia, Ic)) (5)

where Ha = H(Ia), Hc = H(Ic) and Pr(T|Ia, Ic)) is as in Eq. (4). Furthermore,
T(H) is the transformation of a histogram H by T.

3.2 Color Change Model and Recovery Scheme

To complete the previous scheme, the kind of color coordinates and the model
of color change T as well as the recovery function G must be explicitly stated.

First, colors are vectors in Rn, where n = 3 in a (R, G, B) color space or
n = 2 in a chromaticity space. In our case, to alleviate problems found in images
with specularities or shades, and to reduce at the same time the computational
burden, we use the perspective color coordinates (r, g) = (R/B, G/B) defined
by Finlayson in [4] which discard intensity. Finlayson and Hordley proved in [5]
that the set of feasible mappings computed in a 3D space and projected into a
2D space afterward is the same as the set computed directly in a 2D space.

A general lineal color change model can be mathematically describe as T(s) =
T · s = q, where T ∈ Mn(R) is a square matrix encompassing a particular color
change between two different lights [6]. A reasonable tradeoff between simplicity
and performance can be attained employing a diagonal model [6, 7, 4]. This model
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assumes color sensors are completely uncorrelated and any change in the light
arriving to them equates to independently scaling each channel value, that is,
T = diag(t1, . . . , tn). Equivalently, T can be also expressed as a vector t =
(t1, . . . , tn) ∈ Rn. Therefore, for any pair (s,q) ∈ Ia × Ic, the color change
model we use is

T: Ia −→ Ic

s 
−→ T(s) = T · s = q (6)

and the recovery scheme is

G: Ia × Ic −→ T ⊂ Rn

(s,q) 
−→ G(s,q) = ( q1
s1

, . . . , qn

sn
) = t (7)

where T = {( q1
s1

, . . . , qn

sn
) | ∀ (s,q) ∈ Ia × Ic}.

3.3 A Color Constant Set of Images

Once a canonical image Ic ∈ I is selected, we apply the previous color constancy
to the set {I1, . . . , IM} employing their color histograms {H1, . . . ,HM} and the
canonical Hc. Afterward, the set {T1(H1), . . . , TM (HM )} of transformed his-
tograms can be used to generate the α-trimmed average histogram defined in
Eq. (1) representing the whole SoI, noted as HSoI .

4 Results

We want to show how the performance of the scene description HSoI improves
after using our color constancy algorithm. A natural way to measure the fidelity
of these descriptors is in terms of the average error EHSoI within a set of images
defined in [1] as the average of the accumulated distance between each image
histogram Hi in the SoI and the SoI histogram HSoI ,

EHSoI =
1
M

M∑

i=1

N∑

j=1

|Hi(j) −HSoI(j)| (8)

where N and M are the number of bins and that of images, respectively. This
error provides a consistent way to assess the performance of the proposed de-
scriptor. The less representative of the color content of the SoI the descriptor is,
the greater the error measure is.

Our database consist in a set of 21 images at five different poses and with very
different light conditions picturing a regular office environment. The canonical
image of these scenes can be seen in the leftmost column of Fig. (2). The first four
scenes have 3 images each, while the last one has 9. Besides, images belonging
to the same scene have appreciable variations in the point of view and light
conditions, as depicted in Fig. (1). The group with a greater variation is the last
one, where there are occlusions and some objects have appeared or disappeared.

The rightmost column in Fig. (2) shows the error EHSoI as a function of the
trimming parameter α. The results obtained if no color constancy step – No CC
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Fig. 2. Scenes and Performance plots.
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Table 1. No Color Constancy Step.

Scene Mean Std Max Min

No.1 0.760 0.001 0.763 0.760
No.2 0.744 0.000 0.744 0.743
No.3 0.673 0.006 0.676 0.661
No.4 0.804 0.003 0.809 0.802
No.5 0.820 0.024 0.851 0.799

Table 2. With Color Constancy Step.

Scene Mean Std Max Min % Red.

No.1 0.341 0.010 0.345 0.320 55.13
No.2 0.350 0.018 0.358 0.313 52.96
No.3 0.415 0.020 0.424 0.374 38.34
No.4 0.232 0.002 0.233 0.227 71.14
No.5 0.389 0.008 0.396 0.378 52.56

– is applied are plotted with a red solid line with squares, while those obtained
after the color constancy step – With CC – are depicted with a green dashed line
with circles. To clarify numerically those results, we have expressed the mean,
standard deviation, maximum and minimum values of these plots in Table 1 and
2, as well as the error reduction in the last column in Table 2.

The results clearly show there has been a reduction (54% in average) of the
error EHSoI between the image histograms Hi and the scene descriptor HSoI

after the color constancy step, which means a decrease of the internal image
variation and an improvement for representativeness of SoI by the proposed scene
descriptor. Furthermore, the obtained error reduction is far greater than that
achieved by only tuning the trimming parameter, which means that a simpler
descriptor could be used instead, for example, by only employing the mean (α =
0) or the median (α = 1/2) to compute HSoI .

5 Conclusions

This paper has exposed the problem of obtaining a global color-based description
of a set of images captured from a mobile robot picturing a particular location.
Our main concern has been to generate a kind of descriptors robust to a certain
number of sources of variation, being color variation due to illumination changes
the most important one to cope with among images taken from a mobile plat-
form. As a result, we have shown that a reduction in the average error between
the histograms of the set images and the histogram describing the whole set can
be attained by applying a color constancy step. The color descriptor is then more
robust and representative of the set since its color variation has been greatly re-
duced. A future work would be the extension of these descriptors to the task of
robot localization only by means of the set of captured images.
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