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Abstract. Color is an important cue both in machine vision and im-
age processing applications, despite its dependence upon illumination
changes. We propose a color constancy algorithm that estimates both the
set and the likelihood of feasible color mappings in respect to their fre-
quency and effectiveness. The best among this set is selected to rendered
back image colors as seen under a canonical light. Experiments were done
to evaluate its performance compared to Finlayson’s 2D gamut–mapping
algorithm, outperforming it. Our approach is a helpful alternative wher-
ever illumination is poorly known since it employs only image data.
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1 Introduction

In a number of applications from machine vision to multimedia or even mobile
robotics, it is important that the recorded colors remain constant under changes
in the scene illumination. Hence, a preliminary step when using color must be to
remove the distracting effects of such a variation. This problem is usually referred
to as color constancy, i.e., the stability of surface color appearance under varying
illumination. Part of the difficulty is its entanglement with other confounding
phenomena such as object shape, viewing and illumination geometry, besides
changes in the nature of light and the reflectance properties of surfaces.

Generally, color constancy (CC) is understood as the recovery of descriptors
for the surfaces in a scene as they would be seen under a canonical illuminant.
This is similar to recover an estimate of the illumination color from an image
under an unknown light, since it is relatively straightforward to map image colors
back to illuminant independent descriptors [1]. Therefore, finding a mapping
between colors or the color of the scene illuminant are equivalent problems.

Some algorithms followed such a path, specially those related to the gamut–
mapping approach [2,3,4,5]. Recently, the trend has slightly changed to make a
guess on the illumination, as in color–by–correlation [1] or color–voting [6], rather
than attempting to recover only one estimate. A measure of the likelihood that
each of a set of feasible candidates was the scene illuminant is set out instead,
which is afterwards used to render the image back into the canonical illuminant.
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Some difficulties arise among the approaches above. The main one for us is
the dependence on the fact that all possible colors under a canonic illuminant be
available a priori. Besides, while gamut–mapping employs a selection strategy
blind to any information about the likelihood of a particular mapping, color–by–
correlation can only chose an illumination out of a discrete set of lights known
a priori. Real–world applications usually do not fit such requirements.

Hence, in this paper we propose a new color constancy algorithm that can
be used in tasks with little knowledge on the scene illumination. Our algorithm
computes the histogram of the feasible maps and recovers one to changes image
colors as if seen under a canonic light only using a canonic image picturing a
similar scene. The performance of this algorithm is compared to that of the
Finlayson’s 2D gamut–mapping, outperforming it and obtaining similar figures
to those of the color–by–correlation approach.

2 The Color Constancy Algorithm

The goal of this algorithm is to recover an image as seen under some canonic
illumination. This algorithm gives to each feasible color mapping a particular
likelihood related to its frequency and performance. The frequency is estimated
from the histogram of feasible mappings, while the performance evaluates how
close colors are rendered to those in the canonic set. The combined measure
is used afterwards to select the best color mapping. Hereafter, we describe the
basis of our algorithm along with its elements, namely, likelihood function, color
coordinates, color change model, and mapping estimation and selection.

Let Ic and Ia be the canonic and the actual images, respectively, picturing
similar scenes under two different lights. The algorithm only employs image
raw data and no segmentation is needed. Our aim is to find the likeliest color
transformation T mapping colors of image Ia as close to those of Ic as possible.
We note as I ⊂ R

d a set of colors, where d is the color space dimension. Its origin
can be either a specified color gamut or an image. The color histogram of I is
noted as HI . If a mapping T ∈<T> is applied to each color in I, a transformed
set T(I) is obtained. < T > is the set of feasible color mappings. Analogously,
T(HI) represents the transformation of the histogram HI by the map T.

In general, given two color sets, Ia and Ic, a model of color change consists
in a mapping T ∈<T> so that

T: Ia −→ Ic

s �−→ T(s) = q
(1)

where s ∈ S and q ∈ Q are corresponding colors. The set of feasible maps is
<T>= {T = ∆(S, Q) | ∀S ⊂ Ia and ∀Q ⊂ Ic} and ∆ is a mapping estimation
scheme computing a map T out of two corresponding sets S and Q.

2.1 Likelihood Function

The color constancy algorithm must select the likeliest transformation T̂ from
the set <T> accordingly to a likelihood function L∆(T | Ia, Ic) as
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T̂ = argmax
T ∈<T>

{ L∆ (T | Ia, Ic)} (2)

Any likelihood L∆ is related to a probability function Pr as L∆(T | Ia, Ic) =
log(Pr(T | Ia, Ic)), noting that the map maximizing L∆(T | Ia, Ic) also max-
imizes Pr(T | Ia, Ic)), and vice versa. Hence, we must first get a value for the
probability of any mapping T. As an estimate of Pr(T | Ia, Ic) we use the his-
togram of the set of feasible mappings, noted as H<T>. In order to compute
frequencies we employ colors in the sets Ia and Ic, as well as the mapping esti-
mator ∆. The point is that the likelier a mapping is, the more frequent it should
be in the histogram H<T>, and the other way round.

Nonetheless, a particular mapping T can be produced from different groups of
colors. Thus, it is useful to define the set of all pairs (S, Q) giving rise to a certain
map T from the estimator ∆, i.e., ∆−1(T) = {(S, Q) ∈ 2Ia×2Ic | ∆(S, Q) = T},
where 2I stands for the set of all subsets of I. Therefore, the set ∆−1(T) is
equivalent to T and can be taken instead of it since ∆−1(T) = ∆−1(T′) ⇔ T =
T′. Hence, it is true that Pr(T | Ia, Ic) = Pr(∆−1(T) | Ia, Ic).

In practice, ∆−1(T) can be thought as a finite disjoint union of singletons
{(S, Q)}, being each set a combination of colors from sets Ia and Ic, respectively.
Besides, to compute Pr((S, Q) | Ia, Ic) we must only remind that each {(S, Q)}
is formed by two independent sets, namely, S ⊂ Ia and Q ⊂ Ic. Therefore,

Pr((S, Q) | Ia, Ic) = Pr(S | Ia) · Pr(Q | Ic) (3)

Then, we get that

Pr(T | Ia, Ic)) =
∑

∀(S,Q)∈∆−1(T)

Pr(S | Ia) · Pr(Q | Ic) (4)

that is, frequency of a mapping T in the histogram of feasible mappings H<T>

is computed adding the product of frequencies corresponding to all the pairs S
and Q giving rise to the mapping T by means of the mapping estimator ∆.

Pr(S | Ia) and Pr(Q | Ic) are approximated by the frequency of the corre-
sponding bins in histograms HIa and HIc . In case S = {s}, it is straightforward
that Pr(S | I) ≈ HI(s). Hence, in general, if S = {si}i=1,...,n, the probability of
the set under the hypothesis of independence of colors is

Pr(S | I) ≈
n∏

i=1

HI(si) (5)

On the other hand, usually some spurious peaks appear in H<T>, which
might mislead the algorithm. To improve the robustness of Eq. (4), a measure
of similarity between the transformed set T(Ia) and the canonic set Ic is taken
into account, evaluating the efficiency of a particular mapping T. We use the
Swain & Ballard intersection–measure between histograms defined in [7] as

∩(H1, H2) =
∑

k

min{H1(k), H2(k)} ∈ [0, 1] (6)
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The advantages of such a measure are that it is very fast to compute if
compared to other matching functions. Besides, if the histograms are sparse and
colors equally probable, it is a robust way of comparing images [7]. This step
helps in practice to eliminate outlier mappings among candidates.

As a consequence, we finally define our likelihood function by joining the
probability of a mapping and its performance in a single expression as follows

L∆(T | Ia, Ic) = log(∩(T(HIa), HIc)) · Pr(T | Ia, Ic)) , ∀T ∈<T> (7)

where T(HIa) is the transformation of HIa by a mapping T and Pr(T | Ia, Ic))
is the frequency of T in the histogram H<T> computed with Eq. (4).

2.2 Color Coordinates

Colors can be represented as vectors in R
d. In our case, to alleviate problems

with specularities or shape and to reduce at the same time the computational
burden, we use the perspective color coordinates (r, g) = (R/B, G/B) proposed
by Finlayson in [3]. Finlayson and Hordley also proved in [8] for these coordinates
that the set of feasible mappings computed in a 3D space and projected into a
2D space afterward is the same as the one directly computed in a 2D space.

2.3 Color Change Model

It is been stated that any color change could be described using a homogeneous
linear relation [2]. Thus, the mapping T is specified in coordinates as follows

T: Ia −→ Ic

s �−→ T(s) = Tst = qt (8)

A reasonable tradeoff between simplicity and performance is attained employ-
ing a diagonal model [2,1,3]. This model assumes color sensors are completely
uncorrelated and any change in the light falling into them equates to indepen-
dently scaling each channel, that is, T = diag(t1, . . . , td). Equivalently, T can be
expressed as a vector t = (t1, . . . , td) ∈ R

d, so that, T = t Id. This is the model
used in this paper, despite the color constancy algorithm also works with any
other more complete model, involving more computational time as a result.

2.4 Mapping Estimation

Formally, the mapping estimator ∆ is a function computing a mapping T ∈<T>
from two sets S = {si}i=1,...,n ⊂ Ia and Q = {qi}i=1,...,n ⊂ Ic, i.e.,

∆ : 2Ia × 2Ic −→ <T>
(S, Q) �−→ ∆(S, Q) = T (9)

A mapping T can be expressed as a matrix T so that q = T(s) is equivalent
to Tst = qt. In general, it is not possible to find a matrix T out of just a
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pair of corresponding vectors s and q, since we need, at least, as many linearly
independent pairs as the space dimension d. Taking advantage of the nature of
T and two sets of n ≥ d one–to–one corresponding vectors, namely, {si}i=1,...,n

and {qi}i=1,...,n, it is true that T (st
1 | · · · | st

n) = (qt
1 | · · · | qt

n).
If S = (st

1 | · · · | st
n) ∈ Md×n(R) and Q = (qt

1 | · · · | qt
n) ∈ Md×n(R) are

introduced by joining vectors columnwise, finding a matrix T consists in solving
the linear system Q = TS, where T is the unknown. The usual method to solve
this system is by a SVD to compute pseudo–inverse S+. Therefore, the version
of Eq. (9) in coordinates is

∆ : Md×n(R) × Md×n(R) −→ Md(R)
(S,Q) �−→ ∆(S,Q) = QS+ = T (10)

In case the diagonal model is used, the above function is greatly simplified

∆ : R
d × R

d −→ R
d

(s,q) �−→ ∆(s,q) = ( q1
s1

, . . . , qd

sd
)t = t (11)

The method for carrying out the mapping computations between two color
sets consists in first computing the histograms of both sets and applying the
estimator ∆ to every possible pair of color sets. Colors in S need not to be
really in a correspondence with those in Q, since all possible combinations are
checked. Nevertheless, in a real case some heuristic are necessary to speed up
the process. In our case, only the colors with nonzero frequency are considered,
which reduces the amount of computations to less than O

(
p2

)
, where p 
 n is

the number of histogram bins and n the number of colors in a set.

2.5 Mapping Selection

In addition to Eq. (2), other heuristics can be useful to improve the results

Max: As said in Eq. (2), the mapping with the highest likelihood is selected.
Mean: Mean among the candidates, after weighting them by their likelihood.
CMax: The same as in Max, after constraining the set of feasible illuminants,

as proposed by Finlayson.
CMean: The same as in Mean, after constraining the illuminant set.
CM: The center of mass of the convex hull from the set of feasible mappings.

3 Experiments and Results

We show now the performance of our color constancy algorithm compared to
that of Finlayson’s 2D gamut mapping. To that goal, the database1 considered
consisting in a set of 220 images from 20 objects viewed under 11 illuminants.

1 http://www.cs.sfu.ca/~color/data/objects under different lights/index.
html
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Basically, these are images (Fig. 1) of single colorful objects in a black back-
ground to avoid interreflections. The pose of the objects varied every time lights
were changed. Additionally, authors took care of analyzing the lights used to
produce the images, quite helpful in building the set of feasible illuminants.

A canonic image of the scene is employed as the reference for colors. Ex-
periments carried out basically consists in computing a distance between colors
from each scene and those of the canonic one before and after the CC stage to
measure the amount of reduction in color dissimilarity. This is done for the two
algorithms and one canonic image per set. The more the processed images resem-
ble to the canonic, the greater the color dissimilarity reduction. Each algorithm
has various selection heuristics. Our algorithm used CM , Mean, Max, CMean,
and CMax, as explained in Section 2.5. In Finlayson’s 2D–GM we employed the
center of mass (FinCM), the mean (FinMean), and the 3D mean proposed by
Hordley and Finlayson in [8] (FinHord), all constrained by the set of lights.

(a) (b)

Fig. 1. Sets of some objects under all light variation: (a) rollups, (b) book

Two measures of color dissimilarity were applied to estimate the performance
of the two CC methods, namely, the Swain & Ballard difference [7] and a RMS
error. The first accounts for the difference between the canonic and the processed
color histograms. Here, an extra result (True) is obtained using the maps from
the true lights in the database. Instead, RMSE compares two images obtained
from each actual image after transforming it with the true mapping and the one
from the particular CC algorithm. The canonic image is useless here because
RMSE is pixelwise and objects were moved from one image to another.

The results are summarized in Fig. 2 through Fig. 5. Plots in Fig. 2 and Fig. 3
show the results corresponding to the S&B distance, while Fig. 4 and Fig. 5
illustrate those using the RMSE distance. These graphics consist in three plots
each: mean, median, and a distribution boxplot2, where colors represents versions
of the algorithms. Additionally, the numerical values for the mean distances
and the percent reduction of the color dissimilarity are accounted in Table 1
(Finlayson’s 2D–GM) and Table 2 (our CC algorithm), where No CC correspond
to the distance between images before any CC is carried out.

First of all, when considering the performance of our algorithm, we state the
results from the Finlayson’s 2D–GM – 0.27 (RMSE) – are comparable to those in

2 A boxplot is a statistic descriptive tool showing, at once, a distribution of values.
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(a) (b) (c)

Fig. 2. Results using S&B and Finlayson’s 2D–GM. Blue: No CC. Red: True. Green:
FinCM . Magenta: FinMean. Violet: FinHord. (a) Mean, (b) median, and (c) boxplot.

(a) (b) (c)

Fig. 3. Results using S&B and our algorithm. Blue: No CC. Red: True. Green: CM .
Magenta: Mean. Violet: Max. Orange: CMean. Yellow: CMax. (a) Mean, (b) median,
and (c) boxplot.

(a) (b) (c)

Fig. 4. Results using RMSE and Finlayson’s 2D–GM. Blue: No CC. Red: FinCM .
Green: FinMean. Magenta: FinHord. (a) Mean, (b) median, and (c) boxplot.

(a) (b) (c)

Fig. 5. Results using RMSE and our algorithm. Blue: No CC. Red: CM . Green: Mean.
Magenta: Max. Violet: CMean. Orange: CMax. (a) Mean, (b) median, and (c) box-
plot.
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Table 1. Results using Finalyson’s 2D–GM algorithm

Finlayson’s 2D-GM FinCM FinMean FinHord No CC True
S&B Mean Dist. 0.3367 0.3357 0.3464 0.6036 0.2488

% Red. 44.22 44.38 42.61 ∼ 58.78
RMSE Mean Dist. 0.2732 0.2738 0.2655 0.3559

% Red. 23.24 23.07 25.40 ∼

Table 2. Results using our color constancy algorithm

Our CC alg. CM Mean Max CMean CMax No CC True

S&B Mean Dist. 0.3301 0.3301 0.2956 0.2805 0.2945 0.6036 0.2488
% Red. 45.31 45.31 51.03 53.53 51.21 ∼ 58.78

RMSE Mean Dist. 0.1330 0.1313 0.1382 0.1060 0.1200 0.3559
% Red. 62.63 63.11 61.17 70.32 66.28 ∼

[1] – 0.21 (RMSE) –. In Table 1 and 2 it is shown that with the S&B distance the
Finlayson’s 2D–GM best result is achieved with FinMean (44.38%), whereas for
our algorithm the best result is obtained with CMean (53.53%), which is pretty
close to the figure from the true lights mappings (58.78%). In respect to the
RMSE results, figures obtained for our algorithm (70.32%) are definitely better
than those of Finlayson’s 2D–GM (25.40%) and totally comparable to the best
CC algorithm so far, namely, color–by–correlation [1] – 0.11 (RMSE) –, which
is fairly a good result since our approach works with less information.

4 Conclusions

This paper describes a new color constancy algorithm. This is based on the
computation of the histogram of feasible maps between two light conditions and
selecting the best mapping on the base of a likelihood measure for each mapping
encompassing both its frequency and effectiveness. Experiments were done to
evaluate the performance of our algorithm in comparison to that of Finlayson’s
2D–GM, outperforming it and attaining similar results to those of the color–
by–correlation scheme. Our algorithm works with only a canonic image as a
reference and resulting maps are not restricted to a discrete set of feasible ones.
Besides using less information than other methods, it is a useful alternative in
tasks where little knowledge on the illumination is at hand.
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