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Abstract 
Most vision-based robot positioning techniques rely 

on analytical formulations of the relationship between 
the robot pose and the projected image coordinates of 
several geometric features of the observed scene. This 
usually requires that several simple features such as 
points, lines or circles be visible in the image and be 
properly extracted. 

In this paper, we present a method to compare 
images (scenes that the robot has learned) based on a 
fast and exact distance between histograms. In contrast 
to the methods described before, our method is faster 
and with less storage space do to the images do not 
need to be segmented and only a lossless description of 
the histograms are stored in the data base. 
 
1. Introduction 
Most of the distance measures in the literature [1] 
consider the overlap or intersection between two 
histograms as a function of the distance value but do 
not take into account the similarity in the non-
overlapping parts of the two histograms. For this 
reason, Rubner presented in [2] a new definition of the 
distance measure between histograms that overcomes 
this problem of non-overlapping parts. Called Earth 
Mover’s Distance, it is defined as the minimum amount 
of work that must be performed to transform one 
histogram into another by moving distribution mass. 
This author used the simplex algorithm. Later, Cha 
presented in [1] three algorithms for obtaining the 
distance between one-dimensional histograms that use 
the Earth Mover’s Distance. These algorithms compute 
the distance between histograms when the type of 
measurements are nominal, ordinal and modulo in 
O(z), O(z) and O(z2), respectively, where z is the 
number of levels or bins. 
Often, for specific set measurements, only a small 
fraction of the bins in a histogram contains significant 
information, i.e. most of the bins are empty. In such 
cases, the methods that use histograms as fixed-sized 
structures are not very efficient. For this reason, 
Rubner [2] presented variable-size descriptions called 
signatures that do not consider the empty bins. 

In [3], the authors performed image retrieval based on 
colour histograms. Because the distance measure 
between colours is computationally expensive, they 
presented a low dimensional and easy-to-compute 
distance measure and showed that this was a lower 
boundary for the colour-histogram distance measure. 
An exact histogram-matching algorithm was presented 
in [4]. The aim of this algorithm was to study how 
various image characteristics affect colour reproduction 
by perturbing them in a known way. 
In this paper we present the distances between 
histograms whose computational cost depends only on 
the non-empty bins rather than, as in the algorithms in 
[1,2], on the total number of bins. The type of 
measurements are nominal, ordinal and modulo and the 
computational cost is O(z’), O(z’) and O(z’2), 
respectively, where z’ is the number of non-empty bins 
in the histograms. In [5], we show that these distances 
are the same as the distances between the histograms in 
[1] but that the computational time for each comparison 
is lower when the histograms are large or sparse. The 
algorithms to compute them are not shown here due to 
lack of space (see [5]). 
 
2. Histograms & Signatures 
In this section, we formally define histograms and 
signatures. We end this section with a simple example 
to show the representations of the histograms and 
signatures given a set of measurements. 
 

2.1. Histogram definition 
Let x be a measurement that can have one of T values 
contained in the set X={x1,...xT}. Consider a set of n 
elements whose measurements of the value of x are 
A={a1,...an}, where at∈ X. 
The histogram of the set A along measurement x is 
H(x,A), which is an ordered list consisting of the 
number of occurrences of the discrete values of x 
among the at. As we are interested only in comparing 
the histograms and sets of the same measurement x, 
H(A) will be used instead of H(x,A) without loss of 
generality. If Hi(A), 1≤i≤T, denotes the number of 
elements of A that have value xi, then H(A)=[H1(A), 
…,HT(A)] where  
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The elements Hi(A) are usually called bins of the 
histogram. 
 

2.2. Signature definition 
Let H(A)=[H1(A), …,HT(A)] and S(A)=[S1(A), 
…,Sz(A)] be the histogram and the signature of the set 
A, respectively. Each Sk(A), 1≤k≤z≤T comprises a pair 
of terms, Sk(A)={wk ,mk}. The first term, wk, shows the 
relation between the signature S(A) and the histogram 
H(A). Therefore, if the wk=i then the second term, mk,  
is the number of elements of A that have value xi, i.e. 
mk=Hi(A) where wk<wt ⇔ k<t and mk>0. 
The signature of a set is a lossless representation of its 
histogram in which the bins of the histogram whose 
value is 0 are not expressed implicitly. From the 
signature definition, we obtain the following 
expression, 
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2.3. Extended Signature 

The extended signature is one in which some empty 
bins have been added. That is, we allow mi=0 for some 
bins. This is a useful structure for ensuring that, given a 
pair of signatures to be compared, the number of bins is 
the same and that each bin in both signatures represents 
the same bin in the histograms. 
 

2.4. Example 
Figure 1 shows the histograms that represent sets A and 
B of 10 elements between 1 and 8. 

 
Figure 1. Histograms of sets A and B. 

 
Figure 2 shows the signature representation of sets A 
and B. The length of the signatures is 4 and 3, 
respectively. Set A has 2 elements with a value of 6 
since this value is represented by the bin 4 (W4

A=6 ) 
and the value of the vertical axis is 2 at bin 4. 
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Figure 2. Signature representation of the sets A and B. 
 

Figure 3 shows the extended signatures of the sets A 
and B with 5 bins. Note that the value that the extended 
signatures represents for each bin, wi, is the same for 
both signatures. 
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Figure 3. Extended Signatures A’ and B’. The number 
of elements mi is represented graphically and the value 
of its elements is represented by wi. 
 
3. Type of measurement 
We consider 3 types of measurements, called nominal 
(each value of the measurement is a name and there is 
no relation, such as greater than or lower than, between 
them), ordinal (the values are ordered) and modulo (the 
values are ordered but they form a ring because of the 
arithmetic modulo operation).  
Corresponding to these three types of measurements, 
we define three measures of difference between two 
measurement levels a∈  X and b∈  X, as follows: 
a) Nominal distance:  
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The distance value is either match or mismatch, which 
are mathematically represented by 0 or 1. 
b) Ordinal distance: 

                      ( ) babadord −=,                    (4)  
The distance value is computed by the absolute 
difference of each element. 
c) Modulo distance: 
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The distance value between two modulo measurement 
values is the interior difference of each element. 
 
4. Distance between Signatures 
For the following definitions of the distances, we 
assume that the extended signatures of S(A) and S(B) 
are S(A’) and S(B’), where ( ) { }'' ,' A

i
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is zA and zB and the number of bins of both extended 
signatures is z’. 
 

4.1. Nominal Distance 
The nominal distance between the histograms in [3] is 
the number of elements that do not overlap or intersect. 
We redefine this distance using signatures as follows, 

              ( ) ( )( ) ∑
=

−=
'

1

'',
z

i

B
i

A
inom mmBSASD       (6)  



 
4.2. Ordinal Distance 

The ordinal distance between two histograms was 
presented in [4] as the minimum work needed to 
transform one histogram into another. H(A) can be 
transformed into H(B) by moving elements to the left 
or to the right and the total number of all the necessary 
minimum movements is the distance between them. 
There are two operations. Suppose an element a that 
belongs to bin i. One operation is move left (a). This 
result of this operation is that element a belongs to bin 
i-1 and its cost is 1. This operation is impossible for the 
elements that belong to bin 1. Another operation is 
move right (a). Similarly, after this operation, a 
belongs to bin i+1 and the cost is 1. The same 
restriction applies to the right-most bin. These 
operations are graphically represented by right-to-left 
arrows and left-to-right arrows. The total number of 
arrows is the distance value. This is the shortest 
movement to transform an histogram to the other. 
The distance between signatures is defined as follows, 
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The arrows do not have a constant size (or constant 
cost) but depend on the distance between bins. If 
element a belongs to bin i, the result of operation move 
left (a) is that the element a belongs to bin i-1 and its 
cost is 1−− ii ww . Similarly, after the operation move 
right(a), the element a belongs to bin i+1 and the cost 
is 

ii ww −+1
. In equation (7), the number of arrows that 

go from bin i to bin i+1 is described by the inner 
addition and the cost of these arrows is ii ww −+1 . 
 

4.3. Modulo Distance 
One major difference in modulo type histograms or 
signatures is that the first bin and the last bin are 
considered to be adjacent to each other. It therefore 
forms a closed circle due to the nature of the data type. 
Transforming a modulo type histogram or signature 
into another while computing their distance should 
allow cells to move from the first bin to the last bin, or 
vice versa, at the cost of a single movement. Now, cells 
or blocks of earth can move from the first bin to the last 
bin with the operation move left (1) in the histogram 
case or move left (w1) in the signature case. Similarly, 
blocks can move from the last bin to the first one with 
the operations move right (T) in the histogram case or 
move right (wz’) in the signature case. 
The cost of these operations is calculated as the cost of 
the operations in the ordinal distance except for the 
movements of blocks from the first bin to the last or 
vice versa. For the distance between histograms, the 

cost, as in all the movements, is one. For the distance 
between signatures, the real distance between bins or 
the length of the arrows has to be considered. The cost 
of these movements is therefore the sum of three terms 
(figure 4): (a) the cost from the last bin of the signature, 
wz’, to the last bin of the histogram, T; (b) the cost from 
the last bin of the histogram, T, to the first bin of the 
histogram, 1; (c) the cost from the first bin of the 
histogram, 1,  to the first bin of the signature, w1. The 
costs are then calculated as the length of these terms. 
The cost of (a) is T-wz’, the cost of (b) is 1 (similar to 
the cost between histograms) and the cost of (c) is w1-
1. Therefore, the final cost from the last bin to the first 
or vice versa between signatures is w1-wz’+T. 
 

 
Figure 4. The three terms that need to be considered in 
order to compute the cost of moving blocks from the 
last bin to the first or vice versa. 
 
Due to the previously explained modulo properties, we 
can transform one signature or histogram into another 
in several ways. In one of these ways, there is a 
minimum distance whose number of movements (or the 
cost of the arrows and the number of arrows) is the 
lowest. If there is a borderline between bins that has 
both directional arrows, they are cancelled out. These 
movements are redundant, so the distance cannot be 
obtained through this configuration of arrows. To find 
the minimum configuration of arrows, we can add a 
complete chain in the histogram or signature of the 
same directional arrows and the opposite arrows on the 
same border between bins are then cancelled out.  The 
modulo distance between signatures is defined as 
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The cost of moving a block of earth from one bin to 
another is not 1 but the length of the arrows or the 
distance between the bins (as explained in the ordinal 
distance between signatures). The cost of the 
movement of blocks from the first bin to the last or vice 
versa is w1-wz’+T and the cost of the other movements 
is wA’

i+1-w A’
i. The term c represents the chains of left 

arrows or right arrows added to the current arrow 
representation. The absolute value of c at the end of the 
expression is the number of chains added to the current 



representation. It comes from the cost of the arrows 
from the last bin to the first or vice versa. 
 
Example. Figure 5 shows five different transformations 
of signature S(A) to signature S(B) and their related 
costs. In the first transformation, one chain of right 
arrows is added (c=1). In the second transformation, no 
chains are added (c=0), so the cost is the same as the 
ordinal distance. In the third to the last transformations, 
1, 2 and 3 chains of left arrows are added, respectively. 
We can see that the minimum cost is 6 and c=-2, the 
distance value is 6 for the modulo distance and 14 for 
the ordinal distance. 

1  2  3  4  5  

X1 X3 X1 X1 X2 

1  2  3  4  5   

  X3   X1  X1  X2  

1  2  3  4  5 

X1 X3 X1 X1 X2 

1  2  3  4  5  

X1 X3 X1 X1 X2 

1  2  3  4  5 

X1 X3 X1 X1 X2 

 
        c=1         c=0         c=-1                c=-2                  c=-3 
    cost=22      cost=14    cost=10             cost=6              cost=12 
Figure 5. Five different transformations of signature 
S(A) to signature S(B) with their related c and cost 
obtained. 
 
5. Robot Positioning by Image Retrieval 
Our method has been tested using indoor scenes. These 
scenes were used for robot positioning. In the learning 
stage, the robot is guided through the offices and 
corridors while the exact position is introduced and the 
robot captures the scenes. In the recognition stage, the 
robot assumes to be in the position that captures the 
most similar scene obtained in the learning stage [6]. In 
[7], a same robot-positioning method was used. The 
main difference is that they used structural information 
of the image and they needed to segment the image. 
For this reason, the ratio of recognition was supposed 
to be higher but also the computational time. The main 
advantage of our method is that the image has not to be 
processed; only the signature of it is needed. 
Figure 6 represents a possible scene; we have taken 3 
images with a slight difference of the position. We have 
used the histograms of the luminance to test the 
cardinal and ordinal distance and the histogram of the 
hue to test the modulo distance. 

   

   
Figure 6. Three slightly different images from the 
same scene and their luminance histograms 

 
Table 1 shows the run time and ratio of recognition 
obtained from three experiments. The first one (a), the 
results where computed using the cardinal distance on 
the luminance histograms. The second one (b), the 
cardinal distance was changed by the ordinal distance. 
And the third experiment (c), the modulo distance was 
computed on the hue histograms. From each 
experiment, we obtained the run time and the ratio of 
recognition in 3 cases. 1: histograms. 2: signatures. 3: 
filtered signatures. In this case, the bins that had fewer 
elements than a threshold were removed. The threshold 
of the filter was situated as much higher as possible, 
when the ratio of recognition began to decrease. In all 
the cases, the run time was normalized such that the run 
time of the histogram in the first case was 100. 
It is interesting to realize the decrease on the run time 
in the case of the modulo distance when the filter is 
applied. There is a decrease from 526 to 78. 

  Card Dist  Ord Dist  Mod Dist 
 Histo. Sign.  Histo. Sign.  Histo. Sign.  
  No 

filter 
Filter  No 

filter 
Filter  No 

filter 
Filter 

Run time 100 85 51 105 87 45 526 233 78 
%Recog. 70.8 70.8 70.5 87.5 87.5 87.3 91.6 91.6 91.4 

 (a) Luminance  (b) Luminance     (c) Hue 
Table 1. Run time and ratio of recognition obtained 
from three experiments on the luminance histograms 
(a) and (b) and on the hue histograms (c). 
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