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Abstract. 
The aim of this paper is to present a new algorithm to compute the distance between n-
dimensional histograms. There are some domains such as pattern recognition or image retrieval 
that use the distance between histograms at some step of the classification process. For this 
reason, some algorithms that find the distance between histograms have been proposed in the 
literature. Nevertheless, most of this research has been applied on one-dimensional histograms 
due to the computation of a distance between multi-dimensional histograms is very expensive. 
In this paper, we present an efficient method to compare multi-dimensional histograms in O(z2), 
where z represents the number of bins. 
 

1. Introduction 
Finding the distance or similarity between histograms is an important issue in image 
classification or image retrieval since a histogram represents the frequency of the 
values of the pixels among the images. For this reason, a number of measures of 
similarity between histograms have been proposed and used in computer vision and 
pattern recognition. Moreover, if the position of the pixels is unimportant while 
considering the distance measure, we can compute the distance between images in an 
efficient way by computing the distance between their histograms. 
Histograms can also be used in structural pattern recognition. For instance, Serratosa 
defined the Function-Described Graphs [12], which is structure that represents a 
cluster of Attributed Graphs in which there is a probability density function in each 
node of the structure described by a histogram. Thus, to compare clusters (that is, to 
compare Function-Described Graphs), it is needed a distance between histograms to 
compare each of their nodes. Latter, the same authors defined the Second-Order 
Random Graphs [13]. This structure represents also a cluster of Attributed Graphs but 
there is much amount of information since there is a joint probability in each node 
described by a 2-dimensional histogram. The computational cost of comparing graphs 
is exponential respect the number of nodes in the worst case. There are some efficient 
algorithms that obtain sub-optimal distances in polynomial cost respect the number of 
nodes. For this reason, it is important to reduce the time consuming comparing their 
nodes. 
Most of the distance measures presented in the literature (there is an interesting 
compilation in [1]) consider the overlap or intersection between two histograms as a 
function of the distance value but they do not take into account the similarity on the 
non-overlapping parts of the two histograms. For this reason, Rubner presented in [2] 
a new definition of the distance measure between n-dimensional histograms that 
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overcomes this non-overlapping parts problem. It was called Earth Mover’s Distance 
and it is defined as the minimum amount of work that must be performed to transform 
one histogram into the other one by moving distribution mass. 
Often, for specific set measurements, only a small fraction of the bins in a histogram 
contain significant information, that is, most of the bins are empty. This is more 
frequent when the dimensions of the histograms increase. In that cases, the methods 
that use histograms as fixed-sized structures obtain poor efficiency. In the algorithm 
depicted by Rubner [2] to find the Earth Mover’s Distance the empty-bins where not 
explicitly considered. They used the simplex algorithm [3] to compute the distance 
measure and the method presented in [4] to search a good initialisation. The 
computational cost of the simplex iteration is O(z’2), where z’ is the number of non-
empty bins. The main drawback of this method is that the number of iterations is not 
bounded. Moreover, the initialisation cost is O(z’3). 
To reduce the computational cost, Cha presented in [1] three algorithms to obtain the 
Earth Mover’s Distance between one-dimensional histograms when the type of 
measurements where nominal, ordinal and modulo in O(z), O(z) and O(z2) 
respectively, being z the number of levels or bins. 
Finally, Serratosa reduced more the computational cost of comparing one-
dimensional histograms in [5]. They presented three new algorithms to compute the 
Earth Mover’s Distance between one-dimensional histograms when the type of 
measurements where nominal, ordinal and modulo. The computational cost were 
reduced to O(z’), O(z’) and O(z’2) respectively, being z’ the number of non-empty 
bins. 
It was presented in [6] an algorithm to compute the distance between histograms that 
the input was a built histogram (obtained from the target image) and another image. 
Then, it was not necessary to build the histogram of the image of the database to 
compute the distance between histograms. 
Really few have been done to compare n-dimensional histograms except in [2]. The 
main drawback of the method presented in [2] is the computational cost. The 
following papers, make use of colour histograms, although the distance between them 
is not the main object of the work. One of the earliest papers is  [7]. In that paper, the 
intersection of a pair of colour histograms (three dimensional histogram) was used to 
obtain a similarity measure between images. More recently, some kernel functions 
were defined in [8] based on the RGB and HSV histograms. In that paper, the number 
of bins per each dimension of the histograms had to be reduced to 16 due to run time 
an space requirements. And in [9], a support vector machine was used to classify 
images based on colour histograms. The bins of their histograms were not fixed-
structures but they were variable depending on the density of the pixels. Finally, in 
[10], a tree structure was defined for image retrieval. In each node of the tree, only the 
average of the histograms were stored. 
In this paper, we present an efficient algorithm to compute the distance between n-
dimensional histograms with a computational cost of O(z2). Our algorithm does not 
depend on the type of measurements (nominal, ordinal or modulo). In the next 
section, we define the histograms and types of values. In section 3, we give the 
definitions of distances between histograms and between sets and in section 4 we 
show the algorithm to compute the distance between histograms. In section 5, we 
show a separability-class function based on the histogram distance. In sections 6 and 
7 we show the experimental validation of our algorithm and the conclusions. 
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2. Sets and Histograms 
Let x be a measurement which can have one of z values contained in the set 
X={x1,...xz}. Each value can be represented in a T-dimensional vector as xi=(xi

1, 
xi

2,…,xi
T). Consider a set of n elements whose measurements of the value of x are 

A={a1,...an} where at∈ X being at=(at
1, at

2,…,at
T). 

The histogram of the set A along measurement x is H(x,A) which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As 
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤z, 
denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,Hz(A)] 
where  
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The elements Hi(A) are usually called bins of the histogram. Note that z is the number 
of bins of the histogram. In a T-dimensional histogram with m values per each 
dimension, the number of bins is z=mT. Therefore, 1≤i≤ mT. 
In this paper, the sets are images. For this reason and for the rest of the paper, the bins 
of the histograms represent the null or natural numbers, at

i ∈  {0 , N}. 
The distance between histograms presented in this paper is used as a fast method for 
comparing images and image retrieval. The most used colour representations are base 
on the R,G,B or H,S,I descriptors. The hue parameter (H) is a modulo-type 
measurement (measurement values are ordered but form a ring due to the arithmetic 
modulo operation) and the other parameters are ordinal-type measurements. 
Corresponding to these types of measurements mentioned before, we define a 
measure of difference between two measurement levels a=(a1, a2,…,aT) ∈  X and 
b=(b1, b2,…,bT) ∈  X as follows: 
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This measure satisfy the following necessary properties of a metric. Since they are 
straightforward facts, we omit the proofs. The proof of the triangle inequality for the 
modulo distance is depicted in [1] for the one-dimensional case (T=1). 

3. Distance definitions 
In this section we present the distance between sets D(A,B) and the distance between 
their histograms D(H(A),H(B)). It was demonstrated in [11] that both satisfy the 
necessary properties of a metric and that the distance values are the same, D(A,B) = 
D(H(A),H(B)). This is an important result since we present an algorithm that obtains a 
good approximation of D(H(A),H(B)) with a quadratic computational cost respect the 
number of bins of the histogram z. Moreover, in most of the applications, z is much 
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smaller than n. Another advantage is that the time consuming of the comparison is 
constant and does not depend on each set. 
Given two sets of n elements, A and B, the distance measure is considered as the 
problem of finding the minimum difference of pair assignments between both sets. 
That is, to determine the best one-to-one assignment f (bijective function) between the 
sets such that the sum of all the differences between two individual elements in a pair 
ai∈ A and bf(i)∈ B is minimised. See [11] for more information. 
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The distance between histograms that our algorithm computes was presented in [11]. 
It is a generalisation of the Earth Mover’s Distance presented in [2]. Intuitively, given 
two T-dimensional histograms, one can be seen as a mass of earth properly spread in 
space, the other as a collection of holes in that same space. Then, the distance 
measure is the least amount of work needed to fill the holes with earth. Here, a unit of 
work corresponds to transporting a unit of earth by a unit of ground distance.  
More formally, given two histograms H(A) and H(B), where measurements can have 
one of z values contained in the set X={x1,...xz}, the distance between the histograms 
D(H(A),H(B)) is defined as follows, 
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The flow between the bins of both histograms is represented by gf(i,j), that is, the 
mass of earth that is moved as one unit from the bin i to the bin j. The product 
d(xi,xj)gf(i,j) represents the work needed to transport this mass of earth. Notice that z =  
mT, being m the number of bins per each dimension and T the number of dimensions. 
In [11], we determine the flow between bins gf(i,j), as a function of the one-to-one 
assignment f between the sets A and B used to compute the distance D(A,B) as 
follows, 
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were the costs C are given in (2). 
It was demonstrated in [11] that with this new definition, we obtain two advantages; 
First, there is a relation between distances D(A,B) and D(H(A),H(B)) through their 
definition. Second, the constraints arbitrarily imposed to the flow between bins in [2], 
were converted in deducted properties that make possible to naturally match the 
distance between histograms to the transportation problem. 

4. Algorithm 
In this section, we depict an efficient algorithm used to compute the distance between 
histograms based on a solution to the well-known transportation problem [3]. Suppose 
that several suppliers, each with a given amount of goods, are required to supply 
several consumers, each with a given limited capacity. For each pair of suppliers and 
consumers, the cost of transporting a single unit of goods is given. The transportation 
problem is then to find a least-expensive flow of goods from the suppliers to the 
consumers that satisfies the consumer’s demand. Our distance between histograms 
can be naturally cast as a transportation problem by defining one histogram as the 
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supplier and the other one as the consumer. The cost of transporting a single unit of 
goods is set to the distance between the bin of one histogram and the bin of the other 
one, d(xi,xj). Intuitively, the solution of the transportation problem, gf(i,j), is then the 
minimum amount of “work” required to transform one histogram to the other one 
subjected to the constraints defined by the properties of the flow gf(i,j) (see [11]). 
The computational cost of the transportation problem is exponential, respect the 
number of suppliers and consumers, that is, the number of bins of the histograms, z. 
Fortunately, efficient algorithms are available. One of the most common solutions is 
the simplex algorithm [3], which is an iterative method that the cost of one simplex 
iteration is O(z2). The main drawback is that the number of iterations is not bounded 
and that this method needs a good initial solution. The Russell method [4] is the most 
common method used to find the first solution with a computational cost of O(z3). 
In this paper, we present an efficient and not iterative algorithm (figure 1) with a 
computational cost of O(z2). 
Given a pair of bins from both histograms, i and j, our algorithm finds the amount of 
goods that can be transported, gf(i,j), and computes the cost of this transportation, 
gf(i,j)*d(xi,xj). The algorithm finishes when all the goods have been transported, that 
is, all the elements of the sets, n, have been considered. In each iteration, a pair of 
bins is selected by the function next, in a given order.  
Algorithm Histogram-Distance (H(A),H(B))
i,j = first()
while n > 0 // n: the number of elements of both sets

gf(i,j) = min (Hi(A) , Hj(B))
Hi(A) = Hi(A) - gf(i,j)
Hj(B) = Hj(B) - gf(i,j)
n = n - gf(i,j)
D = D + gf(i,j) * d(xi,xj)
i,j = next (i ,j)

Return D //distance between histograms
Figure 1. Algorithm that computes the distance between n-dimensional histograms. 

4.1. The next function  

Given a pair i,j (i and j are a supplier and a consumer, respectively), the first and next 
function returns the first and next pairs of supplier and consumer to be explored, 
respectively. The first pair of supplier-consumer and the order generated by the next 
function only depends on the dimensionality of histogram and the number of bins but 
not on the values of the histograms, for this reason, first and next can be computed a 
priori. 
The order of the pairs i,j is set by decrementing an energy function E as follows, 

         i’,j’ = next (i,j)  iff  E(i’,j’) ≤ E(i,j)              (8)  
where E is defined as, 

         ( ) ( ) ( )jDeviationPathiDeviationPathjiE ij __, +=             (9)  
The Path_Deviationj(i) is the difference between the maximum cost from the bin i to 
any bin of the histogram and the real cost from this bin to the bin j, 

         ( ) ( ) ( )jiij xxdxdistiDeviationPath ,max__ −=             (10)  
It represents the worst case that the good can be sent (supplier) or received 
(consumer) respect the best case. Note that several pairs i,j can obtain the same 
energy value. In those cases, the order between them is set arbitrarily. 
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4.2. Computational cost  

Each step of the loop of the algorithm has a constant computational cost. The next 
function is implement as an array that for each pair i,j, returns the next pair i’,j’. For 
this reason, the worst computational cost of our algorithm only depends on the 
number of iterations. The algorithm finishes when all the goods, n, have been 
transported and so, the worst case would be in the case that this is achieved at the last 
transportation from i,j, to i’,j’. The number of possible transportations is z2. 

5. Experimental Validation 
To verify the performance of the proposed method, we have conducted an experiment 
on the WANG database. The WANG database is a subset of the Corel database of 
1000 images, which were selected manually to form 10 classes of 100 images each. 
The images are subdivided into 10 classes (e.g. Africa, beach, ruins, food) such that it 
can be assumed that a user wants to find the other images from a class if the query is 
from one of these 10 classes. 
Our test database was composed by 200 images from the WANG database (20 images 
for each class). In Figure 2 we can see one representative image of each class. The 
query set was composed by 20 images (2 images for each class) and the database set 
was composed by the other 180 images (18 images for each class). We decide that the 
query image belongs to a class using the 5 nearest neighbours criteria.  

 
Figure 2. Ten images of WANG database. One of each class. 
 
Given the depth of the pixels, the number of colours of the image, z, and also the 
computational cost of our algorithm is obtained. Besides, we can deduct the number 
of bins per dimension, m, depending on the dimensionality of the histogram. Table 1 
shows in the last three columns the possible combinations of dimensionality and 
number of bins per dimension. For instance, a 1D-histogram with 64 bins has the 
same computational cost, 4096, than a 2D-histogram with 8 bins per dimension and a 
3D-histogram with 4 bins per dimension. The empty cells in the table are the ones that 
m is not a natural number. 
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depth z Cost m (1D)m (2D)m (3D)
of pixels(#colours) O(z2) (z=m1) (z=m2) (z=m3)

1 2 4 2   
2 4 16 4 2  
3 8 64 8  2 
4 16 256 16 4  
5 32 1024 32   
6 64 4096 64 8 4 
7 128 16384 128   
8 256 65536 256 16  
9 512 262144 512  8 

10 1024 1048576 1024 32  
11 2048 4194304 2048   
12 4096 16777216 4096 64 16 

Table 1. Relation between the number of bins per dimension, m, and the number of colours, z, 
and cost, O(z2) in 1D, 2D and 3D histograms. 
 
Figure 3 shows the recognition ratio respect the number of colours in 6 different 
cases. In the first two cases, we have considered only the hue and the luminance. In 
the other two, we have considered the hue and saturation and also hue and luminance. 
In the last two cases we have considered the red, green and blue channels and also the 
hue, saturation and luminance channels. The values in figure 3 that correspond to 
empty cells in table 1 have been interpolated. 

 
Figure 3. Recognition ratio respect the number of colours. 
As we could imagine, when the number of colours increases (that is, the depth of the 
pixels), also increases the recognition ratio. But also, given a number of colours, it is 
worth to increase the dimensionality, since the recognition increases with the same 
computational cost. We can see also, that in this experiments, the Luminance has poor 
information, since H(1D) has better results than L(1D) and  HS(2D) has better results 
than HSL(3D) or HL(2D).   

6. Conclusions and future work 
We have presented a new distance between multi-dimensional histograms and an 
efficient algorithm to compute this distance. Our method is useful for comparing  
multi-dimensional histograms of any type of measurements. The theoretical 
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computational cost is O(z2), being z the number of bins. From the application point of 
view, we have seen that it is worth increasing the number of dimensions and reducing 
the number of bins per each dimension than reducing the number of dimensions in 
despite of increasing the bins per dimension, with a similar computational cost. 
Although the computational cost of O(z2) can be considered low, in a real application, 
the run time can be too long when the number of images to be compared and the 
number of colours per image is high. For this reason, we are thinking about applying 
the signature structure presented in [6] due to the fact that in this structure, the empty 
bins are not explicitly considered. We will have the advantage that the number of 
iterations would be reduced (in the cases that the number of colours is high, that is, 
the histograms are sparse). But we will have the drawback that the computational cost 
of the function next would not be constant. We leave as a future work the 
implementation of this new method. From a theoretical point of view, we will propose 
the new algorithm. And from the practical point of view, we have to show if the 
reduction of the number of iterations compensates the increase of the computational 
cost of the function next.  

7. References 
1. S.-H. Cha, S. N. Srihari, “On measuring the distance between histograms” Pattern 

Recognition 35, pp: 1355–1370, 2002. 
2. Y. Rubner, C. Tomasi, and L. J. Guibas, “A Metric for Distributions with Applications to 

Image Databases” International Journal of Computer Vision 40 (2), pp: 99-121, 2000. 
3. Numerical Recipes in C: The Art of Scientific Computing, ISBN 0-521-43108-5. 
4. E. J. Russell. “Extension of Dantzig's algorithm to finding an initial near-optimal basis for 

the transportation problem”,Operations Research(17),pp:187-191, 1969. 
5. F. Serratosa & A. Sanfeliu, “Signatures versus Histograms: Definitions, Distances and 

Algorithms”, Pattern Recognition (39), Issue 5, pp. 921-934, 2006. 
6. F.-D. Jou, K.-Ch. Fan, Y.-L. Chang, “Efficient matching of large-size histograms”, 

Pattern Recognition Letters 25, pp: 277–286, 2004. 
7. M.J. Swain and D.H.Ballard, “Indexing via colour histograms”, Int. J. Computer Vision, 

(7), pp: 11-32, 1991. 
8. M. Kolesnik & A. Fexa, “Multi-dimensional colour Histograms for Segmentation of 

Wounds in Images”,ICIAR 2005, LNCS 3656, pp:1014-1022, 2005. 
9. O. Chapelle, P.Haffner and V.N. Vapnik, “Support Vector Machines for Histogram-Based 

Image Classification”, IEEE Trans. On Neural Net. (10), 1999. 
10. Y. Gong, C. H. Chuan & G. Xiaoyi, “Image indexing  

and retrieval based on colour histograms”.  Multimedia Tools  
and Applications, (2) issue 2, pp:133 – 156, 1996. 

11. F.Serratosa & G.Sanromà, “An Efficient Distance between Multi-dimensional Histograms 
for Comparing images”, Proc. Syntactic and Structural Pattern Recognition, SSPR’2006, 
LNCS , 2006. 

12. F. Serratosa, R. Alquézar & A. Sanfeliu, “Function-Described Graphs for modeling 
objects represented by attributed graphs”, Pattern Recognition, 36 (3), pp. 781-798, 2003. 

13. A. Sanfeliu, F. Serratosa & R. Alquézar, “Second-Order Random Graphs for modeling 
sets of Attributed Graphs and their application to object learning and recognition”,  
International Journal of Pattern Recognition and Artificial Intelligence, Vol. 18, (3), pp: 
375-396, 2004. 


