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Abstract: The direct position analysis (DPA) of a manipulator is
the computation of the end-effector poses (positions aiehtzr-
tions) compatible with assigned values of the actuatewot-jari-
ables. Assigning the actuated-joint variables correspatioccon-
sidering the actuated joints locked, which makes the méatipu

a structure. The solutions of the DPA of a manipulator oneite
correspond to the assembly modes of the structure that isrgen
ated by locking the actuated-joint variables of that maisapar.
Determining the assembly modes of a structure means sahdéng
DPA of a large family of manipulators since the same struetur
can be generated from different manipulators. This paper pr
vides an algorithm that determines all the assembly modiemf
structures with the same topology which are generated fiom t
families of mechanisms: one planar and the other spheritia¢
topology of these structures is constituted of nine linke(qua-
ternary link, four ternary links and four binary links) coacted
through twelve revolute pairs to form four closed loops.

1 Introduction

The direct position analysis (DPA) of a manipulator is theneo
putation of the end-effector poses (positions and orients}
compatible with assigned values of the actuated-jointaideis.
Assigning the actuated-joint variables corresponds tcicien-
ing the actuated joints locked, which makes the manipulator
structure. The solutions of the DPA of a manipulator oneite-
correspond to the assembly modes of the structure gendrated
locking the actuated-joint variables of that manipulatbeter-
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Spherical parallel manipulators (SPMs) are PMs where the
end-effector performs only spherical motions with a cefiied
to the frame. SPMs can be collected into two subsets: (i)¢he s
of the SPMs where only the end-effector and few (or no) other
links perform spherical motions with the same center, aid (i
the set of the SPMs where all the links perform spherical mo-
tions with the same center. When the actuated joints are dpcke
both these two types of SPMs become structures whose assen
bly modes can be identified by considering equivalent stirest
where the links are connected only through revolute paith wi
axes that converge toward the spherical motion center. Sucl
structures will be called spherical structures (SSs).

Structures composed of links connected only through réeolu
pairs are also generated from a large family of planar pelnala-
nipulators (PPMs) by locking the actuated joints. In thisegall
the revolute pair axes are parallel to one another, and pdipe
ular to the plane of motion. Such structures will be callezhpr
structures (PSs).

When the topology of a structure is analyzed, only the number
and the type (binary, ternary, etc.) of links, and the typkioé-
matic pairs that connect the links to one another are coreside
Therefore, the SSs and the PSs share the same set of togologie

Moreover, by using the Gbler-Kutzbach equation, it is easy
to demonstrate that, in the SSs and the PSs, the number &f loop
[, the number of linksin, and the number of revolute pairs,are
related by the following two relationshipsy = 2 + 1;r = 3l.

Sometimes structures contain substructures (i.e. antsobse
links that form a structure by themselves). A substructue c

mining the assembly modes of a structure means solving the DP be substituted into the original structure by a unique lirfloge

of a large family of manipulators since the same structunebea
generated from different manipulators.

The solution of the DPA of parallel manipulators (PMs) is
a difficult and challenging task since, in general, it ines\the
solution of a system of non-linear equations.

shape depend on the assembly modes of the substructure. Th
substitution process ends when no other substructure ddete
tified in the last obtained structure. In the literatureustures
that do not contain substructure have been called Assumiitie
chains (AKCs). The determination of all the assembly modes o



any structure can be implemented by exploiting a set of algo-links at least equal to the number of independent loops, laad t
rithms that solve all the AKCs (Innocenti (1995)). choice of the independent loops can be operated so that@aeh |

The solution of the DPA of all the SPMs can be implemented contains at least one binary link not included in the othep&
by classifying all the SS topologies which refer to AKCs, and the number n can be reduced to one, and the closure-equatio
then, by providing, for each identified topology, an aldamit system can be reduced to a number of scalar equations equal 1
that computes the assembly modes of the AKC with that topol-the number of loops.
ogy. The fact that the set of SS topologies coincides with the  The analysis of Fig. 1 reveals that, in the structures under
one of PSs allows the wide literature on planar mechanisms tostudy, four independent loops with one binary link can bélyas
be exploited (Wampler (2004)). In particular (see Innocent individuated: (1) loop 0-1-5-2 (link 5 is binary), (2) loop26-3
(1995)), there are one single-loop AKC topology (the trjamhe (link 6 is binary), (3) loop 0-3-7-4 (link 7 is binary), and)(#op
double-loop AKC topology (the pentad), and three tripledo  0-4-8-1 (link 8 is binary). All these loops are four-bar I@opith
AKC topologies. Moreover, Manolescu (1973) gave a complete only revolute pairs.
classification of triple-loop topologies and how they ardltbu Both in the planar case and in the spherical case, the revolut
Eventually, Sheret al. (2000) identified all the AKC topologies  pair axes are located by points lying on the motion plgpianar
with up to four loops. So doing, they showed that there are 28case) or on the unit sphéréspherical case). In our case, this
quadruple-loop AKC topology. technique simply consist in writing, for each loop, that the-

The algorithms that analytically calculate all the assgmbl tance (either on the motion plane or on the unit sphdretween
modes of the AKCs up to three loops have been already presentethe two points locating the revolute-pair axes at the erslaighe
both for the planar case (see Innocenti (1995) for the Refsd binary link is constant.
for the spherical case (see Wampler (2004) for the Refs.). In the next sections this technique will be used to write amin

This paper addresses the determination of the assemblymal set of closure equations both for the planar case anthéor
modes of the structures, either planar or spherical, withaurt of spherical case.

the 28 quadruple-loop AKC topologies. And it provides one al
gorithm, which is applicable to the planar and the sphedaabs 3 Closure equations
and solves the closure-equation systems of these stradtuaa-
alytical form. In particular, the topology of these struetsiis the By using the above-mentioned technique to write the closure
one reported in Fig. 1, and it is constituted of nine linksggna- equations, the resulting closure equations are very sifinilthe
ternary link, four ternary links and four binary links) camted o cases under study, and the same elimination technique ca
through twelve revolute pairs to form four closed loops. be adopted for determining a univariate polynomial equati
solve.

In the following subsections, the closure-equation systéin
be deduced for both the cases.

3.1 Planar structure

Figure 2 shows the planar structure with the topology of Eig.
With reference to Fig. 2Q); fori = 1,...,4, are the points
which locate the axes of the revolute pairs that join the epunatry
link (link 0) to thei-th ternary link ¢ = 1,...,4). P for j =

1,2, andi = 1,...,4, are the points that locate the axes of the
revolute pairs that join théth ternary link to the two adjacent
binary links.

Figure 3 shows the-th loop ¢ = 1,...,4) of the PS, and
the notation that will be used to deduce its loop equationthWi
Figure 1: Topology of the studied structures: graph vestiep- reference to Fig. 3, the link-indeéxis equal to(i + 1) modulo
resent links, graph edges represent joints (R stands foiutev 4. ry; is the length of the segme}; Q. 75 (rjr), 7 = 1,2,
pair). is the length of the segme}; Pj; (QrPjx). And r3(; 14y is the
length of the segmeri®;; Py;.. The angless;, andy; (8%, and~y)

2 Basic concepts 1The motion plane is a plane surface perpendicular to all thelute pair
axes.

h | . f hani b 2The unit sphere is a sphere surface with unit radius, ancecenincident
The closure equations of a structure (or a mechanism) can Suith the center of the spherical motion. It is worth notingtttiee unit sphere is

written in many ways. The most common techniques are baseerpendicular to all the revolute-pair axes since all thelige-pair axes converge
on the use of the loop equations which are a fixed number, sayoward the center of the spherical motion.

- ! . 3 ) ) )
n, of independent scalar equations that can be written fon ea e distance between two points on a sphere surface is tgénlen the
shortest great-circle arc joining the two points. On thd sphere, this distance

independent loop appearing ir_1 the structure. . . coincides with the convex central angle delimited by the tdiipassing through
When the structure contains a number of particular binary the two points, if the angle is measured in radians.
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Figure 2: Four-loop PS with the topology of Fig. 1.

are the interior angles &; (Qx) of link ¢ (link k) and link O,
respectively. The angk& (6;) is the joint variable of the revolute
pair located byQ; (Qr). Eventually, the reference systémz;y;
is a Cartesian reference system, fixed to link 0, that will bedu
to write the loop equation of theth loop.

It is worth noting that the eight geometric constants of the
quaternary link (i.e.;; andrg; fori = 1,...,4) are related by
the following three scalar equations (see Figs. 2 and 3):

4
> =21 (1a)
i=1
T01 — T2 COS Y2 = T'g4 COSY1 — T03 COS(Y1 + V4) (1b)
ro2sinya = rog siny; — ros sin(yr + y4) (1c)

With these notations, the position vectors of the poitsand
Py, in the reference system; z;y;, have the following explicit
expressionsi(=1,...,4; k = (i + 1) modulo4):

) @

i i T1kS
lPQi = ; Lplk = kok
Toi — TkCk

where the left superscrigtindicates that the vectors are mea-
sured inQ;x;y;. ¢; (ck), ands; (si) stand forcos 6; (cos 6y), and
sin 0; (sin fy), respectively. Eventually;; andb; are geometric
constants with the following explicit expressions:

a;C; — biSi
a;S; + bqjci

@ = T2; COS <”sz + 6 — zﬂ) (39)

bi = ra; sin (%‘ + 58— %r) (3b)

By reminding that the distaneg; 4y between the point&,;

Figure 3: i-th loop of the PS: notation £ 1,...,4; k= (i + 1)
modulo 4).

Po; — P1)? =120 s

("P2 1k) 3(i4+4) 4

i=1,...,4;k = (i+ 1) modulo4.

The introduction of the explicit expressions (2) into Eg$) (
yields the following system of closure equations in expliaim:

(aici — bis; — rigsk)’+

(aisi + bici — T0q + leCk)Q — r%(i+4) = 0, (5)
i=1,...,4;k = (i+ 1) modulo4.

Closure equations (5) constitute a system of four scalaa-equ

tions in four unknowns: the four joint variablég i = 1, ... 4.
By expanding (5), system (5) becomes:

gio + gi18i + giaCi + gizcr+

gia(sick — cisk) + gis(cicr + sisg) = 0, (6)
i=1,...,4;k = (i+ 1) modulo4.
where the constant coefficients,, n = 0,1,...,5, have the
following explicit expressions:
gio = T + 1 + 15 — 7"§(z+4) ; (7a)
Gi1 = —2710;04; gi2 = —270:bi; giz = —2r0iT 1k ; (7b)
Gia = 2T1ka4; gis = 211105 - (7¢)

Each equation of system (6) is linear bothjrands;, and in
ci, andsy,.

3.2 Spherical structure

Figure 4 shows the spherical structure with the topologyigfi-
With reference to Fig. 4Q is the center of the unit spheré;
fori = 1,...,4, are the points which locate, on the unit sphere,
the axes of the revolute pairs that join the quaternary Iimik (

and Py, (see Fig. 3) can be expressed through the coordinates oD) to thei-th ternary link ¢ = 1,...,4). P for j = 1,2, and

the two points, measured in any Cartesian reference sysem,
following set of closure equations can be written for the R&au
study:

i = 1,...,4, are the points that locate, on the unit sphere, the
axes of the revolute pairs that join tih ternary link to the two
adjacent binary links.



Figure 4: Four-loop SS with the topology of Fig. 1.

Figure 5 shows the-th loop ¢ = 1,...,4) of the SS, and
the notation that will be used to deduce its loop equationthWi
reference to Fig. 5, the link-indgxis equal to(: + 1) modulo 4.

poi is the convex central andi€);0Qy.. pji (pjr), 7 = 1,2, is
the convex central angl@; O P;; (QrOPjx). And p3(; 44y is the

convex central angl?zi/()?lk. The angles3;, and~; (5, and
~i) are the dihedral angles at the edg®; (OQy) of link ¢ (link

k) and link 0, respectively. The angle (6.) is the joint variable

of the revolute pair located by, (Qx). Eventually, the reference
systemOz;y;z; is a Cartesian reference system, fixed to link O,
that will be used to write the loop equation of théh loop.

It is worth noting that the eight geometric constants of the
quaternary link (i.e.;; andpg; fori = 1,... 4) are related by
any tern of independent scalar equations deducible fronfolhe
lowing matrix equation (see Figs. 4 and 5):

'RAR3%RYZRy =1 (8)
wherel is the3 x 3 identity matrix; whereadR;, k = (i + 1)
modulo 4, is the rotation matrix that transforms vector comp
nents measured i@x;y;z; into vector components measured in
Oxpyrzr. *R; has the following explicit expression:

"R; = Ry (—poi)Rx (7 — k) 9)

where the following elementary rotation matrices have bHaen
troduced

1 0 0
Ry(e)=| 0 cosa —sina |; (10a)
0 sina cosa
cosa —sina 0
R.(a)=| sina cosa 0 (10b)
0 0 1

4The measure of the convex central angle between two radiusrsegives
the distance, on the unit sphere, between the two pointsddam the sphere by
the two radius vectors.

Figure 5: i-th loop of the SS: notation € 1,....4; k
modulo 4).

(i+1)

With these notations, the position vectors of the poiRis
and Py, in the reference syste®@z;y;z;, have the following
explicit expressionsi(= 1, ...,4; k = (i + 1) modulo4):

) UiCi — Vi ) S1kSk
Py = U;S; + V¢ ;g P = C1k50i — S1kC0iCk ;
Wy C1kCoi + S1kS0iCk

(11)
where the left superscriptindicates that the vectors are mea-
sured iNOx;y;z;. ¢ (cx), ands; (sx) stand forcos 6; (cos 0%),
andsin 0; (sin %), respectively; whereas); (c1x), andsg; (s1x)
stand forcos pg; (cos p1x), andsin pg; (sin p1x), respectively .
Eventually,u;, v; andw; are geometric constants with the fol-
lowing explicit expressions:

u; = sin pg; cos (% + B — ;)71') (12a)
. . 3

v; = sin pg; sin | v; + B; — 3™ (12b)

w; = COS P2; (12C)

Sincecos p3(i44) is equal to the dot product of the position
vectors of the two unit-sphere poinks; and Py, (see Fig. 5) in
any Cartesian reference system with origirOat the following
set of closure equations can be written for the SS under study

P, "Pik = ca(ira), i=1,...,4;k = (i+1) modulo4. (13)

where c3(;44) stands forcos p3(;14), and the right superscript
()T denotes the transpose (©f . Thei-th equation (13) analyt-
ically expresses the fact that the distance, on the unitrepbe-
tween the two unit-sphere poinis; and Py, is constant; hence,
it is the spherical counterpart of the thé¢h equation (4).

SRemind that radius vectors of the unit sphere coincide wititipm vectors
of the unit-sphere points, located by the radius vectorgantesian reference
systems with origin at the unit-sphere center



The introduction of the explicit expressions (11) into Egs. whereE; = da;t3 + da1jta + daog; andF; = dsjots + dsjits +
(13) yields the following system of closure equations inl&xp dsjo, forj =0,1,2.

form: The product of both the Egs. (19) byyields two more equa-
(wic; — visi)Siksk+ tions that, when added to (19), give the following homogeiseo
TR system:
(uisi + vici)(c1rS0i — S16CoiCk)+ Y _
(14) Mif =0 (21)

w;(c1rCoi + S1k50iCk) — C3(i44) = 0,

wheref; is equal to(t3, t2. 1, 1)T, whereadV ; is a4 x 4 matrix
Z:1,747k:(2+1)m0du|04 1 q 0(17 1501, ) 1 X

defined as follows
Closure equations (14) constitute a system of four scalar

equations in four unknowns: the four joint variablés i = 4y Ar Ap 0

B, By By, 0

1,...,4. By expanding (14), system (14) becomes: M; = 0 A A A (22)
2 1 0
hio + hi18; + haci + higep+ 0 By, By B
hiasicu + hiscisi + hiscici + hirsise = 0, (15 on the other side, the product of both the Eqs. (20}4byields
i=1,....4;k = (i+ 1) modulo4. two more equations that, when added to (20), give the fotigwi
where the constant coefficients,, n = 0,1,...,7, have the ~ homogeneous system:
following explicit expressions: Mo fo — 0 (23)
212 =
hio = wic1kcoi — €3(i4a); hi1 = wic1kS0i; (16a) _ 5 o . _ _
hiz = vic1kS0i; his = wis1kS0i; hia = —u;sikcoi;  (16D) \(Ijvehf?rzgg ;Z?gllljc?vlv;o(t?” f5:ta,1)7, whereadz is a4 x 4 matrix
his = wisig; hie = —visikcoi; hit = —viS1k - (16c)
. - . Ey, Ei E 0
Each equation of system (15) is linear bothcjrands;, and Fz Fl Fg 0
in ¢, andsy,. My = 0 E; E, E, (24)

. . 0 F N K
4 Solution technique 2 1 Fo

_ The two homogeneous systems (21) and (23) admit non-
The closure-equation systems (6) and (15) can be transfbrmerivial solutions, forf; andf, respectively, if and only if the

into algebraic-equation systems by using the followingdnio-  two determinantslet(M;) anddet(M) are equal to zero (i.e.,
metric identities: their coefficient matrices are singular). Since the eniiethe
1—t? 2, ] first and the third rows of both the matrices are quadrics;jn
G=7 n 20 %17 1+—t2; i=1,...,4 17) whereas their second and forth rows are quadrids,ithe van-
! ! ishing condition ofdet(M ;) anddet(M) yields the following
wheret;, i = 1,...,4, is equal totan(6; /2). two algebraic equations that are quartics bottyiand int,:
So doing, both system (6), and system (15) are put in the fol-
lowing form: 4.4
9 9 Z Z antgtzn =0 (253)
SO dim 47 =05 i =1,...,4; k = (i + 1) modulo4 meme
n=0m=0 (18) SN dumtsty =0 (25b)

n=0m=0

where the explicit expressions of the constant coefficiénts,,
n,m = 0,1,2, are reported in the appendices A and B for the PS where the explicit expressions of the constant coefficippts

and the SS, respectively. _ andg,,,, forn,m = 0,..., 4, as functions of the constant coef-
The first ¢ = 1) and the fourth{ = 4) equations of system ficients reported in the appendices A and B, can be easily-dete
(18) can be rewritten in the following form: mined with the help of an algebraic manipulator. Such expres
Aot + Aty + Ag = 0 (19a) sions are_not reported hgre since they are cumbersome.
) Equations (25) constitute a non-linear system of two equa-
Byt] + Bit1 + By =0 (19b)  tions in two unknownst,, andt,. System (25) can be rewritten
WhereAj = dljgt% + d1j1t2 + dljo andBj = d42jt?1 + d41jt4 + as follows:
d4o;4, for j = 0,1,2. Moreover, the second & 2) and the third 4 ‘
(¢ = 3) equations of system (18) can be rewritten in the following Z Lith=0 (26a)
form: §=0
2 _ .
E2t32+ FEits+ Eyg=0 (20a) Z th; —0 (26b)
Fots + Fits + Fp =0 (20b) =0



Table 1: Planar Structure: solutions of the numerical examp

t1 to t3 ta
.14540976407902879027293908] .64496623994571841596263372 -.33995155650823447070843769] .0819791126793446047065806293
-.077227714709025110370104775 .76803507980135176081753200 -.37583922874392176970779633 .0991483691462966418039440854
.31027317592256860100604449 -.78277181236408978593774468 .42188060295853963511347192| .2238289048835068617548207877
45062695967325673049797405 -.69794362132646017838199605 -.97476498792723065506640091 .3378809249470220693696311392
1.20695305556324089196099633 .91633117401742338436255702 1.09130850106927139480659436 .83909963117728001176312729
-.64640026596367343569314724 4.04003082965422103236594713 -2.71967984246300713821885292 1.045998408481253318241645595
1.66916735389394832010007919 1.14216132858181575837207037 1.37143762290017367135776658 1.050583466573429961237254444
13.16425818060947425215680863 4.26882828246928634814151261 -4.53789402060688689762408517 1.800982930765191163895773994
208.45038747133619402856213487-2.11674168109901666421941153 -4.78562060550766382277121085 1.895978137292928399253752311

©CONOUIAWN R
=

10 | -26.81541066700656298137161586-3.07760509002559592809555103 2.90357331147061231692162538 1.943292745104974910169838954
11 | .039846847673210378188216602 -1.10048431924001936505603127 .55472513836233642331325649| -.084308385270921315258566334
12 | -.15607071229759993578242963 -1.55698842971696026891592910 .78641617401213709094144928| -.167603233161461281813419201
13 | .077971500241808447357197929 .67054918338255699388821957 .81579796381664550087115700| -.176970618142634298758693275
14 | -.30820112784483839462288724 -2.22324243579987649268244828 1.25223538268247267422803279 -.302069667336494935593808144
15 | -.32498273061036110891061454 1.09252930678734718250915716 1.30746020746642945930185019 -.316590516221194220495666284
16 | .17046575070945815221605462| .63770346854436767382116706 -.33797081342814258809109019| -.363773478707546671785525565
17 | -.43210685728254645483179199 1.36268671107614166134072405 1.67488361163341613634156329 -.407984780649443848667174677
18 | .52684373129210421002487735 -.66739051464043879792708220 -.93642359477505331961703787| -1.02246294842782466661923238
19 | -32.554300916213478455616776G4-2.82792448537262388807377299-253.73121491428977207738482685-2.25282987723016144150037867
20 | 11.25055399577708095094706716 -1.47768067112559515995942455 -2.30168293097248032931051648 -2.42705297789839512570915480
21 | 10.87826714915480388273577657 3.85237293514646026565524521 -2.30523947165503596877276301 -2.43031231220896800404824993
22 | 10.59132861100362440506723393 3.79590172229500515671923849 -51.26410762602066041681539526 -2.43293211532249675222279903
23 -.46091396718-.3147647875 | .92479484478+.6793627405 j -.39930489512-.2398553778 -.44330155417-.2650496400 |
24 -.22634298550+.3044553268 ] | -1.26354193430+.9102694686j  -1.31998222381+1.436522544 j .42996169345-.5607327793 j
25 -.27792212930+.2474597288 | | -1.51031256094+.9565297756 | .65243761504-.4943832040 .50950215830-.4401832433
26 -.40592787199+.3396438907 j .84446118451-.6023166102 .93036922244-.6829091211 .76616003143-.5562035841 j

27 -.40592787199-.3396438907 .84446118451+.6023166102 j .93036922244+.6829091211 .76616003143+.5562035841
28 -.27792212930-.2474597288 -1.51031256094-.9565297756 | .65243761504+.4943832040 j .50950215830+.4401832433 |
29 -.22634298550-.3044553268 j -1.26354193430-.9102694686 j|  -1.31998222381-1.436522544 | 42996169345+.5607327793
30 -.46091396718+.3147647875 j .92479484478-.6793627405 -.39930489512+.2398553778 -.44330155417+.2650496400 j

where This result meets the upper bound to the number of complex so

4 4 lutions of system (18) that the authors found by calculathng
o Cogm. AT, L ogm. optimal multi-homogeneousé&out number (see Malajoviakt
Ly = mz_:op ymta's Ny = W;Jq’m £37=0004 @D 2004): Wampler (1992) for details) of system (18). Once the
values oft, that solve Eqg. (30) have been computed, by back
The product of both the Egs. (26) by,t3, andt3 yields six  substituting them into matriki, and, then, solving the resulting
more equations that, when added to (26), give the followimg h  systems (28), the corresponding valuegotan be computed.
mogeneous system: Eventually, the computed values of the couple, t,} must be
He=0 (28) back substituted into (21) and (23) to compute the corresipgn
values oft; andts.
The adopted elimination procedure could have introduced ex
traneous solutions of typgj with j = +/—1 since the only

wheree is equal to(t3, 15,5, t3, 3, t2,t5,1)7, whereadH is an
8 x 8 matrix defined as follows

Ly Ly Ly Li Ly 0 0 O factors, that could generate extraneous roots and have bee
Ny N3 No Ny No O 0 O multiplied by the original system of equations, are the dest
0 Ly Ly Ly Ly Lp 0 O (1+t2)(1 +¢3),withi = 1,...,4 andk = (i + 1) modulo4.
H— 0 Ny N3 No Ni Ng 0 O 29) Such factors have been used to obtain system (18) from tie ori
0 0 Ly Ly Ly Ly Ly O nal ones (i.e., either (6) or (15)) passing through the tragoetric
0 0 Ny N3 N N1 Ny O identities (17).
0 0 0 Ly Ly Ly L1 Lo So far, the evaluation of the actual degree of (30) can be done
0 0 0 Ng N3 N N1 Ny either through extended numerical tests, provided thatithen-

tify at least one set of data which makes (30) a 32-degreapely
mial equation, or by analytically determining the coeffitge of
the polynomial equation (30).
det(H) =0 (30) Extended numerical tests, carried out by the authors, @ith r
domly generated data brought to find many data sets, both fo

Since the non-null entries of matrid are univariate quar- the planar geometry and for the spherical geometry, whickema
tics in t4, anddet(H) is a sum of terms that are products of (30) a 32-degree polynomial equation. Moreover, the sarme nu
eight entries of matriH (see Appendix C), Eq. (30) is a uni- merical tests demonstrated that the elimination procedsed to
variate polynomial equation ity which has at most degree 32. obtain (30) introduces one couple of extraneous roots @& typ

The homogeneous system (28) admits non-trivial solutions
for g, if and only if the following equation is satisfied:



Solution 1. Solution 2. Solution 3. Solution 4. Solution 5.

5 5 5 5
5
0 0 0 0
0
0 5

"

.
£

"5 0 5 10 5 0 5 10 5 0 5 10 5 0 5 10 5 10
Solution 6. Solution 7. Solution 8. Solution 9. Solution 10.
5 10 10 10 10
5 5 5 5
0
0 0 0 0
-5 -5 -5 -5 -5
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
Solution 11. Solution 12. Solution 13. Solution 14. Solution 15.
5 5 5 5 5
0 % 0 g 0 W 0 ﬁ 0 W
-5 -5 -5 -5 -5
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5
Solution 16. Solution 17. Solution 18. Solution 19. Solution 20.
5 5 6 10 10
4 5 5
0 0
2 0 0
-5 -5 0 -5 -5
-5 0 5 10 -5 0 5 -5 0 5 10 -5 0 5 10 -5 0 5 10
Solution 21. Solution 22.
10 10
5 2 Z 5 : Z
0 0
-5 -5
-5 0 5 10 -5 0 5 10

Figure 6: Assembly modes corresponding at the real solsitsbithe planar structure example,, numbered as in Table 1.

in the planar case, whereas does not introduce extraneotss ro of the computer memory.

in the spherical case. These results bring to the concluban

in general, Eq. (30) is a 32-degree polynomial equation fmth 5 Numerical examples

the planar geometry and for the spherical geometry, buthén t

planar case, one common factor of tyle+ ) can always be  Two numerical examples, one for the planar case and the father
collected and simplified. Thus, in general, the complextsms  the spherical case, are reported in this section in ordéme the

of our problems are 30 for the planar case and 32 for the sgileri  effectiveness of the proposed algorithm.

case. Among the complex solutions of (18), only the real-solu g 40rithm has been implemented in Maple. The numeri-
tions correspond to actual assembly modes of the struchateru 5 computations have been executed by setting the mactene p
study. The above-mentioned numerical tests brought tdiflén  (jsion equal to 32 decimal digits in Maple. All the computed s

PS geometry with 22 assembly modes and an SS geometry with sions, when substituted into the closure equationssfetfiose

20 assembly modes. The maximum number of real solutions Ofequations with residuals whose absolute values range fess |

Eq. (30) stillis an open problem. o than10~24 to 1016 which is coherent with the chosen machine
Regarding the analytic determination of the coefficienthef  ecision.

polynomial equation (30), it can be implemented with thephul
an algebraic manipulator by, first, determining the exploi-
pression oflet(H) as a function of the non-null entries of matrix
H (see Appendix C), and, then, elaborating the obtained expre With reference to Fig. 3, the geometric data of the planarcstr
sion, either as a whole or by grouping terms according toittee s ture are (the angles are measured in radians; the lengthseare

5.1 Planar structure



Table 2: Spherical Structure: solutions of the numericahegle

t1 to t3 tg

1 .7121061836240542628425668(0 -1.07497455753610126844941610 -.44800329091214858293485363 .0888875039946794259282624

2 -.7755504953012085185960890p -.74503557530432738102964660 -.24792229123086817311120878 .1081669405498183493228710

3 .73108529113176738147778588 .36104413133812455092212669 -.2374674530015658525014761D .1095001241355309525439855

4 -.7254977629284696959100382p .79320769587113511335921109 .03630297251790967535735756 .16000844373201842754237919
5 -.6326392286047058653342518p -.5665212639847875130984608]L -1.44902748818508054635389670 .27451592178874086050489859
6 1.57053701322224629303710825 -.5299118080525224657918192]L -1.37210452664695894570979698 .68727090141199789465811756
7 2.40142765596175495890746839 .99959051861156910688335979 1.47191403359898321689225502 .99953905003138499326551774
8 2.94590500454578732727341691 1.14028145816754857419174148 1.68387120989711817340500497 1.14028145816754857419174148
9 -.3279560776703002696989976p 2.19663385872870672116782892 3.92448007851295936217838809 2.44302088284558462087474599
10 -.3551623122775235858254902p -.2891607407842780466944638D -.94600220362422008355832889 3.26553951295171978376109941
11 | -1.6597581540740604394024185%2-2.56923193640685492125416214 9.79335321801512801048241709 5.03567470968899676965553945
12 | -1.389173473195882786673023(07-1.84208964986328586214502214 -.8465159480803302479606148D 5.61748994274721802111609339
13 .57581984213681238722225099 -1.30867847119402492580107470-4.65455115661074888666990473 -.0854280444823515978387979[
14 | -1.04104284673259602904066614-1.14747508391672336044297166-3.50406969845887886005942853 -.10012284021138216272481265
15 | -1.61463716957538962922155030 .24467583838696498764648277 .54597642903231132114054648 -.36991906499149841363008628
16 \42332462997183013284378318 .20417982508098921066693455% .5051482241631691255523163% -.39495622231747702816149454
17 | -2.62820087281999567358612281-9.29741813777522859855414691-2.57059162668172064761692181 -.61864963851011157573145133
18 .5546072417275656482500863(0 .27238511180213352674820919 -.30818076970875067831990899 -2.21676044670613406595744070
19 .5948329130717549602388852( -1.26993077235092135957743913-4.333532380968725396572038(09-2.25993333485671694287174695
20 .90142516808676214346285897 -.86488448942789661222868463 -.32303829136494826043861252 -2.31799366029688446938212761
21 .00342194452 -1.44883692156 -.07299074451 -.36795252833 )| -.56722944684 -.42617220241j| -.57746797303 -2.18365466581 |
22 .00342194452 +1.44883692156 -.07299074451 +.36795252833 )| -.56722944684 +.42617220241 | -.57746797303 +2.18365466581|j
23 .07455997783 -.12122912972 j| -3.11221184246 -3.63391279861|j -1.81717583594 -1.05093035245|j -.27842265152 -1.15434019112
24 .07455997783 +.12122912972j| -3.11221184246 +3.63391279861 j-1.81717583594 +1.05093035245 ) -.27842265152 +1.15434019112|j
25 -.23381078635 -1.21762411406 .09063269535 -1.17945847211 j .04271862463 -.73206889984 | -.21193805682 -.94629004473 |
26 -.23381078635 +1.21762411406|] .09063269535 +1.17945847211 .04271862463 +.73206889984 j| -.21193805682 +.94629004473 |
27 -.55234273464 -.64624481380 | 14522125200 -.66631164661 | 32805303569 -.64275586423 | -.03952558872 -.56289938664 |
28 -.55234273464 +.64624481380 ) .14522125200 +.66631164661 | .32805303569 +.64275586423 j| -.03952558872 +.56289938664 |
29 .09011189540 -1.15046250591 .10893422241 -.97670327545j 15179864121 -.99221796677 | .07761152840 -1.02215361384
30 .09011189540 +1.15046250591 .10893422241 +.97670327545 | 15179864121 +.99221796677 j| .07761152840 +1.02215361384
31 -.13337931843 -.39981317759j| .27358440193 -1.79147591705 | .32398368945 -.86102638956 | 12386266728 -.81145941293 |
32 -.13337931843 +.39981317759 ] .27358440193 +1.79147591705 32398368945 +.86102638956 | 12386266728 +.81145941293

sured in a generic unit of length):

5.2 Spherical structure

Nn=7/3 p=10m/21 y3=2n/3 y4=1l7/21 With reference to Fig. 5, the geometric data of the sphesicat-
pr=m/3 fa=m/2  PBs=5m/18  [y=m/2 ture are (the angles are measured in radians):
—15 —23 —1 =2
= 2 = s = e M=7/6 e =21)3 3 =1.62440 4 = 271/3
T21—2 7‘22—1 7‘23—2 7‘24—2 - 4 . 4 B N 4
ror = 59068 7oy =2 rs =4 ros = 4.3069 ho=mft  B=mil o Bs=wff Aa=m/t
r3s = 7.2803 r3e = 2.2485 7137 = 3.8270 rgg = 4.8127 pu=7/5  pa=r/T  ps=7/5  pu=m/
] po1 =m/5 p22 =m/)7 p23 =m/5 poa =m/6
Among these geometric data, the parametgrs; andry, have po1 = 0.1855 poa = 0.1068  pos = 7/7 pos = /8

been computed by using relationships (1) together with dhees

of the other geometric data of the quaternary link. Moreover
once the geometry of the quaternary and the ternary linke wer
defined, the lengths of the binary links (i.e55, 36, 737, andrss)
have been computed through Egs. (4) after the followingeslu
of the angle®;,i =1, ..., 4, were assigned:

91 = 4777'/84 92 = 177‘[‘/36 93 = 197T/36 94 = 47‘(‘/9,
which correspond toi{ = tan(6;/2))

t1 = 1.2069530555 o = 0.9163311740
t3 = 1.0913085010 ¢4 = 0.8390996311

This reference assembly mode appears in table 1 as solution n
ber 5.

All the computed solutions of system (18) for this planar ge- _ _
ometry are reported in table 1. Among the 30 solutions relort Itfl B ?2222%38323? ? B ngggﬁggig;
in table 1, the first 22 solutions are real. Therefore theistud s T
planar geometry admits 22 assembly modes that are schemed ifihis reference assembly mode appears in table 2 as solution n
Fig.6. ber 8.

p35 = 0.7099  psg = 0.4532 p37 = 0.7324  p3s = 0.8997

Among these geometric data, the anglgs, po2 and~s; have
been computed by using a tern of independent scalar egsation
deduced from the matrix Eq. (8), together with the valuedef t
other geometric data of the quaternary link. Moreover, dhee
geometry of the quaternary and the ternary links were defined
the central angles of the binary links (i.es5, p36, p37, andpss)
have been computed through Egs. (13) after the followingesl

of the angle®;,i = 1,...,4, were assigned:

0, = 197/24 0y = 137/24
05 = (117/12) — (81/100) 6, = 137/24

which correspond tot{ = tan(6;/2))
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Figure 7: Assembly modes corresponding at the real sositibthe spherical structure example, numbered as in Table 2.

All the computed solutions of system (18) for this spherical all these manipulators.
geometry are reported in table 2. Among the 32 solutions re-

ported in table 2, the first 20 solutions are real. Therefbee t Through the proposed algorithm, it has been demonstratec

studied spherical geometry admits 20 assembly modes schemethat the DPA of the planar manipulators with this topology

in Fig.7. has thirty complex solutions, whereas the DPA of their spher
ical counterparts has thirty-two complex solutions. Maexp

6 Conclusionsand further research extended numerical tests, which used the proposed algurith

brought to find a planar geometry with 22 assembly modes
(i.e.,real solutions of the DPA) and a spherical geometith @D
assembly modes, and demonstrated the robustness of the alg
rithm. As far as the authors are aware, these results are new.

An algorithm that determines all the assembly modes of two
structures with the same topology has been presented.
The topology of the studied structures is constituted oénin

links (one quaternary link, four ternary links and four bina This work is framed into a research activity oriented to pro-
links) connected through twelve revolute pairs to form four \;qe algorithms that solve the DPA of all the planar and sighér

closed loops. parallel manipulators which become four-loop Assur kingma
Such structures can be thought as generated from two largehains when their actuators are locked.

families (one planar and the other spherical) of parallehima
ulators by locking the actuated joints. Thus, the propodgod-a In the future, the studied architectures will be used tolsgynt
rithm can be used to solve the direct position analysis (D#A)  size devices for industrial and/or biomedical applicagion
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Appendix A

With reference to (18) and (7), the constant coefficiehts,,
n,m = 0,1,2, have the following explicit expressions for the
planar structure (Fig. 2):

dioo = gio + iz + gi3 + gis; diro = 2(gi1 + gia);

dio1 = —2g44;5 din1 = 49i5; dizo = gio — gi2 + 9i3 — gis;
dio2 = gio + giz — Gi3 — 9is; dirz = 2(gi1 — gia);

dio1 = 2gia; diz2 = gio — iz — 9i3 + Gis-

Appendix B

With reference to (18) and (16), the constant coefficidpis,,
n,m = 0,1,2, have the following explicit expressions for the
spherical structure (Fig. 4):

dioo = hio + hiz + iz + hie; dito = 2(hi1 + hia);

dio1 = 2his; ditn = 4hir; dizo = hio — ha2 + hig — hie;
dioz = hio + hia — hiz — hie; diz = 2(hi1r — hia);

dio1 = —2h;s5;5 diz2 = hio — hya — hiz + hye.
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Appendix C
The explicit expression afet(H) as a function of the non-null
entries of matrixd (see definition (29)) is:

det(H) = LiN} — LyL3N3N, + LoL3N2N? —
LIL3NGN? + LoLEN} + L2L2NSN, — 2L,L3N3N, —
LoLaL2NZN\Na + 3LiLENZN| Ny + Ly LyL3NoN2Ny —
ALoL3NgNZNy — LoLsI2NiN, + IL2L2NZNZ
91 L4 L2N2NZ + 2LoL3NZN2 — L1LoL2NoN,N2
3LoLzLiNoN1N; + LoLoLiN{N3 + LiLiNoN3
9LoLaL2NoN} — Lol L2N\N3 + LAL2NS — L3L NN,
8LoLy[2N3N; — 3L L3N3Ns + LoL2LiNZN)Ns
QL2I2N2ZNNy — LyLyL2N2ZNiNy + ALoL3NZN\Ny —
L1 L2LsNoN2Ns + 2L, Lo L3NgN2 N3 + LoLs L2NoN2N5 +
LoL2L,N3Ny — 2LoLoL2N3N; — L2L;L4N2NsN; +
9Ly L2LyN2NsNs + L1 Lo L2N2No Ny — 5Lo L3 L2N2 N3 Ny +

F+ 1+

L1LyLsLiNgN\NoNs  —  3LoL3L4NoNiNaNs  —
3L2L2NoyN; Ny N3 + 4LyLyL2NyNyNaN; -
LoLyL3LyN2N; Ny + 3LoL1L2N2N,N; -

L2 L3 LyNoN2N3+2Lo Lo L3 LyNo N2 N+ LoL; L2 NgNZ Ny +
LoL\LyLyiN N3Ny — 4LZL3N\N2N; — L2LiLyN3Ns +
L3LANZN? — 3L\LoL;L;NZN2 + 3LoL2L{NN? +
SL2I2NZN? — 3LoLoL3NZN2 — LI2L,NoN\N: +
2L2L4LaNoNiN2  +  LoLaLsLiNoN;NZ —
5LoL1 L2NgN N2 + LoL3LyN2N2 — 2LoLyLsLyN2N2 +
9L2L2N2N2 + L2LoLyNoNoN2 — 2LoL3LiNoNaN: —
LoLyLyLyNoNaN2+4L2L3NoNoN2 — LoL Lo Ly Ny Na N3+
8L2LsLyN\NoN2 + L2L,LyNZN? — L3LyNoN}
3LoL1LsLaNgN} — 3L2LsLiNoN3 + LoL?Ly,N\N3
2L§LoLyNiN§ — LiL1LyNoN§ + L§LyN3 + L3NGN,
ALoI2L{NNy + 2[2LZN3N, + 4LiL3L3N3N,
ALOLIN3N, — LoL3NZNN; + 3L3LsL;NZNiN,
LiL2LyN2N1 Ny — 5Ly LyLANZNy Ny — LoLs L2NZN, N,
L\LENoN?Ny — 3L, LaLy LiNoN2Ny — LoL2LysNoN2N,
3L%LZN0N12N4 + 2L0L2L421N0N12N4 — LoL§N§N4
3LoLoLyLyN?Ny — 3LoLL3N?N, + LZL2NZN,Ny
9L L3N2Ny Ny — 2L3Ly N2 N3Ny + 4Ly Lo Ly Ly N2 Ny N,
92LoL3LyNZNoNy — 3L2L2N2ZNyNy + 2Lo Lo L2N2Ny N,
L1 Lo L2No N, N2 Ny i 3LoL3Ny N, No Ny

9L L3LiNoNiNoNs  +  L2LsLyNoNiNaN,
8LoLoLsLaNoNiNoNs  +  2LoLiL2NoNiNoNy  +
LoLsL2N? N3Ny —2LoL3LyN>NaNy— LoL1 Ly Ly N2 No Ny +
AL2I2N2NyN; + LPLENoN2ZNy — 2LoLoL2NoNIN, —
9L2LyLyNoN2Ny + 4LoL3LaNoNZNy — AL2L2NoN2ZNy —
LoLy L2Ny NZNy+2Lo Ly Lo Ly Ny N2 Ny + L2 Ly LN, N2Ny +
L2I2NSN, — 2I2LoLyNiN, — L3LyN2NsNs +
3L, LoL2NZN3Ny — 3LoL3NZN3Ny + Ly L2LyNZN3N,; —
5L2L;LyNZNsN;  +  2LoLoLsLyNZNsNs  +

_|_

L+ 0+ 1+ + A+ +

5LoL1L2NZN3N, + L1 L2L3NoN; N3N,
2L2L2NyN; N3N, - LoLyL2Ng Ny N3N, -
L2LyLiNoN1 N3Ny, +  10LoLiL3LyNoN;N3N;  —

8L2L3NyNi N3Ny — LoL3LsN2N3N, + 2LoL1 LAN2 N3N, +

LoLyLyLyN2N3N, - 5L2L3LyN2N3N, -
L2L,L3sNgN; N3N, + 2LoL2L3NgN> N3N, +
LoL1L2NyN2 N3N, + 3L3L,;NoNy N3N, -
8LoL1LyLsNoNaNsN,  +  2L2LsLyNoN,N3N,  +
LoL1LaL3 Ny NaN3 N, - 3L2L2N; No N3Ny -



3LoL2L4NiNoN3Ny  +  4L3LyL4NyNoyN3N, -
L2LyL3NZN3Ny + 3L3LiLyN2N3Ny + L3LzNoNINy —
3LoL1LaLyNoN3Ny+3L3LANgNZNy — LoL3LyNoN3N, +
2L3LyLyNoN2ZNy — LoL3L3N1 N3Ny +2L3Lo L3Ny N2 Ny +
IR0 LyN N3Ny + L3L1L3NaNZNy — 4L3L4NoN3Ny —
L3L3sN3Ny + LANGN; — AL L3L3s NN} + 2L3L3NZ N} +
ALgLoL3NZN? + 4L?LoLyNZN? — 4LgL3L4NZN? —
8LoL1L3LyNZN? + 6L3L3ANZN? — LiL3NoN; N} +
3L2LyL3NoN1 N} + LoL3LsNoN1NZ —5Lo L1 L3NgN1 N} —
3L3L4NoNi N2 +2LoL1 LoLyNoN1NZ+5L3L3LyNo N1 NZ +
LoL3N2N? — 3LoL1LoL3N?N? + 3LILAINZNZ? +
3LoL2L4N2ZN? — 3L2LyL4NZN? + L2L2ZNyNyN} —
2LoL3NgNo N7 — 2L3LsNoNoNZ + 4LoL1 Ly Ly NgNoN7 —
3L3LANgNyN}? + 2LoL3LyNoNoN? + 2L2LoLyNgNoNF —
LoL1 L3Ny NaNZ + 2LoL2L3 N1 NaNZ + L3Ly L3 N1 No N2
5L3L1LyN\NoN? + LZLINZN? — 2L2L,L3NZN?
2L3L4NiN? — L3LyNoN3N? + 3LoL1L3NoN3N?
LoL?L3NgN3NZ2 — 5L3LoLyNgN3N? — L2311 LyNoN3N?
LoL3LyNyN3N7 — 2L2L3N\N3N? — L3LL3N;N3N? +
AL3LyN1N3N} — LELiLyNyN3NZ + 3L3L3NoN3Ni +
L3LaNZNZ + LiNgN§ — ALgL2LyNgN3 + 2L2LEN N3 +
AL3L,L3NoN} — 4L3L4NoN; — LoLiN\N} +
3L3LyLaN{ N} —3L3 L3N Nj + LEZL3Ny N§ —2L3 Ly No N3 —
L3LiN3N3} + LiNG

+ 4+ |
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