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Abstract: The direct position analysis (DPA) of a manipulator is
the computation of the end-effector poses (positions and orienta-
tions) compatible with assigned values of the actuated-joint vari-
ables. Assigning the actuated-joint variables corresponds to con-
sidering the actuated joints locked, which makes the manipulator
a structure. The solutions of the DPA of a manipulator one-to-one
correspond to the assembly modes of the structure that is gener-
ated by locking the actuated-joint variables of that manipulator.
Determining the assembly modes of a structure means solvingthe
DPA of a large family of manipulators since the same structure
can be generated from different manipulators. This paper pro-
vides an algorithm that determines all the assembly modes oftwo
structures with the same topology which are generated from two
families of mechanisms: one planar and the other spherical.The
topology of these structures is constituted of nine links (one qua-
ternary link, four ternary links and four binary links) connected
through twelve revolute pairs to form four closed loops.

1 Introduction

The direct position analysis (DPA) of a manipulator is the com-
putation of the end-effector poses (positions and orientations)
compatible with assigned values of the actuated-joint variables.
Assigning the actuated-joint variables corresponds to consider-
ing the actuated joints locked, which makes the manipulatora
structure. The solutions of the DPA of a manipulator one-to-one
correspond to the assembly modes of the structure generatedby
locking the actuated-joint variables of that manipulator.Deter-
mining the assembly modes of a structure means solving the DPA
of a large family of manipulators since the same structure can be
generated from different manipulators.

The solution of the DPA of parallel manipulators (PMs) is
a difficult and challenging task since, in general, it involves the
solution of a system of non-linear equations.

Spherical parallel manipulators (SPMs) are PMs where the
end-effector performs only spherical motions with a centerfixed
to the frame. SPMs can be collected into two subsets: (i) the set
of the SPMs where only the end-effector and few (or no) other
links perform spherical motions with the same center, and (ii)
the set of the SPMs where all the links perform spherical mo-
tions with the same center. When the actuated joints are locked,
both these two types of SPMs become structures whose assem-
bly modes can be identified by considering equivalent structures
where the links are connected only through revolute pairs with
axes that converge toward the spherical motion center. Such
structures will be called spherical structures (SSs).

Structures composed of links connected only through revolute
pairs are also generated from a large family of planar parallel ma-
nipulators (PPMs) by locking the actuated joints. In this case, all
the revolute pair axes are parallel to one another, and perpendic-
ular to the plane of motion. Such structures will be called planar
structures (PSs).

When the topology of a structure is analyzed, only the number
and the type (binary, ternary, etc.) of links, and the type ofkine-
matic pairs that connect the links to one another are considered.
Therefore, the SSs and the PSs share the same set of topologies.

Moreover, by using the Grübler-Kutzbach equation, it is easy
to demonstrate that, in the SSs and the PSs, the number of loops,
l, the number of links,m, and the number of revolute pairs,r, are
related by the following two relationships:m = 2l + 1; r = 3l.

Sometimes structures contain substructures (i.e. an subset of
links that form a structure by themselves). A substructure can
be substituted into the original structure by a unique link whose
shape depend on the assembly modes of the substructure. This
substitution process ends when no other substructure can beiden-
tified in the last obtained structure. In the literature, structures
that do not contain substructure have been called Assur kinematic
chains (AKCs). The determination of all the assembly modes of
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any structure can be implemented by exploiting a set of algo-
rithms that solve all the AKCs (Innocenti (1995)).

The solution of the DPA of all the SPMs can be implemented
by classifying all the SS topologies which refer to AKCs, and,
then, by providing, for each identified topology, an algorithm
that computes the assembly modes of the AKC with that topol-
ogy. The fact that the set of SS topologies coincides with the
one of PSs allows the wide literature on planar mechanisms to
be exploited (Wampler (2004)). In particular (see Innocenti
(1995)), there are one single-loop AKC topology (the triad), one
double-loop AKC topology (the pentad), and three triple-loop
AKC topologies. Moreover, Manolescu (1973) gave a complete
classification of triple-loop topologies and how they are built.
Eventually, Shenet al. (2000) identified all the AKC topologies
with up to four loops. So doing, they showed that there are 28
quadruple-loop AKC topology.

The algorithms that analytically calculate all the assembly
modes of the AKCs up to three loops have been already presented
both for the planar case (see Innocenti (1995) for the Refs.), and
for the spherical case (see Wampler (2004) for the Refs.).

This paper addresses the determination of the assembly
modes of the structures, either planar or spherical, with one out of
the 28 quadruple-loop AKC topologies. And it provides one al-
gorithm, which is applicable to the planar and the sphericalcases
and solves the closure-equation systems of these structures in an-
alytical form. In particular, the topology of these structures is the
one reported in Fig. 1, and it is constituted of nine links (one qua-
ternary link, four ternary links and four binary links) connected
through twelve revolute pairs to form four closed loops.
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Figure 1: Topology of the studied structures: graph vertices rep-
resent links, graph edges represent joints (R stands for revolute
pair).

2 Basic concepts

The closure equations of a structure (or a mechanism) can be
written in many ways. The most common techniques are based
on the use of the loop equations which are a fixed number, say
n, of independent scalar equations that can be written for each
independent loop appearing in the structure.

When the structure contains a number of particular binary

links at least equal to the number of independent loops, and the
choice of the independent loops can be operated so that each loop
contains at least one binary link not included in the other loops,
the number n can be reduced to one, and the closure-equation
system can be reduced to a number of scalar equations equal to
the number of loops.

The analysis of Fig. 1 reveals that, in the structures under
study, four independent loops with one binary link can be easily
individuated: (1) loop 0-1-5-2 (link 5 is binary), (2) loop 0-2-6-3
(link 6 is binary), (3) loop 0-3-7-4 (link 7 is binary), and (4) loop
0-4-8-1 (link 8 is binary). All these loops are four-bar loops with
only revolute pairs.

Both in the planar case and in the spherical case, the revolute
pair axes are located by points lying on the motion plane1(planar
case) or on the unit sphere2 (spherical case). In our case, this
technique simply consist in writing, for each loop, that thedis-
tance (either on the motion plane or on the unit sphere3) between
the two points locating the revolute-pair axes at the endings of the
binary link is constant.

In the next sections this technique will be used to write a min-
imal set of closure equations both for the planar case and forthe
spherical case.

3 Closure equations

By using the above-mentioned technique to write the closure
equations, the resulting closure equations are very similar in the
two cases under study, and the same elimination technique can
be adopted for determining a univariate polynomial equation to
solve.

In the following subsections, the closure-equation systemwill
be deduced for both the cases.

3.1 Planar structure

Figure 2 shows the planar structure with the topology of Fig.1.
With reference to Fig. 2,Qi for i = 1, . . . , 4, are the points
which locate the axes of the revolute pairs that join the quaternary
link (link 0) to the i-th ternary link (i = 1, . . . , 4). Pji for j =
1, 2, andi = 1, . . . , 4, are the points that locate the axes of the
revolute pairs that join thei-th ternary link to the two adjacent
binary links.

Figure 3 shows thei-th loop (i = 1, . . . , 4) of the PS, and
the notation that will be used to deduce its loop equation. With
reference to Fig. 3, the link-indexk is equal to(i + 1) modulo
4. r0i is the length of the segmentQiQk. rji (rjk), j = 1, 2,
is the length of the segmentQiPji (QkPjk). And r3(i+4) is the
length of the segmentP2iP1k. The anglesβi, andγi (βk, andγk)

1The motion plane is a plane surface perpendicular to all the revolute pair
axes.

2The unit sphere is a sphere surface with unit radius, and center coincident
with the center of the spherical motion. It is worth noting that the unit sphere is
perpendicular to all the revolute-pair axes since all the revolute-pair axes converge
toward the center of the spherical motion.

3The distance between two points on a sphere surface is the length of the
shortest great-circle arc joining the two points. On the unit sphere, this distance
coincides with the convex central angle delimited by the two radii passing through
the two points, if the angle is measured in radians.
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Figure 2: Four-loop PS with the topology of Fig. 1.

are the interior angles atQi (Qk) of link i (link k) and link 0,
respectively. The angleθi (θk) is the joint variable of the revolute
pair located byQi (Qk). Eventually, the reference systemQixiyi

is a Cartesian reference system, fixed to link 0, that will be used
to write the loop equation of thei-th loop.

It is worth noting that the eight geometric constants of the
quaternary link (i.e.,γi andr0i for i = 1, . . . , 4) are related by
the following three scalar equations (see Figs. 2 and 3):

4
∑

i=1

γi = 2π (1a)

r01 − r02 cos γ2 = r04 cos γ1 − r03 cos(γ1 + γ4) (1b)

r02 sin γ2 = r04 sin γ1 − r03 sin(γ1 + γ4) (1c)

With these notations, the position vectors of the pointsP2i and
P1k, in the reference systemQixiyi, have the following explicit
expressions (i = 1, . . . , 4; k = (i + 1) modulo4):

iP2i =

(

aici − bisi

aisi + bici

)

; iP1k =

(

r1ksk

r0i − r1kck

)

; (2)

where the left superscripti indicates that the vectors are mea-
sured inQixiyi. ci (ck), andsi (sk) stand forcos θi (cos θk), and
sin θi (sin θk), respectively. Eventually,ai andbi are geometric
constants with the following explicit expressions:

ai = r2i cos

(

γi + βi −
3

2
π

)

(3a)

bi = r2i sin

(

γi + βi −
3

2
π

)

(3b)

By reminding that the distancer3(i+4) between the pointsP2i

andP1k (see Fig. 3) can be expressed through the coordinates of
the two points, measured in any Cartesian reference system,the
following set of closure equations can be written for the PS under
study:
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Figure 3: i-th loop of the PS: notation (i = 1, . . . , 4; k = (i + 1)
modulo 4).

(iP2i − iP1k)2 = r2
3(i+4),

i = 1, . . . , 4; k = (i + 1) modulo4.
(4)

The introduction of the explicit expressions (2) into Eqs. (4)
yields the following system of closure equations in explicit form:

(aici − bisi − r1ksk)2+

(aisi + bici − r0i + r1kck)2 − r2
3(i+4) = 0,

i = 1, . . . , 4; k = (i + 1) modulo4.

(5)

Closure equations (5) constitute a system of four scalar equa-
tions in four unknowns: the four joint variablesθi, i = 1, . . . , 4.
By expanding (5), system (5) becomes:

gi0 + gi1si + gi2ci + gi3ck+

gi4(sick − cisk) + gi5(cick + sisk) = 0,

i = 1, . . . , 4; k = (i + 1) modulo4.

(6)

where the constant coefficientsgin, n = 0, 1, . . . , 5, have the
following explicit expressions:

gi0 = r2
2i + r2

1k + r2
0i − r2

3(i+4) ; (7a)

gi1 = −2r0iai; gi2 = −2r0ibi; gi3 = −2r0ir1k ; (7b)

gi4 = 2r1kai; gi5 = 2r1kbi . (7c)

Each equation of system (6) is linear both inci andsi, and in
ck andsk.

3.2 Spherical structure

Figure 4 shows the spherical structure with the topology of Fig.1.
With reference to Fig. 4,O is the center of the unit sphere;Qi

for i = 1, . . . , 4, are the points which locate, on the unit sphere,
the axes of the revolute pairs that join the quaternary link (link
0) to thei-th ternary link (i = 1, . . . , 4). Pji for j = 1, 2, and
i = 1, . . . , 4, are the points that locate, on the unit sphere, the
axes of the revolute pairs that join thei-th ternary link to the two
adjacent binary links.
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Figure 4: Four-loop SS with the topology of Fig. 1.

Figure 5 shows thei-th loop (i = 1, . . . , 4) of the SS, and
the notation that will be used to deduce its loop equation. With
reference to Fig. 5, the link-indexk is equal to(i + 1) modulo 4.

ρ0i is the convex central angle4 Q̂iOQk. ρji (ρjk), j = 1, 2, is

the convex central anglêQiOPji (Q̂kOPjk). And ρ3(i+4) is the

convex central angle ̂P2iOP1k. The anglesβi, andγi (βk, and
γk) are the dihedral angles at the edgeOQi (OQk) of link i (link
k) and link 0, respectively. The angleθi (θk) is the joint variable
of the revolute pair located byQi (Qk). Eventually, the reference
systemOxiyizi is a Cartesian reference system, fixed to link 0,
that will be used to write the loop equation of thei-th loop.

It is worth noting that the eight geometric constants of the
quaternary link (i.e.,γi andρ0i for i = 1, . . . , 4) are related by
any tern of independent scalar equations deducible from thefol-
lowing matrix equation (see Figs. 4 and 5):

1R4
4R3

3R2
2R1 = I (8)

whereI is the3 × 3 identity matrix; whereaskRi, k = (i + 1)
modulo 4, is the rotation matrix that transforms vector compo-
nents measured inOxiyizi into vector components measured in
Oxkykzk. kRi has the following explicit expression:

kRi = Rx(−ρ0i)Rz(π − γk) (9)

where the following elementary rotation matrices have beenin-
troduced

Rx(α) =





1 0 0
0 cos α − sin α
0 sin α cos α



 ; (10a)

Rz(α) =





cos α − sin α 0
sinα cos α 0

0 0 1



 . (10b)

4The measure of the convex central angle between two radius vectors gives
the distance, on the unit sphere, between the two points located on the sphere by
the two radius vectors.
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Figure 5: i-th loop of the SS: notation (i = 1, . . . , 4; k = (i + 1)
modulo 4).

With these notations, the position vectors of the pointsP2i

and P1k, in the reference systemOxiyizi, have the following
explicit expressions (i = 1, . . . , 4; k = (i + 1) modulo4):

iP2i =





uici − visi

uisi + vici

wi



 ; iP1k =





s1ksk

c1ks0i − s1kc0ick

c1kc0i + s1ks0ick



 ;

(11)
where the left superscripti indicates that the vectors are mea-
sured inOxiyizi. ci (ck), andsi (sk) stand forcos θi (cos θk),
andsin θi (sin θk), respectively; whereasc0i (c1k), ands0i (s1k)
stand forcos ρ0i (cos ρ1k), and sin ρ0i (sin ρ1k), respectively .
Eventually,ui, vi andwi are geometric constants with the fol-
lowing explicit expressions:

ui = sin ρ2i cos

(

γi + βi −
3

2
π

)

(12a)

vi = sin ρ2i sin

(

γi + βi −
3

2
π

)

(12b)

wi = cos ρ2i (12c)

Sincecos ρ3(i+4) is equal to the dot product of the position
vectors of the two unit-sphere pointsP2i andP1k (see Fig. 5) in
any Cartesian reference system with origin atO,5 the following
set of closure equations can be written for the SS under study:

iPT
2i

iP1k = c3(i+4), i = 1, . . . , 4; k = (i+1) modulo4. (13)

where c3(i+4) stands forcos ρ3(i+4), and the right superscript
(·)T denotes the transpose of(·) . Thei-th equation (13) analyt-
ically expresses the fact that the distance, on the unit sphere, be-
tween the two unit-sphere pointsP2i andP1k is constant; hence,
it is the spherical counterpart of the thei-th equation (4).

5Remind that radius vectors of the unit sphere coincide with position vectors
of the unit-sphere points, located by the radius vectors, inCartesian reference
systems with origin at the unit-sphere centerO.
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The introduction of the explicit expressions (11) into Eqs.
(13) yields the following system of closure equations in explicit
form:

(uici − visi)s1ksk+

(uisi + vici)(c1ks0i − s1kc0ick)+

wi(c1kc0i + s1ks0ick) − c3(i+4) = 0,

i = 1, . . . , 4; k = (i + 1) modulo4.

(14)

Closure equations (14) constitute a system of four scalar
equations in four unknowns: the four joint variablesθi, i =
1, . . . , 4. By expanding (14), system (14) becomes:

hi0 + hi1si + hi2ci + hi3ck+

hi4sick + hi5cisk + hi6cick + hi7sisk = 0,

i = 1, . . . , 4; k = (i + 1) modulo4.

(15)

where the constant coefficientshin, n = 0, 1, . . . , 7, have the
following explicit expressions:

hi0 = wic1kc0i − c3(i+4); hi1 = uic1ks0i; (16a)

hi2 = vic1ks0i; hi3 = wis1ks0i; hi4 = −uis1kc0i; (16b)

hi5 = uis1k; hi6 = −vis1kc0i; hi7 = −vis1k . (16c)

Each equation of system (15) is linear both inci andsi, and
in ck andsk.

4 Solution technique

The closure-equation systems (6) and (15) can be transformed
into algebraic-equation systems by using the following trigono-
metric identities:

ci =
1 − t2i
1 + t2i

; si =
2ti

1 + t2i
; i = 1, . . . , 4 (17)

whereti, i = 1, . . . , 4, is equal totan(θi/2).
So doing, both system (6), and system (15) are put in the fol-

lowing form:

2
∑

n=0

2
∑

m=0

dinmtni tmk = 0; i = 1, . . . , 4; k = (i + 1) modulo4

(18)
where the explicit expressions of the constant coefficientsdinm,
n,m = 0, 1, 2, are reported in the appendices A and B for the PS
and the SS, respectively.

The first (i = 1) and the fourth (i = 4) equations of system
(18) can be rewritten in the following form:

A2t
2
1 + A1t1 + A0 = 0 (19a)

B2t
2
1 + B1t1 + B0 = 0 (19b)

whereAj = d1j2t
2
2 + d1j1t2 + d1j0 andBj = d42jt

2
4 + d41jt4 +

d40j , for j = 0, 1, 2. Moreover, the second (i = 2) and the third
(i = 3) equations of system (18) can be rewritten in the following
form:

E2t
2
3 + E1t3 + E0 = 0 (20a)

F2t
2
3 + F1t3 + F0 = 0 (20b)

whereEj = d22jt
2
2 + d21jt2 + d20j andFj = d3j2t

2
4 + d3j1t4 +

d3j0, for j = 0, 1, 2.
The product of both the Eqs. (19) byt1 yields two more equa-

tions that, when added to (19), give the following homogeneous
system:

M1 f1 = 0 (21)

wheref1 is equal to(t31, t
2
1, t1, 1)T , whereasM1 is a4× 4 matrix

defined as follows

M1 =









A2 A1 A0 0
B2 B1 B0 0
0 A2 A1 A0

0 B2 B1 B0









(22)

On the other side, the product of both the Eqs. (20) byt3 yields
two more equations that, when added to (20), give the following
homogeneous system:

M2 f2 = 0 (23)

wheref2 is equal to(t33, t
2
3, t3, 1)T , whereasM2 is a4× 4 matrix

defined as follows

M2 =









E2 E1 E0 0
F2 F1 F0 0
0 E2 E1 E0

0 F2 F1 F0









(24)

The two homogeneous systems (21) and (23) admit non-
trivial solutions, for f1 and f2 respectively, if and only if the
two determinantsdet(M1) anddet(M2) are equal to zero (i.e.,
their coefficient matrices are singular). Since the entriesof the
first and the third rows of both the matrices are quadrics int2,
whereas their second and forth rows are quadrics int4, the van-
ishing condition ofdet(M1) anddet(M2) yields the following
two algebraic equations that are quartics both int2 and int4:

4
∑

n=0

4
∑

m=0

pnmtn2 tm4 = 0 (25a)

4
∑

n=0

4
∑

m=0

qnmtn2 tm4 = 0 (25b)

where the explicit expressions of the constant coefficientspnm

andqnm, for n,m = 0, . . . , 4, as functions of the constant coef-
ficients reported in the appendices A and B, can be easily deter-
mined with the help of an algebraic manipulator. Such expres-
sions are not reported here since they are cumbersome.

Equations (25) constitute a non-linear system of two equa-
tions in two unknowns:t2, andt4. System (25) can be rewritten
as follows:

4
∑

j=0

Ljt
j
2 = 0 (26a)

4
∑

j=0

Njt
j
2 = 0 (26b)
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Table 1: Planar Structure: solutions of the numerical example
t1 t2 t3 t4

1 .14540976407902879027293908 .64496623994571841596263372 -.33995155650823447070843769 .0819791126793446047065806293
2 -.077227714709025110370104775 .76803507980135176081753200 -.37583922874392176970779633 .0991483691462966418039440854
3 .31027317592256860100604449 -.78277181236408978593774468 .42188060295853963511347192 .2238289048835068617548207877
4 .45062695967325673049797405 -.69794362132646017838199605 -.97476498792723065506640091 .3378809249470220693696311392
5 1.20695305556324089196099633 .91633117401742338436255702 1.09130850106927139480659436 .8390996311772800117631272981
6 -.64640026596367343569314724 4.04003082965422103236594713 -2.71967984246300713821885292 1.045998408481253318241645595
7 1.66916735389394832010007919 1.14216132858181575837207037 1.37143762290017367135776656 1.050583466573429961237254444
8 13.16425818060947425215680863 4.26882828246928634814151261 -4.53789402060688689762408517 1.800982930765191163895773994
9 208.45038747133619402856213487-2.11674168109901666421941153 -4.78562060550766382277121085 1.895978137292928399253752311
10 -26.81541066700656298137161586-3.07760509002559592809555103 2.90357331147061231692162538 1.943292745104974910169838954
11 .039846847673210378188216602 -1.10048431924001936505603127 .55472513836233642331325649 -.084308385270921315258566334
12 -.15607071229759993578242963 -1.55698842971696026891592910 .78641617401213709094144928 -.167603233161461281813419201
13 .077971500241808447357197929 .67054918338255699388821957 .81579796381664550087115700 -.176970618142634298758693275
14 -.30820112784483839462288724 -2.22324243579987649268244828 1.25223538268247267422803279 -.302069667336494935593808144
15 -.32498273061036110891061454 1.09252930678734718250915716 1.30746020746642945930185019 -.316590516221194220495666284
16 .17046575070945815221605462 .63770346854436767382116706 -.33797081342814258809109019 -.363773478707546671785525565
17 -.43210685728254645483179199 1.36268671107614166134072405 1.67488361163341613634156329 -.407984780649443848667174677
18 .52684373129210421002487735 -.66739051464043879792708220 -.93642359477505331961703787 -1.02246294842782466661923238
19 -32.55430091621347845561677664-2.82792448537262388807377299-253.73121491428977207738482685-2.25282987723016144150037867
20 11.25055399577708095094706716 -1.47768067112559515995942455 -2.30168293097248032931051648 -2.42705297789839512570915480
21 10.87826714915480388273577657 3.85237293514646026565524521 -2.30523947165503596877276301 -2.43031231220896800404824993
22 10.59132861100362440506723393 3.79590172229500515671923849 -51.26410762602066041681539526 -2.43293211532249675222279903
23 -.46091396718-.3147647875 j .92479484478+.6793627405 j -.39930489512-.2398553778 j -.44330155417-.2650496400 j
24 -.22634298550+.3044553268 j -1.26354193430+.9102694686 j -1.31998222381+1.436522544 j .42996169345-.5607327793 j
25 -.27792212930+.2474597288 j -1.51031256094+.9565297756 j .65243761504-.4943832040 j .50950215830-.4401832433 j
26 -.40592787199+.3396438907 j .84446118451-.6023166102 j .93036922244-.6829091211 j .76616003143-.5562035841 j
27 -.40592787199-.3396438907 j .84446118451+.6023166102 j .93036922244+.6829091211 j .76616003143+.5562035841 j
28 -.27792212930-.2474597288 j -1.51031256094-.9565297756 j .65243761504+.4943832040 j .50950215830+.4401832433 j
29 -.22634298550-.3044553268 j -1.26354193430-.9102694686 j -1.31998222381-1.436522544 j .42996169345+.5607327793 j
30 -.46091396718+.3147647875 j .92479484478-.6793627405 j -.39930489512+.2398553778 j -.44330155417+.2650496400 j

where

Lj =

4
∑

m=0

pjmtm4 ; Nj =

4
∑

m=0

qjmtm4 ; j = 0, . . . , 4 (27)

The product of both the Eqs. (26) byt2,t22, andt32 yields six
more equations that, when added to (26), give the following ho-
mogeneous system:

H e = 0 (28)

wheree is equal to(t72, t
6
2, t

5
2, t

4
2, t

3
2, t

2
2, t2, 1)T , whereasH is an

8 × 8 matrix defined as follows

H =

























L4 L3 L2 L1 L0 0 0 0
N4 N3 N2 N1 N0 0 0 0
0 L4 L3 L2 L1 L0 0 0
0 N4 N3 N2 N1 N0 0 0
0 0 L4 L3 L2 L1 L0 0
0 0 N4 N3 N2 N1 N0 0
0 0 0 L4 L3 L2 L1 L0

0 0 0 N4 N3 N2 N1 N0

























(29)

The homogeneous system (28) admits non-trivial solutions
for e, if and only if the following equation is satisfied:

det(H) = 0 (30)

Since the non-null entries of matrixH are univariate quar-
tics in t4, and det(H) is a sum of terms that are products of
eight entries of matrixH (see Appendix C), Eq. (30) is a uni-
variate polynomial equation int4 which has at most degree 32.

This result meets the upper bound to the number of complex so-
lutions of system (18) that the authors found by calculatingthe
optimal multi-homogeneous B́ezout number (see Malajovichet
al. (2004); Wampler (1992) for details) of system (18). Once the
values oft4 that solve Eq. (30) have been computed, by back
substituting them into matrixH, and, then, solving the resulting
systems (28), the corresponding values oft2 can be computed.
Eventually, the computed values of the couple{t2, t4} must be
back substituted into (21) and (23) to compute the corresponding
values oft1 andt3.

The adopted elimination procedure could have introduced ex-
traneous solutions of type±j with j =

√
−1 since the only

factors, that could generate extraneous roots and have been
multiplied by the original system of equations, are the factors
(1 + t2i )(1 + t2k), with i = 1, . . . , 4 andk = (i + 1) modulo4.
Such factors have been used to obtain system (18) from the origi-
nal ones (i.e., either (6) or (15)) passing through the trigonometric
identities (17).

So far, the evaluation of the actual degree of (30) can be done
either through extended numerical tests, provided that they iden-
tify at least one set of data which makes (30) a 32-degree polyno-
mial equation, or by analytically determining the coefficients of
the polynomial equation (30).

Extended numerical tests, carried out by the authors, with ran-
domly generated data brought to find many data sets, both for
the planar geometry and for the spherical geometry, which make
(30) a 32-degree polynomial equation. Moreover, the same nu-
merical tests demonstrated that the elimination procedureused to
obtain (30) introduces one couple of extraneous roots of type±j

6
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Figure 6: Assembly modes corresponding at the real solutions of the planar structure example,, numbered as in Table 1.

in the planar case, whereas does not introduce extraneous roots
in the spherical case. These results bring to the conclusionthat,
in general, Eq. (30) is a 32-degree polynomial equation bothfor
the planar geometry and for the spherical geometry, but, in the
planar case, one common factor of type(1 + t24) can always be
collected and simplified. Thus, in general, the complex solutions
of our problems are 30 for the planar case and 32 for the spherical
case. Among the complex solutions of (18), only the real solu-
tions correspond to actual assembly modes of the structure under
study. The above-mentioned numerical tests brought to identify a
PS geometry with 22 assembly modes and an SS geometry with
20 assembly modes. The maximum number of real solutions of
Eq. (30) still is an open problem.

Regarding the analytic determination of the coefficients ofthe
polynomial equation (30), it can be implemented with the help of
an algebraic manipulator by, first, determining the explicit ex-
pression ofdet(H) as a function of the non-null entries of matrix
H (see Appendix C), and, then, elaborating the obtained expres-
sion, either as a whole or by grouping terms according to the size

of the computer memory.

5 Numerical examples

Two numerical examples, one for the planar case and the otherfor
the spherical case, are reported in this section in order to show the
effectiveness of the proposed algorithm.

The algorithm has been implemented in Maple. The numeri-
cal computations have been executed by setting the machine pre-
cision equal to 32 decimal digits in Maple. All the computed so-
lutions, when substituted into the closure equations, satisfy those
equations with residuals whose absolute values range from less
than10−24 to 10−16 which is coherent with the chosen machine
precision.

5.1 Planar structure

With reference to Fig. 3, the geometric data of the planar struc-
ture are (the angles are measured in radians; the lengths aremea-

7



Table 2: Spherical Structure: solutions of the numerical example
t1 t2 t3 t4

1 .71210618362405426284256680 -1.07497455753610126844941610 -.44800329091214858293485363 .08888750399467942592826241
2 -.77555049530120851859608902 -.74503557530432738102964660 -.24792229123086817311120878 .10816694054981834932287101
3 .73108529113176738147778583 .36104413133812455092212669 -.23746745300156585250147610 .10950012413553095254398550
4 -.72549776292846969591003825 .79320769587113511335921109 .03630297251790967535735756 .16000844373201842754237919
5 -.63263922860470586533425186 -.56652126398478751309846081 -1.44902748818508054635389670 .27451592178874086050489859
6 1.57053701322224629303710825 -.52991180805252246579181921 -1.37210452664695894570979698 .68727090141199789465811756
7 2.40142765596175495890746839 .99959051861156910688335979 1.47191403359898321689225502 .99953905003138499326551774
8 2.94590500454578732727341691 1.14028145816754857419174148 1.68387120989711817340500497 1.14028145816754857419174148
9 -.32795607767030026969899765 2.19663385872870672116782892 3.92448007851295936217838809 2.44302088284558462087474599
10 -.35516231227752358582549022 -.28916074078427804669446380 -.94600220362422008355832889 3.26553951295171978376109941
11 -1.65975815407406043940241852-2.56923193640685492125416214 9.79335321801512801048241709 5.03567470968899676965553945
12 -1.38917347319588278667302307-1.84208964986328586214502214 -.84651594808033024796061489 5.61748994274721802111609339
13 .57581984213681238722225099 -1.30867847119402492580107470-4.65455115661074888666990473 -.08542804448235159783879797
14 -1.04104284673259602904066614-1.14747508391672336044297166-3.50406969845887886005942853 -.10012284021138216272481265
15 -1.61463716957538962922155030 .24467583838696498764648277 .54597642903231132114054648 -.36991906499149841363008628
16 .42332462997183013284378318 .20417982508098921066693455 .50514822416316912555231635 -.39495622231747702816149454
17 -2.62820087281999567358612281-9.29741813777522859855414691-2.57059162668172064761692181 -.61864963851011157573145133
18 .55460724172756564825008630 .27238511180213352674820919 -.30818076970875067831990899 -2.21676044670613406595744070
19 .59483291307175496023888520 -1.26993077235092135957743913-4.33353238096872539657203809-2.25993333485671694287174695
20 .90142516808676214346285897 -.86488448942789661222868463 -.32303829136494826043861252 -2.31799366029688446938212761
21 .00342194452 -1.44883692156 j -.07299074451 -.36795252833 j -.56722944684 -.42617220241 j -.57746797303 -2.18365466581 j
22 .00342194452 +1.44883692156 j -.07299074451 +.36795252833 j -.56722944684 +.42617220241 j -.57746797303 +2.18365466581 j
23 .07455997783 -.12122912972 j -3.11221184246 -3.63391279861 j -1.81717583594 -1.05093035245 j -.27842265152 -1.15434019112 j
24 .07455997783 +.12122912972 j -3.11221184246 +3.63391279861 j -1.81717583594 +1.05093035245 j -.27842265152 +1.15434019112 j
25 -.23381078635 -1.21762411406 j .09063269535 -1.17945847211 j .04271862463 -.73206889984 j -.21193805682 -.94629004473 j
26 -.23381078635 +1.21762411406 j .09063269535 +1.17945847211 j .04271862463 +.73206889984 j -.21193805682 +.94629004473 j
27 -.55234273464 -.64624481380 j .14522125200 -.66631164661 j .32805303569 -.64275586423 j -.03952558872 -.56289938664 j
28 -.55234273464 +.64624481380 j .14522125200 +.66631164661 j .32805303569 +.64275586423 j -.03952558872 +.56289938664 j
29 .09011189540 -1.15046250591 j .10893422241 -.97670327545 j .15179864121 -.99221796677 j .07761152840 -1.02215361384 j
30 .09011189540 +1.15046250591 j .10893422241 +.97670327545 j .15179864121 +.99221796677 j .07761152840 +1.02215361384 j
31 -.13337931843 -.39981317759 j .27358440193 -1.79147591705 j .32398368945 -.86102638956 j .12386266728 -.81145941293 j
32 -.13337931843 +.39981317759 j .27358440193 +1.79147591705 j .32398368945 +.86102638956 j .12386266728 +.81145941293 j

sured in a generic unit of length):

γ1 = π/3 γ2 = 10π/21 γ3 = 2π/3 γ4 = 11π/21
β1 = π/3 β2 = π/2 β3 = 5π/18 β4 = π/2
r11 = 1.5 r12 = 2.3 r13 = 1 r14 = 2
r21 = 2 r22 = 1 r23 = 2 r24 = 2

r01 = 5.9068 r02 = 2 r03 = 4 r04 = 4.3069
r35 = 7.2893 r36 = 2.2485 r37 = 3.8270 r38 = 4.8127

Among these geometric data, the parametersγ4, r01 andr04 have
been computed by using relationships (1) together with the values
of the other geometric data of the quaternary link. Moreover,
once the geometry of the quaternary and the ternary links were
defined, the lengths of the binary links (i.e.,r35, r36, r37, andr38)
have been computed through Eqs. (4) after the following values
of the anglesθi, i = 1, . . . , 4, were assigned:

θ1 = 47π/84 θ2 = 17π/36 θ3 = 19π/36 θ4 = 4π/9,

which correspond to (ti = tan(θi/2))

t1 = 1.2069530555 t2 = 0.9163311740
t3 = 1.0913085010 t4 = 0.8390996311

This reference assembly mode appears in table 1 as solution num-
ber 5.

All the computed solutions of system (18) for this planar ge-
ometry are reported in table 1. Among the 30 solutions reported
in table 1, the first 22 solutions are real. Therefore the studied
planar geometry admits 22 assembly modes that are schemed in
Fig.6.

5.2 Spherical structure

With reference to Fig. 5, the geometric data of the sphericalstruc-
ture are (the angles are measured in radians):

γ1 = π/6 γ2 = 2π/3 γ3 = 1.62440 γ4 = 2π/3
β1 = π/4 β2 = π/4 β3 = π/6 β4 = π/4
ρ11 = π/5 ρ12 = π/7 ρ13 = π/5 ρ14 = π/6
ρ21 = π/5 ρ22 = π/7 ρ23 = π/5 ρ24 = π/6

ρ01 = 0.1855 ρ02 = 0.1068 ρ03 = π/7 ρ04 = π/8
ρ35 = 0.7099 ρ36 = 0.4532 ρ37 = 0.7324 ρ38 = 0.8997

Among these geometric data, the anglesρ01, ρ02 and γ3 have
been computed by using a tern of independent scalar equations,
deduced from the matrix Eq. (8), together with the values of the
other geometric data of the quaternary link. Moreover, oncethe
geometry of the quaternary and the ternary links were defined,
the central angles of the binary links (i.e.,ρ35, ρ36, ρ37, andρ38)
have been computed through Eqs. (13) after the following values
of the anglesθi, i = 1, . . . , 4, were assigned:

θ1 = 19π/24 θ2 = 13π/24
θ3 = (11π/12) − (81/100) θ4 = 13π/24

which correspond to (ti = tan(θi/2))

t1 = 2.945905004545 t2 = 1.140281458167
t3 = 1.683871209897 t4 = 1.140281458167

This reference assembly mode appears in table 2 as solution num-
ber 8.
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Figure 7: Assembly modes corresponding at the real solutions of the spherical structure example, numbered as in Table 2.

All the computed solutions of system (18) for this spherical
geometry are reported in table 2. Among the 32 solutions re-
ported in table 2, the first 20 solutions are real. Therefore the
studied spherical geometry admits 20 assembly modes schemed
in Fig.7.

6 Conclusions and further research

An algorithm that determines all the assembly modes of two
structures with the same topology has been presented.

The topology of the studied structures is constituted of nine
links (one quaternary link, four ternary links and four binary
links) connected through twelve revolute pairs to form four
closed loops.

Such structures can be thought as generated from two large
families (one planar and the other spherical) of parallel manip-
ulators by locking the actuated joints. Thus, the proposed algo-
rithm can be used to solve the direct position analysis (DPA)of

all these manipulators.

Through the proposed algorithm, it has been demonstrated
that the DPA of the planar manipulators with this topology
has thirty complex solutions, whereas the DPA of their spher-
ical counterparts has thirty-two complex solutions. Moreover,
extended numerical tests, which used the proposed algorithm,
brought to find a planar geometry with 22 assembly modes
(i.e.,real solutions of the DPA) and a spherical geometry with 20
assembly modes, and demonstrated the robustness of the algo-
rithm. As far as the authors are aware, these results are new.

This work is framed into a research activity oriented to pro-
vide algorithms that solve the DPA of all the planar and spherical
parallel manipulators which become four-loop Assur kinematic
chains when their actuators are locked.

In the future, the studied architectures will be used to synthe-
size devices for industrial and/or biomedical applications.
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Appendix A
With reference to (18) and (7), the constant coefficientsdinm,

n,m = 0, 1, 2, have the following explicit expressions for the
planar structure (Fig. 2):

di00 = gi0 + gi2 + gi3 + gi5; di10 = 2(gi1 + gi4);

di01 = −2gi4; di11 = 4gi5; di20 = gi0 − gi2 + gi3 − gi5;

di02 = gi0 + gi2 − gi3 − gi5; di12 = 2(gi1 − gi4);

di21 = 2gi4; di22 = gi0 − gi2 − gi3 + gi5.

Appendix B
With reference to (18) and (16), the constant coefficientsdinm,

n,m = 0, 1, 2, have the following explicit expressions for the
spherical structure (Fig. 4):

di00 = hi0 + hi2 + hi3 + hi6; di10 = 2(hi1 + hi4);

di01 = 2hi5; di11 = 4hi7; di20 = hi0 − hi2 + hi3 − hi6;

di02 = hi0 + hi2 − hi3 − hi6; di12 = 2(hi1 − hi4);

di21 = −2hi5; di22 = hi0 − hi2 − hi3 + hi6.

Appendix C
The explicit expression ofdet(H) as a function of the non-null

entries of matrixH (see definition (29)) is:

det(H) = L4
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