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Abstract

In this report, model predictive control (MPC) of large-scale sewage systems is addressed consid-
ering different modelling approaches that include several inherent continuous/discrete phenom-
ena (overflows in sewers and tanks) and elements (weirs) in the system that result in distinct
behaviour depending on the dynamic state (flow/volume) of the network. These behaviours
can not be neglected nor can be modelled by a pure linear representation. In order the MPC
controller takes into account these phenomena and elements, a modelling approach based on
piece-wise linear functions is proposed and compared against a hybrid modelling approach pre-
viously reported by the authors. Control performance results and associated computation times
of the closed-loop scheme considering both modelling approaches are compared by using a real
case study based on the Barcelona sewer network.

* Viceng Puig is with the Control Department (ESAIT), Technical University of Catalonia (UPC),
Rambla de Sant Nebridi, 10, 08222 Terrassa, Spain, e-mail: vicenc.puig@upc.edu

Institut de Robotica i Informatica Industrial (IRI)

Consejo Superior de Investigaciones Cientificas (CSIC) Corresponding author:

Universitat Politecnica de Catalunya (UPC) C. Ocampo-Martinez
Llorens i Artigas 4-6, 08028, Barcelona, Spain tel: +34 93 401 5786
Tel (fax): +34 93 401 5750 (5751) cocampo@iri.upc.edu

http://ww. iri . upc.edu http://www.iri.upc.edu/people/cocampo

© Copyright IRI, 2009



Section 1 Introduction 1

1 Introduction

Sewer networks are considered as complex large-scale systems since they are geographically
distributed and decentralized with a hierarchical structure. Each sub-system is in itself composed
of a large number of elements with time-varying behavior, exhibiting numerous operating modes
and subject to changes due to external conditions (weather) and operational constraints.

Most cities around the world have sewage systems that combine sanitary and storm water
flows within the same network. This is why these networks are known as Combined Sewage
Systems (CSS). During rain storms, wastewater flows can easily overload these CSS, thereby
causing operators to dump the excess water into the nearest receiver environment (rivers, streams
or sea). This discharge to the environment, known as Combined Sewage Overflow (CSO),
contains biological and chemical contaminants creating a major environmental and public health
hazard. Environmental protection agencies have started forcing municipalities to find solutions in
order to avoid those CSO events. A possible solution to the CSO problem would be to enhance
existing sewer infrastructure by increasing the capacity of the wastewater treatment plants
(WWTP) and by building new underground retention tanks. But in order to take profit of these
expensive infrastructures, it is also necessary a highly sophisticated real-time control (RTC)
scheme which ensures that high performance can be achieved and maintained under adverse
meteorological conditions [27]. The advantage of RTC applied to sewer networks has been
demonstrated by an important number of researchers during the last decades, see [10, 23, 22, 14].
Comprehensive reviews that include a discussion of some existing implementations are given by
[25] and cited references therein, while practical issues are discussed by [26], among others.

The RTC scheme in sewage systems might be local or global. When local control is applied,
flow regulation devices use only measurements taken at their specific locations. While this
control structure is applicable in many simple cases, in a big city, with a strongly interconnected
sewer network and a complex infrastructure of sensors and actuators, it may not be the most
efficient alternative. Conversely, a global control strategy, which computes control actions taking
into account real-time measurements all through the network, is likely the best way to use the
infrastructure capacity and all the available sensor information. Global RTC deals with the
problem of generating control strategies for the control elements in a sewer network, ahead of
time, based on a predictive dynamic model of the system, and readings of the telemetry system,
in order to avoid street flooding, prevent CSO discharges to the environment, minimize the
pollution, homogenise the utilization of sewage system storage capacity and, in most of cases,
minimize the operating costs [27, 9, 32, 28]. The multivariable and large-scale nature of sewer
networks have lead to the use of some variants of Model Predictive Control (MPC), as global
control strategies [10, 23, 22, 14]. The MPC strategy, also referred as Receding Horizon Control
(RHC) or Moving Horizon Optimal Control (MHOC), is one of the few advanced methodologies
which has significant impact on industrial control engineering. MPC is being applied in process
industry because it can handle multivariable control problems in a natural form, it can take into
account actuator limitations and allows constraints consideration.

In order to use MPC within a global RTC scheme of a sewage system, a model able to
predict its future states over a prediction horizon taking into account a rain forecast is needed.
Sewer networks are systems with complex dynamics since water flows through sewers in open
channel. These flow dynamics are described by Saint-Vennant’s partial differential equations
that can be used to perform simulation studies but are highly complex to be solved in real time.
When developing a control-oriented model, there is always a trade-off between model description
accuracy and computational complexity. As a general rule, the model used for control purposes
should be descriptive enough to capture the most significant dynamics of the system but simple
enough to be scalable for large-scale networks such that real-time implementation is allowed.

Several control-oriented modelling techniques have been presented in the literature that deal
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with the global RTC of sewage systems, see [14, 8]. In [18, 6], it is used a conceptual linear
model based on assuming that a set of sewers in a catchment can be considered as a virtual
tank. The main reason to use a linear model is to preserve the convexity of the optimization
problems related to the MPC strategy. A similar approach can be found in an early reference
on MPC applied to sewage systems [10].

However, there exist several inherent phenomena (overflows in sewers and tanks) and ele-
ments (weirs) in the system that result in distinct behaviour depending on the state (flow/volume)
of the network. These discontinuous behaviours can not be neglected nor can be modelled by a
pure linear model. Additionally, the presence of intense precipitation causes that new flow paths
appear. Thus, some flow paths are not always present in the sewer network and depend of its
state and disturbances (rain). According to this observed behaviour, a control-oriented model
methodology that allows to consider and incorporate overflows and other logical dynamics in
most of the sewer network elements is needed. One of the main contributions of this paper
is to describe and analyze these continuous/discrete dynamic behaviours in order to propose
a control-oriented modelling approach focused on designing an MPC-based RTC scheme for
large-scale sewer networks.

First of all, an hybrid modelling approach based on the Mized Logical Dynamical (MLD)
paradigm, introduced in [2] and already used to model hybrid elements in sewer networks will
be briefly presented (see [16] for further details). However, from previous works in this line done
by the authors (see [17]), the inclusion of those discontinuous behaviours in the MPC problem
increases the computation time of the control law. So, some relaxation should be thought in
the modelling approach such that it can be considered within the RTC of large-scale sewer
networks. Therefore, another contribution of this paper consists in proposing an alternative
modelling approach consisting on representing the sewage system by using piece-wise linear
functions (in the sequel called PWLF-based model or simply PWLF model), following the ideas
proposed by Schechter [24]. The aim of this modelling approach is to reduce the complexity of the
MPC problem by avoiding the logical variables introduced by the MLD system representation.
The idea behind the PWLF modelling approach consists in having a description of the network
using functions that, despite their discontinuous nature, are considered as quasi-convex [4], and
hence the optimization problems associated to the non-linear MPC strategy used for RTC of
the sewage system. In this way, the resulting optimization problems does not include integer
variables what allows saving computation time.

The remainder of the paper is organized as follows. In Section 2, control-oriented modelling
of sewer networks is revised and the issue of discontinuous dynamics is presented. Two modelling
approaches for large-scale sewer networks are explained and discussed. RTC scheme for sewage
systems based on MPC strategy is addressed in Section 3 taking into account the modelling
approaches presented in previous section. Section 4 presents a real case study based on the
Barcelona sewer network. This case study is used to compare the closed-loop performance when
implementing a predictive controller based on the modelling approaches presented in Section 2.
Section 5 shows and discusses the comparisons of performance and computation times of the
closed-loop system considering the mentioned control-oriented modelling approaches. Finally,
main conclusions close the paper in Section 6.

2 RTC-Oriented Modelling of Large-Scale Sewer Networks

2.1 Principles of Mathematical Modelling of Sewage Systems

One of the most important stages on design of RTC schemes for sewer networks, in the case
of using a model-based control technique as MPC, lies on the modelling task. This is because
performance of model-based control techniques is very dependant of model quality. So, in order
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to design an MPC-based RTC scheme with an acceptable performance, a system model with
accuracy enough should be used but keeping complexity manageable. This section is focused on
the determination of a control-oriented sewer network model taking into account the trade-off
between accuracy and complexity and keeping always in mind the RTC inherent restrictions
[10].

Water flow in sewer pipes is open-channel, that corresponds to the flow of a certain fluid in
a channel in which the fluid shares a free surface with an empty space above. The Saint-Venant
equations, based on physical principles of mass conservation and energy, allow the accurate
description of the open-channel flow in sewer pipes [15] and therefore also allow to have a
detailed non-linear description of the system behaviour. These equations are expressed as:

8qgc,t 814:(:,1‘, .
oz * ot 0 (1)
Oqzt O qazc,t OLy 4 B
ot + % (A%t) + gAm,t Oz - gAx,t (IO - If) =0, (2)

where g, ¢ is the flow (m3/s), A, ¢ is the cross-sectional area of the pipe (m?), ¢ is the time variable
(s), x is the spatial variable measured in the direction of the sewage flow (m), g is the gravity
(m/s?), Iy is the sewer pipe slope (dimensionless), I is the friction slope (dimensionless) and L ;
is the water level inside the sewer pipe (m). This pair of partial-differential equations constitutes
a non-linear hyperbolic system. For an arbitrary geometry of the sewer pipe, these equations
lack of an analytical solution. Notice that these equations describe the system behaviour in
high detail. However, such a level of detail is not useful for RT'C implementation due to the
complexity of obtaining the solution of (1)-(2) and the associated high computational cost.
Alternatively, several modelling techniques that deal with RT'C of sewer networks have been
presented in the literature, see [13], [9], [8], [14], among many others. The modelling approaches
presented in this paper follow closely the mathematical modelling principles proposed in [10].
Here, sewage system is divided into catchments and the set of pipes storage capacity belonging
to each partition is modelled as a wvirtual tank. At any given time, the stored volumes represent
the amount of water stored inside the sewer pipes associated with. The virtual tank volume is
calculated through the mass balance of the stored volume, the inflows and the outflow of the
catchment measured using limnimeters and the input rain intensity measured using rain-gauges.

2.2 Sewer Network Constitutive Elements

Using the virtual tank modelling principle and the mass balance conservation law, a sewer
network can be decomposed and described by using the elementary models explained below and
shown in Figures 1 and 2, element by element and conforming a simple network, respectively.
Other common sewage system elements such as pumping stations can be easily represented by
using the mentioned modelling principles but will be omitted here as they are not taken into
account in the case study presented in this paper. Every outlined element presented below
includes a conceptual scheme which will be not only used for describing its operation but also
for explaining the mathematical relations and equations derived when the modelling approaches
are explained along the next sections.

2.2.1 Virtual and Real Tanks

These elements are used as storage devices. In the case of virtual tanks, the mass balance of
the stored volume, the inflows and the outflow of the tank and the input rain intensity can be
written as the difference equation

Vigg1 = Vig + At@;S; Py, + At (qm§g — Qouty) » (3)
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(a) Virtual tank

(c) Redirection gate (d) Sewer pipe or weir with single
inflow

Figure 1: Conceptual schemes for sewer networks constitutive elements.

where @; is the ground absorption coefficient of the i-th catchment, S is the surface area, Py
is the rain intensity at each sample with a sampling time Af. Flows qmiC and qout}; are the
sum of inflows and outflows, respectively. Real retention tanks, which correspond to the sewer
network reservoirs, are modelled in the same way but without the precipitation term. Tanks are
connected with flow paths or links, which represent the main sewage pipes between the tanks.
Manipulated variables of the system, denoted as q,,, are related to the outflows from the control
gates. Tank outflows are assumed to be proportional to the tank volume , that is,

QOutZ = ﬁivikv (4)

where f3; (given in s71) is defined as the volume/flow conversion (VFC) coefficient as suggested in
[29] by using the linear tank model approach. Notice that this relation can be made more accu-
rate (but more complex) if (4) is considered to be non-linear (non-linear tank model approach).
Limits on the volume range of real tanks are expressed as

0 <wip <5, (5)

where 7; denotes the maximum volume capacity given in cubic meters. As this constraint is
physical, it is impossible to send more water to a real tank than it can store. Notice that real
tanks without overflow capability have been considered. Virtual tanks do not have a physical
upper limit on their capacity. When they rise above a preestablished volume, an overflow
situation occurs. This fact represents the case when level in sewers has reached a limit so that
an overflow situation can occur in the streets (flooding). Hence, when virtual tanks maximum
volume T is reached, the excess volume above this maximum amount is redirected to another
tank (catchment) within the network or to a receiver environment (pollution). This situation
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Figure 2: Simple sewer network conformed by constitutive elements described in Section 2.2.

creates a new flow path from the tank denoted as g4 (referred to as wvirtual tank overflow) that
can be expressed mathematically as:

(ve—7) ¢ =
“ar b w20
= 6
G {0 otherwise. ©)

Thus, outflow of virtual tank is then limited by its maximum volume capacity as follows:

Gv if v, >0
Qoutf = . (7)
Bv  otherwise.

Consequently, considering the tank overflow, the difference equation (3) related to virtual tanks
becomes

Vikt1 = Vi, + At SiPig, + At (Qinky — Qoutie — day,) - (8)

On the other hand and as was said before, real tanks are elements designed to retain water in
case of severe weather. For this reason, both tank inflow and outflow could be controlled. In the
same way, tank inflow is constrained by the actual volume within the real tank, by its maximum
capacity and by tank outflow. Since real tanks are considered without overflow capabilities,
inflow is pre-manipulated by using a redirection gate (explained in Section 2.2.2 below), what
results in the consideration of this component within the modelling of the real tank. In order
to restrict the value of the manipulated flow ¢}, to satisfy the maximum flow condition in the
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input gate, flow through input link g, should be expressed as

* lf * < .
Qo = {q“k far = ik (9)
Qinj, Otherwise.

However, maximum tank capacity also restricts the inflow according to the expression

X7  otherwise.
Finally, tank outflow is given by
Qoutr = q;utk if q;utk < ﬁvk (11)
outk Bvr,  otherwise,

taking into account that ¢},; is also restricted by the maximum capacity of the outflow link,
denoted by @,,;- Thus, latter expressions lead to the following difference equation for real tanks
in sewer networks:

Vg1 = Uk + At(qag, — Goutp)- (12)

Notice that the flow through g, corresponds to the mass balance
gvg = Qink — Yak- (13)

Figures 1(a) and 1(b) show conceptual schemes of the both virtual and real tanks considered in
this paper.

2.2.2 Manipulated Gates

Within a sewer network, gates are elemets used as control devices since they can change the flow
downstream. Depending on the action made, gates can be classified as retention gates, used to
change the direction of the sewage flow, and redirection gates, used to retain the sewage flow in
a certain point (sewer or reservoir) of the network. In the case of real tanks, a retention gate
is present to control the outflow. Virtual tank outflows can not be closed but can be diverted
using redirection gates. Indeed, redirection gates divert a flow from a nominal path which the
flow follows if the gate is closed. This nominal flow is denoted as J; in the equation below,
which expresses the mass conservation relation of the element:

qOuti = Qlk + Z qi«lk’ (14)
J

where j is an index over all manipulated flows coming from the gate. Figure 1(c) shows a
conceptual scheme of redirection gates considered in this paper. Assuming that the flow through
sewer ¢, is imposed (for instance computed by means of a control law), the expressions that
describe a redirection gate can be written as:

7, if q3>7
Qak :{ N ‘e (15)
g, otherwise,

where ¢ corresponds to the imposed/computed value for the flow g4j. Flow ¢y, is directly given
by the mass balance expression

dvr. = Qink — Yak- (16>
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2.2.3 Weirs and Main Sewer Pipes

These components complement the set of elements of sewer networks considered in this paper.
Since the descriptions of their dynamics are relatively close, all of them are presented together
in this section. Nodes are points of the network where the sewage can be either propagated or
merged. Hence, these elements can be classified as splitting nodes and merging nodes. The first
type can be treated considering a constant partition of the sewage flow in predefined portions
according to the topological design characteristics. Indeed, splitting nodes exhibit a switching
behaviour. In the case of a set of n inflows ¢;, with ¢ = 1,2,...,n, the expression for the node
outflow gy is written as

Qout = Z qi- (17)
=0

Weirs can be seen as splitting nodes having a maximum capacity in the nominal outflow path
related to the flow capacity of the output pipe. In the same way, main sewer pipes can be seen
as weirs with a single inflow. They are used as connection devices between network constitutive
elements. Therefore, considering the similarity between all the aforementioned elements and the
notation in Figure 1(d), the set of expressions valid to represent the behaviour either a weir or
a sewer pipe are the following:

q it qin >7
Qinj, Otherwise,
Qink — T I qin > T
_ 18b
ek { 0 otherwise, (18)

where @, is the maximum flow through ¢, and ¢;,, is the inflow. Notice that the outflow from
virtual tanks is assumed to be unlimited in order to guarantee a feasible solution of an associated
optimization problem within the design procedure of a optimization-based control strategy. The
same idea applies to the outflow gy, related to retention gates. But most often, sewer pipes have
limited flow capacity. The description of this element given here takes into account this limited
capacity. When the limit of flow capacity is exceeded, resulting overflow is possibly redirected
to another element within the network or is considered as loss to the environment.

2.3 Hybrid Modelling Approach using MLD Forms

In order to obtain a control-oriented model that takes into account the switching elements
and discontinuous phenomena inherent of sewage systems (as presented in previous section),
the hybrid systems modelling methodology based on MLD forms proposed by [16] is briefly
described.

According to [16], an entire sewer network model is constructed by connecting the system
inflows (rain) and outflows (sewer treatment plants and/or outflows to the environment) with
the inflows and outflows of the elements as well as connecting the elements themselves. The
set of manipulated variables of the whole sewage system, denoted as ¢, is conformed by the
manipulated variables of the constitutive elements of the sewer network. The logical conditions
presented to describe the dynamics of the sewage system elements can be translated into linear
integer inequalities as described in [2]. The whole sewer network expressed in MLD form can be
written as

Vpr1 = Avg + Biquy + B2dg + Bazp + Bady, (19a)
Y = Cvg+ Diquy + D2dg + D3z + Dady, (19b)
Eyb + B3z, < Erquy + Egvg + Es + Egdy, (19¢c)
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where v € R/}® corresponds to the vector of tank volumes (states), ¢, € RTiC is the vector of
manipulated sewer flows (inputs), d € IRTd is the vector of rain measurements (disturbances),
logic vector § € {0,1}"¢ collects the Boolean overflow conditions and vector z € R'¢ is associated
with variables that appear depending on system states and inputs. Variables § and z are auxiliary
variables associated with the MLD form. Equation (19¢) collects the set of element constraints
as well as translations from logic propositions. Notice that this model is a more general MLD
than was presented in [2] due to the addition of the measured disturbances.

Next, the set of logical conditions needed to describe the dynamics of the sewage system
elements presented in Section 2.2 are outlined for each considered constitutive element.

2.3.1 Virtual Tanks

The overflow existence condition in this element is considered by defining the logical variable

[0k = 1] «— [vx > 7], (20)

what implies that flows qg;, and gy, are defined through this logical variable as:

21k = 4Qdg
(v — )
_ 21
[T, (212)
22k = Youtk
= 0,00+ (1 - 5k)ﬂvk (21b)

Hence, the corresponding difference equation for the tank in function of the auxiliary variables
is rewritten as:
V41 = Uk + At[Ging, — 211 — 2], (22)

where ¢, is the tank inflow, z1, is related to the tank overflow and 29, is related to the tank
output. Notice that g;,; collects all inflows to the tank, which could be outflows from tanks
located upstream, link flows, overflows from other tanks and/or sewers and rain inflows. Flow
vy, is computed as in (13).

2.3.2 Real Tanks

The MLD form for a real tank and manipulated input/output gates according to the description
in Section 2.2.1 can be obtained by introducing the set of § and z variables collected in Table 1.

Table 1: Expressions for § and z variables for hybrid modelling of the real tank element.

Logical variable § Auxiliary variable z
(016 = 1] «— [q7 < Ging] 21k = Qo = O1G5y, + (1 — 011 )Qing,
(62 = 1] «— |:Zlk — 23 < x| 22k = Qag = 02kQog + (1 — 021) "RE
03k = 1] «— [q0us < Bug] 23k = Qoutk = 03k Qoury, + (1 — O31) Bug,

Then, mass balance difference equation of real tanks can be rewritten as follows:
V41 = Vg + At[23k — ng]. (23)

Again, flow gy, is computed as in (13).
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2.3.3 Redirection Gates

The MLD form is obtained taking into account that g, i.e., the manipulated flow (see Figure
1(c)), should satisfy the restriction (15). Hence, definitions

[0k = 1] «— [qar > Gink) (24)
and
2k = O01pGar + (1 = 01%)Ging (25)

are stated in order to generate the MLD form of this element. Thus, the flow through sewer g
is directly defined by the mass conservation relation

Qb = Qing, — Zk- (26)

2.3.4 Main Sewer Pipes (or Single Inflow Weirs)

The MLD form for either of these elements is obtained from the overflow condition
[0k = 1] «— [gin > T, (27)

and the auxiliary continuous variables that define the flows ¢y, and q.j, are, respectively:

2k = by

= 0k Qp + (1 — k) Gink, (28a)
22k = Qe

= Ok (Gink — @) (28b)

2.4 PWL Modelling Approach

An alternative approach to the hybrid modelling consists in using continuous and monotonic
functions to represent expressions that contains logical conditions, as for instance, (6) or (18),
which describe the weirs behaviour and overflow capability of reservoirs, respectively. Indeed,
these phenomena involve the switching and discontinuous behaviour of the sewage system.

The properties of a function being monotonic and continuous are very useful when optimization-
based control strategies are designed since a quasi-convex optimization problem can be stated,
what might lead in a global optimal solution [4]. The continuous and monotonic functions for
the modelling approach proposed here are defined as follows:

e Saturation function, defined as

z if 0<z< M,
sat(z, M) =< M if z> M, (29)
0 if z<0.

e Dead-zone function, defined as

r—M if x> M,

. (30)
0 if < M.

dzn(xz, M) = {

Next, sewer network constitutive elements described in Section 2.2 will be expressed using
this modelling approach. Notice that the whole representation of a given sewer network modelled
using this approach consists in a set of equations instead of a matricial model as the one obtained
with the hybrid MLD approach presented in previous section.
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2.4.1 \Virtual Tanks

Using the PWLF approach, the tank outflows can be expressed as

Qoutf, = ﬁ sat (Uka ﬂk) s (31)
dzn(vk, l_}k)

= _ 2

qdk At ) (3 )

what allows the difference equation for the tank volume to be written as in (12):

Vg1 = Uk + AUQing — ddr — Goutk)s (33)

where ¢;p,), considers all possible inflows including the precipitation term (in flow units).

2.4.2 Real Tanks

The following expressions related to the tank inflow and outflow are stated for this element:

Qoutl = sat (QZutka ﬂvk) ) (34)

* . Vg — Vg
a = t 9 AL 2 Yin .
Qaj sa <Qak m1n< Al q k>> (35)

Thus, the difference equation for the volume of the tank is again written as in (12):

Ukt1 = Ok + A(Gay, — Gout) (36)

and flow g, obeys to the mass balance qp;, = qing — Gag-

2.4.3 Redirection Gates

In the case of redirection gates, the PWLF model is defined taking into account that ¢, should
satisfy the restriction (15) what can be rewritten in terms of the PWL functions as

Qar, = sat(qay, ¢ing)- (37)

Flow through g is given by the mass balance (16).

2.4.4 Main Sewer Pipes (or Single Inflow Weirs)

The PWLF model for either of these elements can be obtained from the overflow condition as
follows:

v, = Sat(Qinkyqb)v (38)
e, = dzn(quyqb)’ (39)

where @, corresponds again to the maximum flow capacity of the nominal outflow pipe.

3 MPC-Based RTC on Large-scale Sewer Networks

3.1 MPC as a Tool for Implementing Global RTC

In most sewer networks, the regulated elements (pumps, gates and detention tanks) are typically
controlled locally, i.e., they are controlled by a remote station according to the measurements
of sensors connected to that station only. However, a global RTC system requires the use of an
operational model of the network dynamics in order to compute, ahead of time, optimal control
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strategies for the network actuators based on the current state of the system (provided by
SCADA! sensors), the current rain intensity measurements and appropriate rainfall predictions.
The computation procedure of an optimal global control law should take into account all the
physical and operational constraints of the sewage system, producing set-points which achieve
minimum flooding and CSO.

As discussed in the introduction, MPC is a suitable control strategy to implement global
RTC of sewer networks since it has some features to deal with complex systems such as sewer
networks: big delays compensation, use of physical constraints, relatively simple for people
without deep knowledge of control, multivariable systems handling, etc. Hence, according to
[27], such controllers are very suitable to be used in the global control of urban drainage systems
within a hierarchical control structure [21, 14].

MPC, which more than a control technique, is a set of control methodologies that use a
mathematical model of a considered system to obtain a control signal minimizing a cost function
related to selected performance indexes related to the system behaviour. MPC is very flexible
regarding its implementation and can be used over almost all systems since it is set according to
the model of the plant [5]. Notice that MPC, as the global control law, determines the references
for local controllers located on different elements of the sewer network. A management level is
used to provide to MPC the operational objectives, what is reflected in the controller design as
the performance indexes to be minimized. In the case of urban drainage systems, these indexes
are usually related to flooding, pollution, control energy, etc.

This section briefly describes the MPC strategy from the generic point of view and then
describes the particularities for its use with sewage systems.

3.2 MPC Strategy Description

MPC is a wide field of control methods that share a set of basic elements in common as
e a cost function, that represents a performance index of the system studied,

e a prediction model, which should capture the representative process dynamics and allows
to predict the future behaviour of the system, and

e a control signal computation procedure using a receding horizon strategy generally by
solving an optimization problem whose objective is the cost function and the restrictions
are the prediction model plus the operational constraints.

However, different tuning parameters rise to a different set of implementation algorithms [12].

3.3 General MPC Formulation

MPC strategy used in this paper follows the formulation introduced in [12]. Thus, let

Tp1 = 9(Tk, ug) (40)

be the mapping of states xp € X C R"™ and control signals ui € U C R™ for a given system,
where g : R™ x R™ — R” is a function that describes the system. In the case of this paper, g
can be either a MLD or PWLF model obtaided by using the elementary models presented in
Section 2.

Let

w (k) 2 (o Unfps - - Ugr,—1) € U (41)

!Supervisory Control And Data Adquisition (SCADA)
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be an input control sequence over a fixed time horizon H,. Then, an admissible input sequence
with respect to the state xj € X is defined by

Z/{Hp(l‘k) £ {uk € IUHP|Xk € XHP} , (42)

where

X (T, W) 2 (T1jks Tos - - 2 ) € X (43)

corresponds to the state sequence generated by applying the input sequence (41) to the system
(40) from initial state xq £ 15, where x; is the measurement (or the estimation) of the
current state. Hence, the receding horizon approach is based on the solution of the open-loop
optimization problem (OOP) [3]

min J (ug, xr, Hp), 44a

i i Hy) (440
subject to

Hluk < bl, (44b)

Goxy + Houy < bo, (44(3)

where J(-) : Xf(Hp) — Ry is the cost function with domain in the set of feasible states
Xf(Hp) € X [11], H, denotes the prediction horizon or output horizon and Ga, H; and b;
are matrices of suitable dimensions. In sequence (43), x k+ijk denotes the prediction of the state
at time k + ¢ done in k, starting from xgy, = . When H) = oo, the OOP is called infinite
horizon problem, while with H, # oo, the OOP is called finite horizon problem. Constrains
stated to guarantee system stability in closed loop would be added in (44b)-(44c).

Assuming that the OOP (44) is feasible for x € X, i.e., Up,(x) # 0, there exists an optimal
solution given by the sequence

uj = (u3|k7u>1k|kw~7“?1p—1\k> € Un,, (45)

and then the receding horizon philosophy sets [12], [5]
Unpc(Tk) £ “S|k’ (46)
and disregards the computed inputs from £ = 1 to & = H,, — 1, repeating the whole process

at the following time step. Equation (46) is known in the MPC literature as the MPC' law.
Summarizing, Algorithm 1 briefly describes the basic MPC law computing process.

Algorithm 1 Basic MPC law computation.
1: k=0

3 Tpypolk = Tk

4:  uj(zy) < solve OOP (44)
5: Apply only up = uz+0‘k

6: k=k+1

7: end loop
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3.4 MPC on Sewer Networks
3.4.1 Control Objectives

The sewage system control problem has multiple objectives with varying priority, see [14]. The
type, number and priority of those objectives can also be different depending on the particular
sewage system design. However, in general, the most common objectives are related to the
manipulation of the sewage in order to avoid undesired sewage flows outside of the main sewers
(flooding). Another type of control objectives are related for instance to the control energy, i.e.,
the energy cost of the regulation gates movements. The main considered objectives for the case
study presented in this paper are listed below in order of decreasing priority:

o Objective 1: minimize flooding in streets (virtual tank overflow).
e Objective 2: minimize flooding in links between virtual tanks.
e Objective 3: maximize sewage treatment.

A secondary purpose of the third objective is to reduce the volume in the tanks to anticipate
future rainstorms. This objective also indirectly reduces pollution to the environment. This is
because if the treatment plants are used optimally with the storage capacity of the network,
pollution should be strongly minimized. Moreover, this objective can be complemented by
conditioning minimum volume in real tanks at the end of the prediction horizon. It could be
seen as a fourth objective. It should be noted that in practice the difference between the first
two objectives is small.

3.4.2 Problem Constraints

When using the modelling approach based on virtual tanks either in MLD or PWLF form,
only flow rates are manipulated in such way that some the inherent nonlinearities (e.g., non-
linear relation between gate opening and discharge flow) of the sewer network are simplified as
discussed in [10]. But, in turn, some physical restrictions need to be included as constraints on
system variables. For instance, variables qﬂi that redirect outflow from a virtual tank should
never be larger than the outflow from the tank. This is expressed with the following inequality

> @ip < Gouth = Buik (47)
J

Additionally, operational constraints associated to the range of gates actuation leads to
the manipulated flows has to fulfill ¢f,;;, < @.;, where g,; denotes its upper limit. Similarly,

operational limits on the range of real tank volumes should be included (see (5)) to limit the
amount of sewage that can be stored.

3.4.3 MPC disturbances

Rain plays the role of measured disturbance in the MPC problem on sewer networks. The type of
disturbance model to be used depends on the rain prediction procedure available [30]. Existing
methods include from the use of time series [30] to the sophisticated utilization of meteorological
radars [33]. According to [14], different assumptions can be done for the rain prediction when
an optimal control law is used in the RTC of sewer networks. Results show that the assumption
of constant rain over a short prediction horizon gives results that can be compared with the
assumption of known rain over the considered horizon, confirming similar results are reported
in [10] and [19].
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4 Case Study Description

4.1 The Barcelona Sewer Network

The city of Barcelona has a CSS of approximately 1697 km length in the municipal area plus
335 Km in the metropolitan area, but only 514.43 km are considered as the main sewer network.
Its storage capacity is of 3038622 m?, which implies a dimension three times greater than other
cities comparable to Barcelona. It is worth to notice that Barcelona has a population which is
around 1.59 million inhabitants on a surface of 98km?, approximately. This fact results in a very
high density of population. Additionally, the yearly rainfall is not very high (600mm/year), but
it includes heavy storms (up to 90mm/h) typical of the Mediterranean climate that can cause a
lot of flooding problems and CSO to the receiving environments.

Clavegueram de Barcelona, S.A. (CLABSA) is the company in charge of the sewage system
management in Barcelona. There is a remote control system in operation since 1994 which in-
cludes, sensors, regulators, remote stations, communications and a Control Center in CLABSA.
Nowadays, as regulators, the urban drainage system contains 21 pumping stations, 36 gates,
10 valves and 8 detention tanks which are regulated in order to prevent flooding and CSO.
The remote control system is equipped with 56 remote stations including 23 rain-gauges and
136 water-level sensors which provide real-time information about rainfall and water levels into
the sewage system. All this information is centralized at the CLABSA Control Center through
a SCADA system. The regulated elements (pumps, gates and detention tanks) are currently
controlled locally, i.e., they are handled from the remote control center according to the mea-
surements of sensors connected only to local stations.

4.2 Barcelona Test Catchment

From the whole sewer network of Barcelona, which was described beforehand, this paper con-
siders a portion that represents the main phenomena and the most common characteristics
appeared in the entire network. This representative portion is selected to be the case study of
this paper because a calibrated and validated model of the network obtained using the virtual
modelling methodology (see Section 2) is available as well as rain gauge data for an interval of
several years. The considered Barcelona Test Catchment (BTC) has a surface of 22,6 km? and
includes typical elements of the larger network.

The BTC has one retention gate associated with one real tank, three redirection gates and
one retention gate, 11 sub-catchments defining equal number virtual tanks, several level gauges
(limnimeters) and a two WWTPs. Also, there are five rain-gauges used to measure the rain
entering in each sub-catchment. Notice that some sub-catchments (virtual tanks) share the
same rain sensor. These sensors count the amount of tipping events in five minutes (sampling
time) and such values is multiplied by 1.2 mm/h in order to obtain the rain intensity P in m/s
at each sampling time, after the appropriate units conversion. The difference between the rain
inflows for virtual tanks that share sensor lies in the surface area S; and the ground absorbtion
coefficient ¢; of the i-th sub-catchment (see (3)), what yields in different amount of the rain
inflows.

Using the virtual tanks representation principle, resulting BTC model has 12 state vari-
ables corresponding to the volumes in the 12 tanks (one real, 11 virtual), four control inputs
corresponding to the manipulated links and five measured disturbances corresponding to the
measurements of rain precipitation at the sub-catchments. Two WWTPs are used to treat the
sewage before it is released to the environment. It is supposed that all states (virtual tank
volumes) are estimated by using the limnimeters shown with capital letter L in Figure 3. The
free flows to the environment as pollution (qi0Mm, ¢7Mm, gsm and ¢i1m to the Mediterranean sea
and qqas to other catchment) and the flows to the WWTPs (¢g71, and ¢118) are also shown in
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Figure 3: Barcelona test catchment scheme.

the figure as well as rain intensities Pi3, P14, Pig, P19 and Psg according to the case. The four
manipulated links, denoted as q,, have a maximum flow capacity of 9.14, 25, 7 and 29.3 m3/s,
respectively, and these amounts can not be relaxed, being physical restrictions of the system
(hard constraints).
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Table 2: Rain episodes used for comparing modelling approaches

Rain Maximum Return  Return Rate
Episode Rate (years) average (years)
1999-09-14 16.3 4.3
2002-07-31 8.3 1.0
2002-10-09 2.8 0.6
1999-10-17 1.2 0.7
2000-09-28 1.1 0.4

4.3 Rain Episodes

Rain episodes used for the simulation of the BTC and for the design of MPC strategies are
based on real rain gauge data obtained within the city of Barcelona on the given dates (yyyy-
mm-dd) as presented in Table 2. These episodes were selected to represent the meteorological
behaviour of Barcelona, i.e., they contain representative meteorologic phenomena in the city.
Table 2 also shows the maximum return rate? among all five rain gauges for each episode. In
the third column of the table, the return rate for the whole Barcelona network is shown. The
number is lower because it includes in total 20 rain gauges. Notice that one of the rain storms
had a return rate of 4.3 years in the case of the whole network while for one of the rain gauges
the return rate was 16.3 years.

5 Simulation and Results

5.1 Preliminaries

This section is focused on comparing the performance of a MPC-based sewer network RTC
using a set of real rain episodes in Table 2 when the hybrid and PWLF modelling approaches,
proposed in Section 2, are applied to the case study in Section 4. Computation time, when every
modelling approach is used, is also compared. Results of such comparison would be a key issue
to decide which of the two modelling approaches should be used for a RTC implementation in
the real network. The assumptions made for all the implementations will be presented and their
validity discussed before the results are given.

The detailed description of BTC case study including operating ranges of the control signals
and state variables as well as the description of all variables and parameters can be found in
[16] and [17].

The computation times presented in this paper has been obtained using Matlab® 7.2 im-
plementations running on an Intel® Core™2, 2.4 GHz machine with 4Gb RAM. Notice that
computation time results reported here related with hybrid models are different with respect to
[16] due to the machine characteristics and solver versions.

5.2 Simulation and Prediction Models

Results presented in this paper are obtained in simulation by using two different models: one
used as the plant (sewer network), which in the sequel will be called as open-loop model, and the
other used by the MPC controller or prediction model. The open-loop model is implemented con-
sidering a non-linear representation of the sewer network based on mass balances where ranges

2The return rate or return period is defined as the average interval of time within which a hydrological event
of given magnitude is expected to be equaled or exceeded exactly once. In general, this amount is given in years.
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and bounds for every variable (control signals, volumes, rain disturbances) are strictly consid-
ered and all passible logical or discontinuous dynamics are included (as the case of weirs and
overflows). On the other hand, prediction model is obtained by using the modelling approaches
presented in Section 2.

To obtain a model of the BTC using the hybrid modelling approach, the elementary models
and transformations presented in Section 2 should be used. However, in order to avoid the
tedious procedure of deriving the MLD form of the BTC by hand, the higher level language
and associated compiler HYSDEL (see [31]) are used here. The resulting model in MLD form
has 22 logical variables and 44 auxiliary variables. Once the hybrid model based on MLD form
has been obtained, a hybrid MPC controller has been designed and the set of considered rain
scenarios were simulated using the Hybrid Toolbox for Matlab® (see [1]) and ILoG CPLEX 11.2.
This latter solver allows to solve efficiently the MIP problems associated to the hybrid MPC
controller. Using the hybrid model, to determine the control actions using hybrid MPC implies
that for each time instant, considering a prediction horizon H, = 6, 222x6 — 54 x 103 LP
problems (for a linear norm in the cost function) or QP problems (for a quadratic norm in the
cost function) should be solved in the worst case.

On the other hand, the model of BTC using the PWLF-based modelling approach was
obtained by joining the different compositional elements described in Section and following the
network diagram of Figure 3, resulting in a non-linear representation as a set of expressions for
the whole network. The implementation of an MPC using the PWLF modelling approach leads
to a non-linear optimization problem. The selection of the algorithm to solve such problem
was done after the evaluation of several solvers available on Tomlab® (e.g., conSolve, nlpSolve,
among others). The Structured Trust Region algorithm (see [7]) was finally chosen because it
provides an acceptable trade-off between system performance and computation time.

5.3 MPC Controller Set-up

Different parameters of the MPC controller should be defined and tuned according to the control
objectives and their prioritization. Following the discussion in Section 3.4.1 regarding the control
objectives of a sewer network, the following system outputs have been included in both the hybrid
and PWLF modelling approaches:

Y1 = Z qStruk + Z qstqu7 (48&)
e J

Y2r = Z Gseal> (48b)
l

Y3k —  Qurply (48¢)
Y4k =  Qurp2g> (48d)

where y;;, represents the sum of the i overflows to street from virtual tanks at time &, denoted
by Gstr, 1, plus the sum of the j overflows to street from links (main pipes) at time k, denoted by
Gstry - Output ys, represents the sum of the [ overflows which go to sea (as receiver environment)
at time k, denoted as gsea, ., and finally y3; and ys3;, represent the flows towards the WWTPs at
time k, denoted by gp1, and gup2,. Note that for the case study of this paper, qip1, = q7Li
and Gtrply — q11Bk-

Using the outputs (48), the cost function for the BTC can be written as follows

Hp—1

J(up, wp) = Z Hyk+i|k_yrH227 (49)
=0
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where yj, 1 is the output vector (defined by (48)) at the instant k + 7 with respect to time
instant k, H, denotes the prediction horizon and y, is a known vector containing the system
references and defined for this case as

yr=10 0 17g; 17g,s]", (50)

where 1 is a vector of ones with suitable dimensions and g;, and g5 correspond to the maximum
flow capacity through sewers g71, and g113, respectively.

In order to tune the MPC controller, the weighted approach technique has been used. Hence,
n (49), @ corresponds to the weight matrix containing the weights w;, each one related to a
control objective. Notice that the desired prioritization of the control objectives is given by the
values w; that, for this case, determine a () matrix of the following form:

Q = diag{wstr 1 Wsea 1 Wtrpl 1 Wtrp2 [}7 (51)

where I corresponds to a identity matrix of suitable dimensions. Here, wgty = 1, Wgea = 10771,
Wirpl = 1073, and Wirp2 = 1073,

The prediction horizon H, has been set to 6, which is equivalent to 30 minutes with a
sampling time At = 300s. This selection was based on the reaction time of the system to
disturbances. Another reason for this selection is that the constant rain prediction assumed in
this paper becomes less reliable for larger horizons. The length of the simulation scenarios is 100
samples, what allows to see the influence of the peak of the rain (disturbance) from the selected
rain episode over the dynamics of the network and also over the dynamic of the closed loop.

5.4 Control performance and computation time comparisons

In this section, the comparison between results obtained using the MPC controllers based on
the hybrid and PWLF modelling approaches is presented and discussed. Moreover, results for
the performance indexes when the open-loop scheme is simulated are also outlined. This latter
case consists in the sewage system without control so the manipulated links are used as passive
elements, i.e., the amount of flows q,1, guo and g4 only depend on the inflow to the corresponding
gate and they are not manipulated while g,3 is the outflow of the real tank given by gravity
(tank discharge). Results related to the control performance are summarized in Tables 3, 4, and
5 for five of the more representative rain episodes in Barcelona between 1998 and 2002 (yyyy-
mm-dd in tables). Table 3 shows the comparison of the volumes of sewage that go to street
(flooding) during a simulation scenario while Table 4 shows the same comparison but regarding
the volumes to receiver environments (pollution). Finally, Table 5 shows the comparison of
volumes regarding the treated sewage at the WWTPs.

Table 3: Performance results. Index: Flooding [x103 m3].

Rain Episodes Open Loop Hybrid Model PWLF Model

1999-09-14 108 92.9 88.2
2002-10-09 116.1 97 113.3
2002-07-31 160.3 139.7 132.8
1999-10-17 0 0 0
2000-09-28 1 1 1

Notice from Tables 3, 4, and 5 that the performance of the system is better when a MPC
control law is considered no matter the modelling approach utilized with respect to the perfor-
mance in open-loop. This justifies the use of closed-loop control. Moreover, notice also that
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Table 4: Performance results. Index: Pollution (x103 m3].

Rain Episodes Open Loop Hybrid Model PWLF Model

1999-09-14 225.8 223.5 226.1 (1.16%)
2002-10-09 409.8 398.7 407.7 (2.25%)
2002-07-31 378 374.6 380 (1.44%)
1999-10-17 65 98.1 59.9 (3.09%)
2000-09-28 104.5 98 102 (4.08%)

Table 5: Performance results. Index: Treated sewage at WWTPs (x10% m?].

Rain Episodes Open Loop Hybrid Model PWLF Model

1999-09-14 278.3 280.7 276.7 (1.43%)
2002-10-09 533.8 545 534.2 (1.98%)
2002-07-31 324.3 327.8 321.9 (1.80%)
1999-10-17 288.4 295.3 293.5 (0.61%)
2000-09-28 285.3 291.9 287.5 (1.51%)

the use of the hybrid modelling approach implies in average an better system performance (al-
ways respecting the prioritization of the control objectives) with respect to the performance
improvement obtained by using the PWLF modelling approach. Notice also that the perfor-
mance improvement is basically related to the improvement of the main control objective and
then, following in a hierarchical order, to the second objective and so on.

These results, in general, were expected since the MPC controller based on the hybrid mod-
elling approach achieves its optimum by solving a set of convex linear programs using a branch
and bound scheme. However, the MPC based on PWLF modelling approach leads to a non-
linear network model representation what results in a non-convex optimization. Therefore, the
global optimum can not be assured leading possibly to a sequence of suboptimal controls when
the computation of the receding horizon control law is done. This explains why the performance
obtained using the PWLF model is in general worse than the one obtained using the hybrid
model. However, it is very difficult to ensure that the optima reached for a complex problem
that involves multi-objectives optimization and trial and error tuning procedures is the suitable
for the particular case study. Suboptimality levels of the results obtained using the PWLF
model were never greater that 4.1 % for the cases of the second and third objective (as shown
in Tables 4, and 5 in parenthesis at the last column for some rain episodes). For the case of
the first control objective (related to flooding), results were not so homogeneous since for some
scenarios one of the modelling approaches leads in better system performance while for other
scenarios occurred just the opposite.

On the other hand, the main difference of using the hybrid or the PWLF modelling ap-
proaches is in the computation time required to compute the control actions at each iteration.
As mentioned in Section 5.2, the model in MLD form contains an important number of Boolean
and auxiliary variables. The complexity of the MIP associated to the MPC law becomes big-
ger by increasing the number of Bolean variables since the underlying optimization problem
is combinatorial and N'P-hard [20]. Thus, the worst-case computation time is exponential in
the amount of integer variables. In large-scale systems such as a sewer network, the amount
of elements with logical /discontinuous dynamics can augment according to the topology of the
particular case study. Therefore, computation times increase towards a point where the use of
this modelling for obtaining a MPC-based RTC law becomes almost impossible. On the other
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Table 6: Computation time results [s].

Rain Hybrid Model PWLF Model
. Total CPU time max. CPU time Total CPU time max. CPU time
Episodes . .
in a sample in a sample

1999-09-14 1109.29 787.17 695.33 91.32
2002-10-09 561.73 85.31 293.23 66.01
2002-07-31 1050.54 381.49 830.20 83.04
1999-10-17 79.14 10.39 180.22 16.15
2000-09-28 84.76 13.27 120.88 12.13

hand, the use of alternative modelling approach based on the PWL functions proposed on this
paper allows to have control sequences computed in lower times at the price of some degree of
suboptimality due to the possible local optimum. Table 6 summarizes the computation times for
both the modelling approaches proposed on this paper and for the six rain episodes previously
considered.

Summarizing, despite the suboptimal nature of the solutions as a consequence the minor
improvement of the control performance, the MPC controller based on the PWLF modelling
approach not only leads to a faster control sequences computation but also to feasible ones
respecting the real-time restriction imposed by the sampling time. In average, all the maximum
computation times to compute the MPC control action when the PWLF modelling approach
is used are less than the third part of the sampling time. This is not the case when using the
hybrid modelling approach.

6 Conclusions

In this paper, model predictive control (MPC) of large-scale sewage systems has been addressed
considering different modelling approacdhes that include several inherent continuous/discrete
phenomena (overflows in sewers and tanks) and elements (weirs) in the system that result in
distinct behaviour depending on the state (flow/volume) of the network. These behaviours can
not be neglected nor can be represented by a pure linear model. After describing and analyzing
these continuous/discrete dynamic behaviours, a modelling approach based on piece-wise linear
functions is proposed and compared against the hybrid modelling approach previously reported
by the authors. Control performance results and associated computation times of both ap-
proaches are compared by using a real case study based on the Barcelona sewer network. It was
seen that, although the hybrid approach provides better performance since with the resulting
MIP formulation and existing branch and bound solvers, the global optimum can be reach, the
required computational time could be prohibitive for large-scale networks. On the other hand,
with the PWLF modelling formulation, although a small amount of suboptimally is introduced
since the resulting non-linear constraints are non-convex what leads to the optimization algo-
rithms could be stack at some local optimum, the reduction of computation time allows to face
the control of large-scale sewer networks.
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