
Median Graph: A New Exact Algorithm

Using a Distance Based on the Maximum

Common Subgraph

M. Ferrer a,∗, E. Valveny a, F. Serratosa b

aCentre de Visió per Computador, Departament de Ciències de la Computació.
Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

bDepartament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i
Virgili, 43007 Tarragona, Spain

Abstract

Median graphs have been presented as a useful tool for capturing the essential
information of a set of graphs. Nevertheless, computation of optimal solutions is a
very hard problem. In this work we present a new and more efficient optimal algo-
rithm for the median graph computation. With the use of a particular cost function
that permits the definition of the graph edit distance in terms of the maximum com-
mon subgraph, and a prediction function in the backtracking algorithm, we reduce
the size of the search space, avoiding the evaluation of a great amount of states and
still obtaining the exact median. We present a set of experiments comparing our
new algorithm against the previous existing exact algorithm using synthetic data.
In addition, we present the first application of the exact median graph computation
to real data and we compare the results against an approximate algorithm based on
genetic search. These experimental results show that our algorithm outperforms the
previous existing exact algorithm and in addition show the potential applicability
of the exact solutions to real problems.

Key words: Median Graph, Maximum Common Subgraph, Minimum Common
Supergraph, Graph Matching

∗ Corresponding author: Tel.: +34 93 581 23 01 / Fax.: +34 93 581 16 70
Email address: mferrer@cvc.uab.cat (M. Ferrer).

Preprint submitted to Elsevier 10 December 2009

1 Introduction

In structural pattern recognition, graphs have been shown as a useful data
structure to represent complex objects. The nodes of the graph typically rep-
resent parts of the object and the edges represent the relations between them.
This high representational power of graphs has been shown very useful in many
areas of computer vision and pattern recognition such as character recognition
[18], shape analysis [22] and 3D object recognition [27]. Nevertheless, graphs
have the main drawback of its combinatorial nature. The comparison between
two objects that is quite simple when they are represented by feature vectors
for instance, becomes highly complex when they are represented using graphs.
The time required by any of the exact algorithms to compare two graphs may,
in the worst case, become exponential in the size of graphs. Approximate al-
gorithms in contrast, have polynomial time complexity, but do not guarantee
to give the optimal solution.

In this paper we are interested in inferring the representative of a set of objects
given a set of noisy samples of such object. In the graph domain it is not easy
to define the representative of a set. In this context, the generic concept of
median, which has been widely used in areas such as statistics and probabil-
ity theory, turns out to be very useful. In the structural domain the median
graph [16] has been defined in order to represent this concept. Given a set of
graphs, the median graph is defined as the graph that has the smallest sum
of distances (SOD) to all graphs in the set. However, the computation of the
median graph is exponential both in the number of input graphs and their size
[9]. A number of algorithms have been presented in the past to compute the
generalized median graph. The only exact algorithm proposed up to now [20]
is based on an A∗ algorithm handled by a data structure called multimatch.
As the computational cost of this algorithm is very high, a set of approximate
algorithms have also been developed in the past based on different approaches
such as genetic search [16,20], greedy algorithms [15] and spectral graph theory
[12,26].

The main contributions of this paper are twofold. Firstly, from a theoretical
point of view, we will show that, under a particular cost function and a graph
edit distance based on the maximum common subgraph, both introduced in
[3], the search space for the median graph can be drastically reduced. In ad-
dition, using the same conditions, we have also defined an heuristic strategy
in order to avoid the exploration of some states of this new search space. Sec-
ondly, based on this theoretical result, we will present a new exact and more
efficient algorithm for the computation of the generalized median graph.

To validate the theoretic part, we have carried out a set of experiments com-
paring our new algorithm with the previous existing exact algorithm using

2

synthetic data. We will show how the new algorithm clearly outperforms the
multimatch algorithm. In addition, we have applied the new algorithm to a set
of real data using a database of graphs representing molecules. In this case we
have compared our approach with an approximate algorithm based on genetic
search. We will show how the new exact algorithm compares well in terms of
computation time with the approximate algorithm while it is clearly better
in terms of accuracy of the median graph. This result suggests that the exact
computation of the median graph can be extended for the first time (in a lim-
ited way) to real applications. The previous existing algorithms could only be
applied to synthetic datasets containing only a small number of small graphs.
Moreover, and in spite of the complexity, to be able to obtain exact solutions
for the median graph can be useful to better understand the nature of such
concept and may help to improve the existing approximate algorithms or to
introduce new approximate solutions.

The rest of the paper will be as follows. In section 2 we define some basic con-
cepts and introduce our notation. Section 3 is devoted to explain the concept
of median graph and the different algorithms to compute it. The new algo-
rithm, including the reduction of the search space and the heuristic prediction
function is described in section 4. Experimental results are shown in section 5
and, finally the main conclusions are stated in section 6.

2 Definitions and notation

2.1 Basic definitions

Let LV and LE denote the set of node and edge labels, respectively. A graph is
a triple g = (V, α, β) where, V is the finite set of nodes, α is the node labeling
function (α : V −→ LV), and β is the edge labeling function (β : V × V −→
LE). We assume that our graphs are fully connected. Consequently, the set
of edges is implicitly given (i.e. E = V × V). Such assumption is only for
notational convenience, and it doesn’t impose any restriction in the generality
of our results. In the case where no edge exists between two given nodes,
we can include the special null label ε in the set of labels LE to model such
situation. If V = φ, then g is called the empty graph. Finally, the number of
nodes of a graph g is denoted by |g|.

Given two graphs, g1 = (V1, α1, β1) and g2 = (V2, α2, β2), g2 is a subgraph of
g1, denoted by g2 j g1 if,

• V2 j V1

• α2(v) = α1(v) for all v ∈ V2

3

• β2((u, v)) = β1((u, v)) for all (u, v) ∈ V2 × V2

From this definition, it follows that, given a graph g1 = (V1, α1, β1), a subset
V2 j V1 of its vertices uniquely defines a subgraph. Such subgraph is called
the subgraph induced by V2.

Finally, it is important to be able to check whether two graphs are identical
or not. The isomorphism between two graphs permits to check such a con-
dition. Given two graphs g1 = (V1, α1, β1), and g2 = (V2, α2, β2), a graph
isomorphism between g1 and g2 is a bijective mapping f : V1 −→ V2 such
that,

• α1(x) = α2(f(x)) for all x ∈ V1

• β1((x, y)) = β2((f(x), f(y))) for all (x, y) ∈ V1 × V1

If there exists a graph isomorphism between two given graphs g1 and g2, we
say that g1 and g2 are isomorphic.

2.2 Minimum Common Supergraph

Let g1, g2 and g3 be three graphs. If both g1 and g2 are subgraphs of g3 then
g3 is called a common supergraph of g1 and g2 [7]. Generalizing the same
idea for a set S = {g1, g2, ..., gn}, a graph gmS

is called a minimum common
supergraph of S (also denoted by mcs(S)) if {g1, g2, · · · , gn} are subgraphs
of gmS

and there is no other common supergraph of {g1, g2, · · · , gn} having
less nodes than gmS

. A set of three graphs and a possible minimum common
supergraph of them is shown in Figures 1(a) and 1(b) respectively.

(a) (b)

Fig. 1. A set S of three graphs (a), and a possible mcs(S) of them (b).

2.3 Maximum Common Subgraph

Let g1 and g2 be two graphs, and g′1 j g1, g
′
2 j g2. If there exists a graph iso-

morphism between g′1 and g′2 then, both g′1 and g′2 are called a common sub-
graph of g1 and g2. A graph gM is called a maximum common subgraph
(usually denoted by MCS(g1,g2)) of g1 and g2 if gM is a common subgraph of

4

g1 and g2 and there is no other common subgraph of both g1 and g2 having
more nodes than gM .

An example of two graphs g1 and g2 and a possible MCS(g1, g2) between them
is shown in Figure (2). Notice that according to the definition of graph given
in section 2.1 these graphs are fully connected. The ”null” or unexisting edges
are represented by dashed lines in the figure. In addition, notice that according
to the definition of subgraph given in section 2.1, g2 is not a subgraph of g1

because g2 has no edge between the white and black nodes and therefore, given
the same set of nodes in g1 and g2, g2 have a different set of edges. Thus, a
possible MCS(g1, g2) is the graph gM shown in Figure 2(c). In this case, gM

consists also of a subset of nodes of both g1 and g2, but in this case the edges
connecting such a subset is the same in g1 and in g2. Thus, since gM is an
induced subgraph of both g1 and g2 and there is no other subgraph of these
two graphs having more nodes, gM is a possible MCS(g1, g2). This fact will
be an important point to be taken into account in Section 4.

g1

(a)

g2

(b)

gM

(c)

(d)

Fig. 2. Two graphs g1 (a) and g2 (b), a possible MCS(g1, g2) (c) and an edit path
between g1 and g2 (d).

In the last years some papers have been presented related to the MCS com-
putation based on different approaches and algorithms [2,11,19,25]. An expla-
nation of such methods and a comparison between them can be found in [5]
and [10].

2.4 Graph Edit Distance

The graph edit distance [4,24], has been shown as one of the most widely used
methods to compute the dissimilarity between two graphs.

The basic idea behind the graph edit distance is to define the dissimilarity of
two graphs as the minimum amount of distortion required to transform one
graph into the other. To this end, a number of distortion or edit operations e,
consisting of the insertion, deletion and substitution of both nodes and edges

5

are defined. Given these edit operations, for every pair of graphs, g1 and g2,
there exists a sequence of edit operations, or edit path p(g1, g2) = (e1, . . . , ek)
(where each ei denotes an edit operation) that transforms g1 into g2. In general,
several edit paths exist between two given graphs. This set of edit paths is
denoted by ℘(g1, g2). In order to quantitatively evaluate which edit path is the
best, edit costs are introduced. The basic idea is to assign a penalty cost c to
each edit operation according to the amount of distortion it introduces in the
transformation. The edit distance d between two graphs g1 and g2, denoted by
d(g1, g2), is given by the minimum cost edit path that transforms one graph
into the other.

2.4.1 Graph edit distance and the Maximum Common Subgraph

Several exact and approximate algorithms have been presented in the past
related to the computation of the distance between two graphs [17,21,23]. In
this work, we will use a particular cost function [3], that allows to define the
edit distance of two graphs g1 and g2 in terms of their MCS.

Table 1 summarizes this cost function.

Table 1
Detail of the cost function

Operations on nodes Cost

Node deletion cnd(u) always equal to 1

Node insertion cni(u) always equal to 1

Node substitution cns(u, v) 0 if α1(u) = α2(v); ∞ otherwise

Operations on edges Cost

Edge deletion ced(e) always equal to 0

Edge insertion cei(e) always equal to 0

Edge substitution ces(e1, e2) 0 if β1(e1) = β2(e2); ∞ otherwise
Where αi and βi are the node and edge labeling functions of a graph gi.

In such particular cost function, deletions and insertions of nodes have always
a cost of 1, deletions and insertions of edges have always a cost of 0, and node
and edge substitutions take the values of 0 or ∞ depending on whether the
substitution is identical or not, respectively. Note that, from the definition
of graph given in Section 2.1 stating that graphs are fully connected, edge
deletions only occur when a node is deleted and then all its incident edges are
deleted too. Other situations as in the case of the graphs of Figure 2(a) and
2(b) are treated as a substitution of the edge by a null-labeled edge, not as an

6

edge deletion. The practical consequences of this observation will be explained
in more detail in Section 4.1.

Under such cost function, the edit distance d(g1, g2) between two given graphs
g1 and g2 is related to their MCS in the following way:

d(g1, g2) = |g1|+ |g2| − 2 |MCS(g1, g2)| (1)

This result demonstrates the intuitive idea that the more two graphs have
in common, the lower their distance. Beyond the theoretical implications of
this result there are also important practical implications. For instance, an
immediate consequence of this result is that any algorithm that computes the
graph edit distance may be used for maximum common subgraph computation
if it is run under this cost function.

More recently, the same cost function has been used in [8], to establish the
relation between the MCS and the mean of two graphs. Concretely, it is shown
that, under this cost function, the MCS of two graphs is also the mean, that
is the graph that minimizes the sum of distances to these two graphs. Finally,
in [7] it is shown the relation between the MCS and the minimum common
supergraph (mcs) of two graphs. In that work, it is demonstrated that under
an extensive family of cost functions, including this particular cost function,
the computation of the mcs can be done from the computation of the MCS.

It is therefore clear that this cost function has important potential applications
in different graph matching problems. Thus, in the rest of the paper we will
assume, that the distance between two graphs is computed according to the
Equation (1).

3 Generalized Median Graph

Given a set of graphs, the concept of median graph has been presented as a
useful tool to compute a representative of such a set. Let U be the set of graphs
that can be constructed using labels from L. Given S = {g1, g2, ..., gn} ⊆ U ,
the generalized median graph of S is defined as the graph ḡ ∈ U such that
its sum of distances (SOD) to all the graphs in S is minimum:

ḡ = arg min
g∈U

∑
gi∈S

d(g, gi) (2)

Notice that ḡ is not usually a member of S, and in general more than one
generalized median graph can be found for a given set S.

7

As shown in equation (2) a graph distance between every candidate median
g and each graph gi ∈ S must be computed. Since the computation of the
graph edit distance is a well-known problem which is NP-complete in terms
of complexity, the computation of the generalized median graph can only be
done in exponential time, both in the number of graphs in S and their size. As
a consequence, in real applications we are forced to use suboptimal methods
in order to obtain approximate solutions for the generalized median graph in
a reasonable time. Such approximate methods generally apply some kind of
heuristics in order to reduce the complexity of the computation of the graph
edit distance and the size of the search space respectively.

Both exact [20] and approximate [12,15,16] algorihtms have been presented in
the past for the median graph computation. In this work, we are interested in
the exact median computation.

The only optimal algorithm presented up to now [20], is based on a combi-
natorial search exploiting the fact that the number of nodes of the candidate
median must be in between 0 and the sum of nodes of all graphs in the set S
[16]. The algorithm implements an A∗-based search procedure handled by a
structure called multimatch. In such structure, a simultaneous transformation
(edit operations) from a candidate median graph to all the graphs in the set
is encoded. The operations over the edges are implicitly given by such struc-
ture. The labels for each node/edge are selected from the set of labels in such
a way that the SOD of the encoded candidate median to all the graphs is
minimized. Unfortunately, this approach suffers from a high complexity. The
results presented in [9] show that for a set of two graphs having 6 nodes each,
the time needed to compute the median graph grows up to 104 seconds (all
the experiments were run on an IBM Thinnode Power 2 computer).

4 New Exact Algorithm for the Generalized Median Graph

In this section we will present a new and more efficient algorithm for the exact
median graph computation. To do this, we will tackle the problem from two
different angles. Firstly, in section 4.1 we will show how, using the particular
cost function presented in section 2.4.1 the search space where the median
has to be searched for can be drastically reduced. After that, in section 4.2,
we will present a heuristic prediction function that will permit to avoid the
evaluation of some states in the new search space. These two improvements
will lead us to present a new algorithm for the median graph computation in
section 4.3.

8

4.1 Reduction of the Search Space

In the Multimatch approach the search space for the median graph compu-
tation is determined as follows: suppose that S = {g1, g2, . . . , gn} and let
k =

∑n
i=1 |gi| be the sum of the sizes of all the graphs in S. Then, the algo-

rithm explores all possible graphs having size in between 0 and k as possible
candidate medians. For each number of nodes, all possible combinations of
labels for these nodes and all possible combinations of edges (including the
null edge) linking these nodes have to be tested. Thus, a huge number of com-
binations must be taken into account, and it makes this approach unfeasible
already for a small number of graphs.

Two observations regarding this approach can be done that will permit to
reduce the size of the search space. The former is that in [20] the union graph
gu, the graph containing all the nodes and all the edges of the graphs in S,
is used as the starting point of the search space. This definition allows to
explore all the possible combinations between nodes and edges but it also
includes the repetition of some states in the search space, corresponding to
combinations that can be found in more than one graph of the set. In order
to avoid the generation of these repeated states we propose the use of the
minimum common supergraph of S, gmS

, instead of the union graph gu. The
use of gmS

allows us to explore all the possible combinations (all the possible
graphs generated from the union graph can be generated using the minimum
common supergraph), avoiding the repeated combinations shared by different
graphs of the set.

The latter is that given a set of nodes of gu, all the edges in the graphs of
S (including the null edge) are taken into account as possible candidates to
construct the intermediate median graph. However, this number of combina-
tions can be reduced taking into account an important property of the cost
function given in [7]. It states that there always exists an optimal edit path be-
tween two given graphs that implies neither non-identical node substitutions
nor non-identical edge substitutions.

This result can be seen in the next example. Given the graphs g1 and g2 of
Figure (2) one could suppose that the cheapest way to convert g1 into g2 is by
deleting the edge linking the white and black nodes in g1. Notice that because
of the definition of graph given in Section 2.1 deleting an edge is equivalent
to substitute such edge by an edge labelled as ”null”. But this operation is
not allowed because it implies a non-identical edge operation. Then, a possible
sequence of edit operations (Figure 2(d)) consists in deleting the white node
from g1 (including the deletion of its adjacent edges) and inserting the same
node in g2 together with their incident edges. This sequence of edit operations
has a cost equal to 2, one node deletion and one node insertion. This result

9

is consistent with the result obtained applying Equation (1), since |g1| = 4,
|g2| = 4 and |MCS(g1, g2)| = 3.

Considering this property of the cost function, given a subset of nodes in gu,
only the labels of the edges connecting these nodes in gu have to be considered
when searching for the median graph. Any other label would lead to non-
identical edge substitutions in some of the graphs of the set and therefore, to
a non-optimal edit path that would never be applied. Thus, only the induced
subgraphs of the gu are valid options in the search space.

Conclusion: Merging both observations the new search space is composed
only by the induced subgraphs of the minimum common supergraph of S, gmS

.

4.1.1 Generation of the New Search Space

In this new scenario, the next approach can be followed. We take the minimum
common supergraph of S, gmS

= mcs(S) with |gmS
| = p as the first candidate

median graph. From this initial candidate median graph, new candidates can
be generated by simply removing nodes and their adjacent edges from this
first combination. A naive approach to explore all these possible candidate
median graphs with a size between 0 and p may be carried out by a simple
backtracking based algorithm. The root node corresponds to gmS

. The tree is
expanded in a depth-first approach exploring all the combinations produced
by removing nodes from the root. The edges are implicitly deleted when a
node is removed from a graph. Unfortunately, this straightforward approach
still generates duplicate combinations of candidate medians, because different
branches may lead to the same combinations of nodes, as can be seen in
Figure 3(a), where the gmS

is located in the root node. Notice that some of
the combinations with 1 and 0 nodes are repeated in the tree. They are shown
in the figure by means of dashed circles.

(a) (b)

Fig. 3. Search space including repeated combinations (a) and without these repeated
combinations (b).

Then, a different approach can be followed where only non-repeated combina-
tions are generated (Figure 3(b)). The number of different possible candidate

10

medians can be easily computed. For a given i, with 0 ≤ i ≤ p, the number of
possible candidate median graphs with size i is Cp

i = p!
i!(p−i)!

. That is, all the
possible combinations of i nodes from a number of p nodes. As the search space
is composed of all the induced subgraphs of gm between the sizes 0 and p, the
total number of possible different candidates corresponds to the sum

∑n
i=1C

p
i ,

which is exactly 2p. These 2p different combinations can be generated using a
breadth-first approach. Then, the search space may be thought as a rhombus
(Figure 4). At the top of this rhombus (level 0) there is gmS

= mcs(S) with
|gmS
| = p. Below, there are all the induced subgraphs of gmS

having p-1 nodes
(level 1). Concretely there are Cp

p−1 = p graphs. At the next level, each of
these induced subgraphs will generate new induced subgraphs of gmS

having
p-2 nodes. The number of combinations increase until the central row of the
rhombus is reached (the maximum number of combinations). From this point
to the bottom the number of combinations decreases until the last row (level
p) is reached. At this point there is Cp

0 = 1 combinations, corresponding to
the empty graph ge. This will be the new search space used to find the median
graph.

= mcs(S)

∅ = ge

Rhombus Search Space

Level Size of graphs

p

0

1

p-1

0

p

p-1

1

Induced subgraphs of size p

Induced subgraphs of size p-1

Induced subgraphs of size 1

Induced subgraphs of size 0

Fig. 4. Detail of the rhombus search space

4.2 Prediction of the cost function

This search space may still have a huge number of states. It is therefore de-
sirable to avoid the evaluation of as many states as possible. To this end, we
will show in this section that, from a given candidate median in the search
tree, we can introduce a prediction of the cost associated to the candidate
medians generated from the current node at the next level of the search space.
Thus, evaluating this prediction function we will be able to decide whether it
is worth to explore these candidate medians or not.

11

Let us start by defining the evaluation function, f ∗, of a candidate median,
ḡ∗. This function is just the sum of distances of the candidate median to all
the graphs in the set, gi. Then, taking the definition of the graph edit distance
(equation (1)), we can express f ∗(ḡ∗), in the following way:

f ∗(ḡ∗) =SOD (ḡ∗) =
n∑

i=1

d(gi, ḡ
∗) =

n∑
i=1

(|gi|+ |ḡ∗| − 2|MCS(gi, ḡ
∗)|)

=n|ḡ∗|+
n∑

i=1

|gi| − 2
n∑

i=1

|MCS(gi, ḡ
∗)|

The complexity of this expression depends on the cost of computing the MCS,
which, in the general case, is exponential in the size of the involved graphs. It
is therefore desirable to avoid as many evaluations of this function as possible.
To this end, we can try to infer the value of this function as we traverse the
search space, without having to compute the MCS between the candidate
median and all the graphs. Let us take two candidate median graphs, ḡ1 and
ḡ2. As we will be traversing the search space by generating all the induced
subgraphs of gmS

, let us suppose too, without loss of generality, that ḡ2 is an
induced subgraph of ḡ1. Now, using this assumption we will try to find some
relation between f ∗(ḡ1) and f ∗(ḡ2). Let us denote by h∗(ḡ1, ḡ2) the function
that computes the difference between both evaluation functions,

h∗(ḡ1, ḡ2) = f ∗(ḡ2)− f ∗(ḡ1) =

=n (|ḡ2| − |ḡ1|)− 2
n∑

i=1

|MCS(gi, ḡ2)|+ 2
n∑

i=1

|MCS(gi, ḡ1)| (3)

We will call h∗ the prediction function as we can express the evaluation func-
tion of any graph ḡ2 in the search space in terms of the evaluation function of
any other previous graph ḡ1 and the function h∗(ḡ1, ḡ2).

Now, let us analyze this prediction function. If we are traversing the search
space from node ḡ1 to node ḡ2 and we have already evaluated f ∗(ḡ1), we know
the value of all the terms in h∗(ḡ1, ḡ2) except for |MCS(gi, ḡ2)|. However, we
can infer an upper limit for this term and therefore, we can define an estimation
of this prediction function. We will denote this estimation by h(ḡ1, ḡ2).

Let us observe that the MCS between two graphs will never have more nodes
than any of them. In addition, we have assumed that we are traversing the
search space from ḡ1 to ḡ2 and, therefore, ḡ2 is a subgraph of ḡ1. Thus, we can
easily conclude that |MCS(gi, ḡ2)| ≤ |MCS(gi, ḡ1)|. Therefore, the following
condition holds:

12

|MCS(gi, ḡ2)| ≤ min (|gi|, |ḡ2|, |MCS(gi, ḡ1)|) (4)

Then, combining equations (3) and (4) we can obtain the following estimation
of the prediction function:

h∗(ḡ1, ḡ2)≥h(ḡ1, ḡ2) =

=n (|ḡ2| − |ḡ1|) + 2
n∑

i=1

|MCS(gi, ḡ1)| − 2
n∑

i=1

min (|gi|, |ḡ2|, |MCS(gi, ḡ1)|)

(5)

Finally, h(ḡ1, ḡ2) can be used to obtain an estimation of the evaluation function
of node ḡ2, f(ḡ2):

f(ḡ2) = f ∗(ḡ1) + h(ḡ1, ḡ2) (6)

Using this estimation we can reduce the computation time of the algorithm
described in section 4.3 by reducing the number of candidate graphs whose
evaluation function needs to be explicitly computed. Given candidate a median
graph, ḡ∗, we can compute this estimation for all the graphs in the search space
that can be reached from this initial graph. All nodes ḡj whose estimation f(ḡj)
is greater than the actual evaluation function of the current median graph, ḡ∗

can automatically be discarded and do not have to be evaluated.

One difficulty to apply this strategy is that, given a graph in the search space,
we cannot guarantee that the prediction function is either positive or negative
for all its induced subgraphs. Therefore, as we are generating the search space
level by level, discarding one state of the search space using the prediction
function does not permit to discard all its remaining induced subgraphs too.
Then, in the algorithm that we will present in the next section, we will use an
strategy consisting of using the prediction function to discard states only at
the next level of the search space.

4.3 New Exact Algorithm

Keeping in mind the reductions of the search space proposed so far (including
the heuristic function), and assuming that the minimum common supergraph
of S, gmS

is computed, we are able to present a new and more efficient exact
algorithm to compute the generalized median graph. For the sake of complete-
ness the algorithm is presented as Algorithm 1.

13

The algorithm receives a set S of graphs as input and returns a complete
list of true median graphs, all of them with the same SOD. The first task
is to compute the gmS

. This is carried out using a similar approach to that
presented in [6]. Once gmS

is computed, the algorithm computes the term
SOD(gmS

) =
∑
d(gi, gmS

) using the function ComputeSOD(gmS
, S). The dis-

tance between two graphs d(g1, g2) is computed using the Equation (1). The
pair (gmS

, SOD(gmS
)) is stored in the candidate medians list (line 3). After

that, all the possible induced subgraphs of gmS
with size |gmS

| − 1 are gen-
erated using the function Expand(gm) (line 5), and stored in a table. Given
a graph g, the function Expand(g) generates all its induced subgraphs with
size |g| − 1, by taking all the possible different combinations of its nodes and
for each combination building the induced subgraphs of g with these nodes.
Once all the induced subgraphs of gmS

are generated, they are marked as valid
or not by using the heuristic function explained in section 4.2. Only for valid
graphs, its SOD is computed and compared with the actual best SOD. If it is
better, this graph becomes the new current median graph. However, for all the
graphs at the current level (either valid or not), all its induced subgraphs are
generated using again the function Expand in order to make them available
in the next iteration. This is due to the fact explained at the of the previous
section that we can only discard states at the next level of the search space.
In addition, since different graphs may generate the same induced subgraph
(the search space is a rhombus, not a tree), we keep a hash table at each level
of the search space that permits to know if an induced subgraph has already
been generated and if it is valid or not. The process is repeated until all the
levels of the rhombus search space have been visited.

5 Experimental Setup

In this section we will provide the results of an experimental evaluation of
the proposed method for the generalized median graph computation in order
to validate the improvements we have introduced with our new algorithm.
We have separated such experimental setup in two different parts. Firstly, in
section 5.1 we will compare our new algorithm with the multimatch approach
using a dataset of synthetical data. After that, in section 5.2 we will extend
the applicability of our algorithm to a real database and we will compare it
against the genetic algorithm presented in [16]. It is important to notice that
all these experiments were run on an Apple iMac computer equipped with a
2.16GHz Intel Core 2 Duo processor and 2Gb of main memory.

14

Algorithm 1 Exact-median Algorithm

Require: A set of graphs S = {g1, g2, . . . , gn}
Ensure: A list L of true median graphs
1: gmS

= Compute mcs(S)
2: ComputeSOD(gmS

, S)
3: Insert pair (gmS

, SOD(gmS
)) in L

4: Let SOD(gmS
) be the minimum SOD

5: Expand(gmS
)

6: for size = |gmS
| − 1 to 0 do

7: while RemainInducedSubGraph(size) do
8: g = GetNextInducedSubgraph()
9: Expand(g)

10: if IsValid(g) then
11: ComputeSOD(g, S)
12: if SOD(g) is less than the minimum SOD then
13: Let SOD(g) be the minimum SOD
14: Delete L
15: Insert pair (g, SOD(g)) in L
16: else
17: if SOD(g) is equal to the minimum SOD then
18: Insert pair (g, SOD(g)) in L
19: end if
20: end if
21: end if
22: end while
23: end for
24: Return L

5.1 Application to Synthetic Data

In this experiments, the graph dataset was composed of graphs that represent
capital letters. It was originally designed manually at the University of Bern.
From the original set composed by 15 letters, we only used a subset of 6 letters
L, V, N, T, K and M. Then, from each original model, we manually generated
4 distorted instances. Therefore, our dataset is composed of 30 elements and
6 classes. Each class represents a letter and contains 5 different instances of
each letter. Table 2 shows the original letters in the first row and the four
distorted letters in the rest of the rows. Such distortions include moving or
deleting nodes and edge deletions. Thus, in the same class graphs with different
cardinality may appear. The letters are represented by graphs as follows. The
straight lines are represented by edges and the terminal points of the lines by
the nodes. Nodes are labelled by a two-dimensional attribute that represents
the position (x,y) of the terminal point. Edges have a one-dimensional and
binary attribute that represents existence or non-existence.

15

The experiments consisted of the computation of the generalized median
graphs using different number of graphs in the training set. For each median,
the elapsed time and the number of SOD computations needed to compute it
were recorded.

Table 2
Entire database used in the experiments.

5.1.1 Experimental Results

To compare the computation time and the number of SOD computations of
our new algorithm with respect to the multimatch algorithm, we defined 24
sets of graphs. For every class, we formed 4 different sets composed of 2, 3, 4
and 5 graphs, respectively. Table 3 shows, for each letter (first column), the
number of nodes of the graph that represents it (in brackets) and, for each of
the 4 sets, the maximum sum of nodes of the set.

Table 3
Sum of nodes in the set S.

N◦graphs in S

Letters (Nodes/graph) 2 3 4 5

L,V (3) 6 • 9 • 12 • 15

N,T (4) 8 • 12 • 16 19

K,M (5) 10 • 15 20 24

• Combinations used in the Multimatch algorithm

Notice that, because of computation time, not all the possible combinations
could be used to compute the generalized median graph using the multimatch
algorithm. The used combinations are marked with the symbol • in table 3.
In contrast, all the possible combinations could be applied to our new exact
algorithm.

In figure 5 we can see some of the median graphs obtained with our algorithm.
The figure shows the median graphs obtained using 5 graphs for every letter.

16

A first important remark is that in four out of the six letters (figure 5(a)-5(d))
the median graph is also the maximum common subgraph of all the graphs
in the set. Although it is only an empirical result, this fact permits to think
of a possible relationship between the maximum common subgraph and the
median graph, as it has already been established in [8] for two graphs, but
extended to a set of an arbitrary number of graphs.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of some computed medians.

5.1.2 Computation time and Number of SOD computations

The results of the computation time (including the mcs computation) and the
SOD computations required to calculate the median graph as a function of the
total number of nodes in S are shown in Figures 6(a) and 6(b) respectively.
Notice that the results are the mean values obtained for all sets S having the
same number of nodes.

The first important result is that due to the combinatorial explosion of the
multimatch algorithm it could be only applied to sets of graphs whose sum
of nodes is up to 12. Beyond this limit, the time required for this algorithm
is unfeasible. This result is consistent with the results presented in [16]. In
contrast, our algorithm could be applied obtaining reasonable computation
times to sets having up to 24 nodes. In addition, the computation time required
by our algorithm is quite lower than the time required by the multimatch
algorithm, even for small sum of nodes in S. Such difference in time is more
evident when the sum of nodes in S becomes larger. All this facts can be
appreciated in the results showed in Figure 6(a).

A similar behavior can be appreciated in the number of SOD computations
needed for the two algorithms (Figure 6(b)). Again, a significant difference
between the number of SOD computations required by the multimatch algo-
rithm and our algorithm can be observed in the results. This reduction in the
number of SOD computations can be associated both to the reduction of the
search space and the heuristic function presented in section 4.2.

17

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10!1

100

101

102

103

104

105

Sum of node in ’S’

Ti
m

e
(s

ec
)

Multimatch
New

(a)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
101

102

103

104

105

106

Sum of nodes in ’S’

SO

D

Multimatch
New

(b)

Fig. 6. Computation time (a) and number of SOD computations (b) as a function
of the total number of nodes of the graphs in S.

5.1.3 Reduction in Time and SOD computations

In order to be able to quantify the gain achieved by our algorithm with respect
to the multimatch algorithm, we compare in Table (4) the time and number
of SOD computations required by both algorithms to compute the general-
ized median graphs. The values of the computation time of the multimacth
algorithm, and our new exact algorithm are shown in columns 2 and 3 respec-
tively. The next column (labelled as %Reduction) represents the reduction of
time (in percentage) of our algorithm, taking the value of the multimatch al-
gorithm as reference. The same reasoning with respect to the number of SOD
computations can be done for the rest of the table.

We can observe that a significant reduction in the time needed for the median
graph computation is achieved by our new algorithm with respect to the mul-
timatch algorithm. This reduction is increased as the sum of nodes in the set
also increases. Notice that the mean time percentage needed for our algorithm
with respect to the multimatch algorithm to compute the median graph is

18

Table 4
Percentage of time and SOD computations required for the new exact algorihtms
respect to the multimatch algorithm.

Time (sec) SOD computations∑
|gi| Multimatch New %Reduction Multimatch New %Reduction

6 0.51 0.103 79.81 1794 16 99.11

8 12.25 0.181 98.53 2943 32 98.92

9 25.40 0.184 99.28 14092 40 99.72

10 9712 0.283 99.98 33961 72 99.79

12 46794.85 0.352 99.99 157176 76 99.95

about 4.5% (or a 95.5% of reduction). A similar reasoning can be done for
the number of SOD computations. In this case the mean percentage of the
required SOD computations is about 0.5% (99.5% of reduction).

5.2 Application to Real Data

In the previous section, it has been shown that the computation of the median
graph by means of our new algorithm is not restricted to a very small number
of graphs with a small number of nodes as in the case of the multimatch
algorithm. In this section we will go a step beyond and we will extend the
exact computation of the median graph to real data. In particular we will
use our algorithm to obtain prototypes of certain molecules. We will compare
the results with those obtained by our own implementation of the genetic
algorithm presented in [16].

The molecule database consists of graphs representing molecular compounds.
These graphs are extracted from the AIDS Antiviral Screen Database of Active
Compounds [1]. Such database consists of two different classes of molecules:
active and inactive, depending on whether they show activity against HIV or
not respectively. The molecules are converted into graphs in a straightforward
way, representing the atoms as nodes and the covalent bonds as edges. The
nodes are labelled with the number of the corresponding chemical symbol.
The edges are labelled with the valence of the linkage. Some examples of each
class are shown in figure (7). In order to simplify the representation, in such
examples, different chemical symbols are represented using a different gray
tonality.

For each class we have 50 different instances or molecules. The experiments
consisted in generating, for each class, 40 sets having a different number of
graphs. The graphs in each set had different sizes and were chosen randomly

19

(a) (b)

Fig. 7. Active compounds (a) and Inactive compounds (b)

from the original set of 50 instances. In this case, for each set the time required
and the SOD of the median graph obtained by each algorithm were recorded.
It is important to notice that the sum of nodes in the sets ranged from 4 to
23 nodes. The results are shown in the next sections.

5.2.1 Computation Time

The required computation time for both active and inactive compounds are
shown in figures 8(a) and 8(b) respectively. In both charts, the x-axis represent
the size of the minimum common supergraph of the set, independently of the
sum of nodes in the set.

First of all it is important to notice that for minimum common supergraphs
of sizes up to 10-11, the time required by our algorithm is lower than the
time required by the genetic algorithm. Such difference is specially relevant
for small sizes of the minimum common supergraph (up to 8), and also for the
case of inactive molecules, where the time required by our exact algorithm is
two orders of magnitude lower than the genetic algorithm. It is important to
mention that, for sizes of the minimum common supergrah up to 11 nodes,
we can find sets whose sum of nodes was 20 nodes. This result suggests that
for sets of graphs sharing large structures (and consequently the minimum
common supergraph tends to the mean size of the graphs in the set), our
algorithm may outperform the genetic algorithm.

As our algorithm is an optimal one, the computation time for larger sizes of
the minimum common supergraph increases rapidly. Nevertheless, the com-
putation time needed in these cases is not unfeasible (the sum of nodes of the
sets with minimum common supergraph of 14 nodes was 23 nodes).

5.2.2 SOD

The definition of the median graph implies the computation of the sum of
distances of the candidate median to all the graphs in the set. In this sense, a
measure of how good the median graph is, can be obtained by computing the

20

! " # $% $$ $& $' $(
$%!&

$%!$

$%%

$%$

$%&

$%'

$%(

Size of gms

Ti
m

e
(s

ec
)

)

)

*+
,-.

(a)

! " # $ % & '('' ') '* '!
'(!*

'(!)

'(!'

'((

'('

'()

'(*

Size of gmS

Ti
m

e
(s

ec
)

+

+

,-
./0

(b)

Fig. 8. Computation time for Active (a) and Inactive (b) compounds as a function
of the size of mcs(S).

term SOD for the computed medians. A measure of the term SOD achieved by
the medians computed by both algorithms is shown in figures 9(a) and 9(b), for
the active and inactive compounds respectively. Again, the x-axis represents
the size of the minimum common supergraph of the set, independently of the
sum of nodes in the set.

As expected, the term SOD for the genetic algorithm is always greater than
or equal to the term SOD achieved by the exact algorithm. This behavior is
more clear in the case of inactive compounds, where for sizes of the minimum
common supergraph greater than 9, the difference in the term SOD increases
significantly (figure 9(b)). The difference is less evident in the case of active
compounds.

Such difference in the term SOD suggests that the medians obtained by the
genetic algorithm tend to diverge as the size of the minimum common super-
graph increases (the graphs in the set are more dissimilar). This may lead to
obtain median graphs that do not represent accurately the set of graphs. In

21

7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

Size of gms

SO
D

GA
New

(a)

4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

Size of gms

SO
D

GA
New

(b)

Fig. 9. SOD of computed median for Active (a) and Inactive (b) compounds as a
function of the size of mcs(S).

contrast, the exact algorithm always finds an optimal median graph. Thus it
always finds the best representative in the set (following the criteria of the
definition of the median graph).

6 Conclusions

Median graphs have been presented as a good alternative to compute the
representative of a set of graphs. Unfortunately, the exact computation of the
median graph has an exponential complexity. Only one exact algorithm has
been presented up. Although exact solutions are in most cases not feasible in
real applications, it is still important to be able to obtain them as they will
always be a better representation of a set. In addition, finding exact solutions
may help us to understand the nature of this concept and can be used to
obtain better approximate solutions too.

22

The main contributions of this paper are twofold. Firstly and from a theoretical
point of view, we have shown that using a particular cost function and a
distance measure based on the maximum common subgraph, the size of the
search space where the median graph has to be computed can be drastically
reduced. In addition, an heuristic strategy has also been introduced in order
to improve the basic version of this new algorithm avoiding the evaluation of
some states in the search space. Secondly, and based on this theoretical result
a new exact algorithm for the computation of the generalized median graph
has been presented.

We have compared this new exact algorithm to the previous existing exact
algorithm using synthetic data. The results show that our algorithm clearly
outperforms the previous existing algorithm. Encouraged by these results, we
have applied our algorithm to the computation of median graphs using real
data and we have compared the results with those obtained by an approxi-
mate algorithm based on the genetic search. The results show that, although
the application of the exact algorithm is still limited, it can be used in real
problems for the first time.

There are still a number of issues to be investigated in the future. These re-
sults open a door towards the application of the new theoretical properties
and the new algorithm to obtain more accurate approximate solutions of the
median graph and also to increase the efficiency of the existing approximate
algorithms. In this sense, we have already presented in [13,14] two theoreti-
cal results related to some bounds on the size and the maximum SOD of the
median graph, that may help to obtain better approximate algorithms and
also to extend the applicability of the median graph. In addition, the possi-
ble relation between the maximum common subgraph and the median graph
suggested in section 5 can also be further investigated in order to see whether
the algorithms for the computation of the MCS could be used to obtain exact
or approximate solutions of the median graph.

Acknowledgements

This work has been supported by by the research Fellowship number 401-
027 (UAB), the Cicyt project TIN2006-15694-C02-02 (Ministerio Ciencia y
Tecnoloǵıa) and the Spanish research programme Consolider Ingenio 2010:
MIPRCV (CSD2007-00018). We would like to thank K. Riesen from the Uni-
versity of Bern for his help with the databases.

23

References

[1] Development Therapeutics Program DTP. AIDS Antiviral Screen.
http : //dtp.nci.nih.gov/docs/aids/aids data.html (2004).

[2] E. Balas, C. S. Yu, Finding a maximum clique in an arbitrary graph, SIAM J.
Comput. 15 (4) (1986) 1054–1068.

[3] H. Bunke, On a relation between graph edit distance and maximum common
subgraph, Pattern Recognition Letters 18 (8) (1997) 689–694.

[4] H. Bunke, G. Allerman, Inexact graph matching for structural pattern
recognition, Pattern Recognition Letters 1 (4) (1983) 245–253.

[5] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, M. Vento, A comparison of
algorithms for maximum common subgraph on randomly connected graphs,
in: Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR
International Workshops SSPR 2002 and SPR 2002, Windsor, Ontario, Canada,
August 6-9, 2002, Proceedings. Lecture Notes in Computer Science Vol. 2396,
2002.

[6] H. Bunke, P. Foggia, C. Guidobaldi, M. Vento, Graph clustering using the
weighted minimum common supergraph, in: Graph Based Representations in
Pattern Recognition, 4th IAPR International Workshop, GbRPR 2003, York,
UK, June 30 - July 2, 2003, Proceedings. Lecture Notes in Computer Science
Vol. 2726, 2003.

[7] H. Bunke, X. Jiang, A. Kandel, On the minimum common supergraph of two
graphs, Computing 65 (1) (2000) 13–25.

[8] H. Bunke, A. Kandel, Mean and maximum common subgraph of two graphs,
Pattern Recognition Letters 21 (2) (2000) 163–168.

[9] H. Bunke, A. Münger, X. Jiang, Combinatorial search versus genetic algorithms:
A case study based on the generalized median graph problem, Pattern
Recognition Letters 20 (11-13) (1999) 1271–1277.

[10] D. Conte, P. Foggia, M. Vento, Challenging complexity of maximum common
subgraph detection algorithms: A performance analysis of three algorithms on a
wide database of graphs, Journal of Graph Algorithms and Applications 11 (1)
(2007) 99–143.

[11] P. J. Durand, R. Pasari, J. W. Baker, C. che Tsai, An efficient algorithm for
similarity analysis of molecules, Internet Journal of Chemistry 2 (17).

[12] M. Ferrer, F. Serratosa, A. Sanfeliu, Synthesis of median spectral graph, in:
J. S. Marques, N. P. de la Blanca, P. Pina (eds.), IbPRIA (2), vol. 3523 of
Lecture Notes in Computer Science, Springer, 2005.

[13] M. Ferrer, F. Serratosa, E. Valveny, On the relation between the median and
the maximum common subgraph of a set of graphs, in: F. Escolano, M. Vento

24

(eds.), Graph-Based Representations in Pattern Recognition, 6th IAPR-TC-
15 International Workshop, GbRPR 2007, Alicante, Spain, June 11-13, 2007,
Proceedings, vol. 4538 of Lecture Notes in Computer Science, Springer, 2007.

[14] M. Ferrer, E. Valveny, F. Serratosa, Bounding the size of the median graph,
in: J. Mart́ı, J.-M. Bened́ı, A. M. Mendonça, J. Serrat (eds.), IbPRIA (2), vol.
4478 of Lecture Notes in Computer Science, Springer, 2007.

[15] A. Hlaoui, S. Wang, Median graph computation for graph clustering, Soft
Comput. 10 (1) (2006) 47–53.

[16] X. Jiang, A. Münger, H. Bunke, On median graphs: Properties, algorithms, and
applications, IEEE Trans. Pattern Anal. Mach. Intell. 23 (10) (2001) 1144–1151.

[17] D. Justice, A. O. Hero, A binary linear programming formulation of the graph
edit distance, IEEE Trans. Pattern Anal. Mach. Intell. 28 (8) (2006) 1200–1214.

[18] S. W. Lu, Y. Ren, C. Y. Suen, Hierarchical attributed graph representation
and recognition of handwritten chinese characters, Pattern Recognition 24 (7)
(1991) 617–632.

[19] J. J. McGregor, Backtrack search algorithms and the maximal common
subgraph problem, Software - Practice and Experience 12 (1) (1982) 23–24.

[20] A. Münger, Synthesis of prototype graphs from sample graphs, in: Diploma
Thesis, University of Bern (in German), 1998.

[21] M. Neuhaus, K. Riesen, H. Bunke, Fast suboptimal algorithms for the
computation of graph edit distance, in: Structural, Syntactic, and Statistical
Pattern Recognition, Joint IAPR International Workshops, SSPR 2006 and
SPR 2006, Hong Kong, China, August 17-19, 2006, Proceedings. Lecture Notes
in Computer Science 4109, 2006.

[22] A. R. Pearce, T. M. Caelli, W. F. Bischof, Rulegraphs for graph matching in
pattern recognition, Pattern Recognition 27 (9) (1994) 1231–1247.

[23] A. Robles-Kelly, E. R. Hancock, Graph edit distance from spectral seriation,
IEEE Trans. Pattern Anal. Mach. Intell. 27 (3) (2005) 365–378.

[24] A. Sanfeliu, K. Fu, A distance measure between attributed relational graphs
for pattern recognition, IEEE Transactions on Systems, Man and Cybernetics
13 (3) (1983) 353–362.

[25] Y. Wang, C. Maple, A novel efficient algorithm for determining maximum
common subgraphs, in: 9th International Conference on Information
Visualisation, IV 2005, 6-8 July 2005, London, UK, IEEE Computer Society,
2005.

[26] D. White, R. C. Wilson, Mixing spectral representations of graphs, in: 18th
International Conference on Pattern Recognition (ICPR 2006), 20-24 August
2006, Hong Kong, China, IEEE Computer Society, 2006.

[27] E. K. Wong, Model matching in robot vision by subgraph isomorphism, Pattern
Recognition 25 (3) (1992) 287–303.

25

