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Abstract

Given a set of graphs, the median graph has been theoretically presented as a
useful concept to infer a representative of the set. However, the computation of
the median graph is a highly complex task and its practical application has been
very limited up to now. In this work we present two major contributions. On one
side, and from a theoretical point of view, we show new theoretical properties of
the median graph. On the other side, using these new properties, we present a new
approximate algorithm based on the genetic search, that improves the computation
of the median graph. Finally, we perform a set of experiments on real data, where
none of the existing algorithms for the median graph computation could be applied
up to now due to their computational complexity. With these results, we show how
the concept of the median graph can be used in real applications and leaves the box
of the only-theoretical concepts, demonstrating, from a practical point of view, that
can be a useful tool to represent a set of graphs.

Key words: Median Graph, Genetic Search, Maximum Common Subgraph, Graph
Matching, Structural Pattern Recognition

1 Introduction

In structural pattern recognition, the concept of median graph [22] has been
presented as a useful tool to represent a set of graphs. Given a set of graphs S,
the median graph is defined as the graph that minimizes the sum of distances
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(SOD) to all the graphs in S. It aims to extract the essential information
of a set of graphs into a single prototype. Potential applications of median
graphs include graph clustering and prototype learning. For instance, it has
been successfully applied to different areas such as the synthesis of graphi-
cal symbols [21], image clustering [20], optical character recognition [22] and
graphical symbol recognition [16].

Nevertheless, the computation of the generalized median graph is a highly
complex task. In the past some exact and approximate algorithms have been
developed. Optimal algorithms include a tree search approach called multi-
match [27] and a more efficient algorithm which takes advantage of certain
conditions about the distance between two graphs [18] . Suboptimal methods
include genetic algorithms [8,22], greedy-based algorithms [20,19] and spectral-
based approaches such that of [14] and [35]. In spite of this wide offer of algo-
rithmic tools, all of them are very limited in their application. They are often
restricted to use small graphs and with some particular conditions. None of
them have been applied using real data.

In spite of these efforts to develop new and more efficient algorithms, only few
work about the theoretical properties of the median graph exists. In [22], some
interesting properties of the median graph related to their size and their SOD
have been presented. Concretely, they show the general limits for both the
size and the SOD of the median graph. Unfortunately, these original bounds
are sometimes very coarse and they can not be easily used to reduce the
complexity of its computation. Thus, the reduction of such bounds may be
crucial to be able to compute the median graph more efficiently or to obtain
better approximations.

In this paper we make theoretical and algorithmic contributions to the com-
putation of the median graph that result in a new genetic algorithm, com-
putationally more efficient than existing approaches, that can be applied to
real sets of data with large graphs. The most important contribution of this
work is that, from a theoretical point of view, we show that under a particular
cost function and a distance based on the maximum common subgraph, the
original bounds given in [22] can be reduced 1 . After that, we use these new
theoretical results to present the second major contribution of this paper: a
new approximate algorithm for the median graph computation based on a ge-
netic search. It validates the new bounds not only from a theoretical point of
view, but also giving them a practical application, implementing a new strat-
egy for the median graph computation. As a result, the computation time of
the median graph is reduced. In order to show the usefulness of the new ap-
proach, we perform a set of preliminary experiments using a real database of
2,340 webpages, split into 6 classes. Each webpage is represented as a graph

1 Preliminary versions of such theoretical proofs have appeared in [15] and [17].
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with a number of nodes between 100 and 300. In a first experiment we show
how the median graph can be computed in a reasonable time, compared with
the previous existing algorithms. Furthermore, in a second experiment we as-
sess the accuracy of the median comparing its SOD with the SOD of the set
median graph. We show that with this new approach we obtain graphs with
lower SOD than the set median, which demonstrates that we are obtaining
good approximations of the median graph. Finally, although it is not the main
objective of this work, we try to validate the median graph as a representative
of a class of graphs. Up to now, existing algorithms could only be applied to
very limited sets of graphs and the median graph could not be evaluated from
a practical point of view as a good representative of a class. To that extent,
we perform a preliminary classification experiment using the median graph. In
some cases, we obtain slightly better results than a nearest-neighbor classifier
with a much lower computation time. In this way, we demonstrate, for the
first time, that the median graph can be a feasible alternative to represent a
set of graphs in real applications.

The rest of the paper is organized as follows. In Section 2, we present some
theoretical concepts required to understand the rest of this work. Then, in
Section 3 the concept of the median graph and its theoretical properties are
introduced. After that, in Section 4, we present the new theoretical proper-
ties of the median graph. Section 5 introduces a new genetic algorithm for
the median graph computation, that takes advantage of the new theoretical
results. Then, Section 6 is devoted to present our experiments and the results
we obtained. Finally, we terminate with some conclusions and possible future
research lines.

2 Definitions and notation

2.1 Basic definitions

Let L be a finite alphabet of labels for nodes and edges. A graph is a four-tuple
g = (V,E, α, β) where V is the finite set of nodes, E is the set of edges, α is
the node labelling function (α : V −→ L), and β is the edge labelling function
(β : E −→ L). We assume that our graphs are fully connected. Consequently,
the set of edges is implicitly given (i.e. E = V × V ). Such assumption is
only for notational convenience, and it does not impose any restriction in the
generality of our results. In the case where no edge exists between two given
nodes, we can include the special null label ε in the set of labels L to model
such situation. If V = φ, then g is called the empty graph. Finally, the number
of nodes of a graph g is denoted by |g|.
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Given two graphs, g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2), g2 is a sub-
graph of g1, denoted by g2 ⊆ g1 if, V2 ⊆ V1, α2(v) = α1(v) for all v ∈ V2 and
β2((u, v)) = β1((u, v)) for all (u, v) ∈ V2 × V1.

From this definition, it follows that, given a graph g1 = (V1, E1, α1, β1), a
subset V2 ⊆ V1 of its vertices uniquely defines a subgraph. Such subgraph is
called the subgraph induced by V2.

In order to check whether two graphs are identical or not, we use the graph
isomorphism. Given two graphs g1 = (V1, E1, α1, β1), and g2 = (V2, E2, α2, β2),
a graph isomorphism between g1 and g2 is a bijective mapping f : V1 −→ V2

such that, α1(x) = α2(f(x)) for all x ∈ V1 and β1((x, y)) = β2((f(x), f(y)))
for all (x, y) ∈ V1 × V1. Two graphs, g1 and g2, are isomorphic if there exists
a graph isomorphism between them.

Related to graph isomorphism there is the concept of subgraph isomorphism.
Given two graphs g1 = (V1, E1, α1, β1), and g2 = (V2, E2, α2, β2) an injective
function f : V1 −→ V2 is called a subgraph isomorphism from g1 to g2 if
there exists a subgraph g ⊆ g2, such that f is a graph isomorphism between
g1 and g.

2.2 Maximum Common Subgraph and Minimum Common Supergraph of a
Set of Graphs

Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) be two graphs. A graph g
is called a common subgraph (cs) of g1 and g2 if there exists a subgraph
isomorphism from g to g1 and from g to g2. A common subgraph of g1 and
g2 is called maximum common subgraph (mcs) if there exists no other
common subgraph of g1 and g2 with more nodes than g. We will also denote
the mcs(g1, g2) by gm.

Intuitively, it is the largest part of them that is identical in terms of structure
and labels. It is clear that the more similar two graphs are the largest their
maximum common subgraph is. In the last years some papers have been pre-
sented related to the computation of maximum common subgraph [2,12,25,33]
based on different approaches and algorithms. An explanation of such methods
and a comparison between them can be found in [5,10].

A graph g is called common supergraph (CS) of g1 and g2 if there exists a
subgraph isomorphism from g1 to g and from g2 to g. A common supergraph
of g1 and g2 is called minimum common supergraph (MCS) if there exists
no other common supergraph of g1 and g2 having less nodes than g. We will
also denote the MCS(g1, g2) by gM .
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The minimum common supergraph of two graphs can be seen as the graph with
the minimum structure such that both graphs are contained in it as subgraphs.
The computation of the minimum common supergraph can be reduced to the
computation of the maximum common subgraph [7].

Let us now generalize such definitions to a set of n graphs. Let S = {g1, g2, ..., gn}
be a set of graphs. A graph gm(S) is called a maximum common subgraph
of S if gm(S) is a common subgraph of {g1, g2, · · · , gn} and there is no other
common subgraph of {g1, g2, · · · , gn} having more nodes than gm(S). In ad-
dition, a graph gM(S) is called a minimum common supergraph of S if
{g1, g2, · · · , gn} are subgraphs of gM(S) and there is no other common super-
graph of {g1, g2, · · · , gn} having less nodes than gM(S). We will also denote
the gm(S) and the gM(S) as mcs(S) and MCS(S) respectively.

The computation of these graphs is still an open question. Approximate algo-
rithms for their computation have been given in [6].

2.3 Graph Distance

In real applications, the graph-based representations of the same object may
be different. In this case we need a measure of the dissimilarity between two
given graphs instead of simply knowing whether they are identical, as graph
isomorphism does. One of the methods most widely used to compute the
dissimilarity between two graphs is the graph edit distance [4,31]. The main
advantage over other graph matching methods is that graph edit distance can
be applied to arbitrary graphs with any type of node and edge labels. The basic
idea behind the graph edit distance is to define a dissimilarity measure between
two graphs by the minimum amount of distortion required to transform one
graph into the other [4]. To this end, a number of distortion or edit operations
e, consisting of the insertion, deletion and substitution of both nodes and
edges needs to be defined. Then, for every pair of graphs (g1 and g2), there
exists a sequence of edit operations, or edit path p(g1, g2) = (e1, . . . , ek) (where
each ei denotes an edit operation) that transforms one graph into the other.
In general, several edit paths exist between two given graphs. This set of edit
paths is denoted by ℘(g1, g2). To quantitatively evaluate which edit path is
the best, edit cost functions are introduced. The basic idea is to assign a
penalty cost c to each edit operation according to the amount of distortion
it introduces in the transformation. The edit distance d between two graphs
g1 and g2 denoted by d(g1, g2) is the cost of the edit path with minimum cost
that transforms one graph into the other.
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2.4 Graph edit distance and the Maximum Common Subgraph

Several exact and approximate algorithms have been presented in the past re-
lated to the computation of the distance between two graphs [4,28–30]. Some
of them are related to the maximum common subgraph [3,9,13] – an excellent
review of such distances is [32] –. In this work, we will use one of theses dis-
tances based on the maximum common subgraph given in [3] taking advantage
of a particular cost function where the cost of node deletion and insertion is
always 1, the cost of edge deletion and insertion is always 0 and the cost of
node and edge substitution takes the values 0 or∞ depending on whether the
substitution is identical or not, respectively. In [3] they show that, using this
cost function, the edit distance between two graphs can be expressed as:

d(g1, g2) = |g1|+ |g2| − 2 |mcs(g1, g2)| = |g1|+ |g2| − 2 |gm| (1)

This result demonstrates its validity and applicability as it states the intuitive
idea that the more two graphs have in common, the lower their distance is. In
the rest of the paper we will assume that the distance between two graphs is
computed according to Equation (1).

3 Generalized Median Graph

Given a set of graphs, the concept of median graph has been presented as a
useful tool to compute a representative of the set. Let U be the set of graphs
that can be constructed using labels from L. Given S = {g1, g2, ..., gn} ⊆ U ,
the generalized median graph ḡ of S is defined as the graph g ∈ U such
that its sum of distances (SOD) to all the graphs in S is minimum:

ḡ = arg min
g∈U

∑
gi∈S

d(g, gi) = arg min
g∈U

SOD(g) (2)

Notice that ḡ is not usually a member of S and, in general, more than one
generalized median graph can be found for a given set S.

The computation of the generalized median graph can only be done in ex-
ponential time, both in the number of graphs in S and their size [22]. Some
exact and approximate algorithms for the median graph computation have
been developed so far. Optimal strategies include a tree search approach called
multimatch [27] and a more efficient algorithm [18] which takes advantage of
certain conditions of the cost function. Sub-optimal approaches include ge-
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netic algorithms [22,27], greedy-based algorithms [20], and algorithms based
on the spectral graph theory [14,35].

Another alternative to represent a set of graphs is to use the set median graph
(usually denoted by ĝ) instead of the generalized median graph. The difference
between them is only the search space where the median is looked for. While
the search space for ḡ is U , that is, the whole universe of graphs, the search
space for ĝ is simply S, that is, the set of graphs in the learning set. The set
median graph is usually not the best representative of a set of graphs, but it
is often a good starting point towards the search of the generalized median
graph 2 .

3.1 Theoretical Properties of the Median Graphs

Beyond the algorithmic solutions for the median graph computation there
are some interesting theoretical properties related to the median graph. Such
properties include the bounds on the size of the median graph and the bounds
on the SOD. Both properties originally appeared in [22]. For the sake of com-
pleteness, they are presented in the following sections.

3.1.1 Bounds on the Size of the Median Graph

In [22] it is shown that the minimum and maximum number of nodes of the
median graph is between the following limits:

0 ≤ |ḡ| ≤
n∑

i=1

|gi| (3)

That is, it states that the size of the median graph has to be greater or equal
than 0 and less or equal than the sum of nodes of all the graphs in S. The
proof of such bounds can be found in [22].

3.1.2 Bounds on the SOD of the Median Graph

The bounds for the SOD of the median graph are slightly more difficult to
derive. For the upper bound, it is assumed in [22] that the empty graph ge and
the union graph gu are meaningful candidates for the median graph. Then, the
upper limit for the SOD of the median graph is:

2 Unless explicitly mentioned, from now on the term median graph will refer to the
generalized median graph.
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SOD(ḡ) ≤ min{SOD(ge), SOD(gu)} (4)

The lower bound is out of the scope of this work. The reader is referred to
[22] for more details.

4 New Theoretical Results on the Median Graph

The theoretical properties mentioned above can be used to bound the search
space of the median, either by limiting the size of the candidate medians or
discarding some of these candidate medians based on the bounds of the SOD,
for instance. Nevertheless, as mentioned in [22], these bounds are sometimes
too coarse and may not be very useful to reduce the complexity of the median
graph computation. Using the concepts of mcs(S) and MCS(S) defined in
section 2.2, the cost function introduced in section 2.4 and the distance mea-
sure defined in expression (1), we will prove in this section that it is possible
to reduce the limits on the size of the median graph given in expression (3)
(Section 4.1), and the upper bound for the SOD (Section 4.2).

4.1 Reduction of the Bounds on the Size of the Median Graph

Theorem 1: Let S = {g1, g2, ..., gn} be a set of graphs and ḡ a possible median
graph of S. Under the cost function and the distance measure given in section
2.4, the number of nodes of ḡ is in the limits,

0 ≤ |gm(S)| ≤ |ḡ| ≤ |gM(S)| ≤
n∑

i=1

|gi| (5)

Proof: To demonstrate the first part of the equation (5) (i.e. |gm(S)| ≤ |ḡ|),
suppose that |ḡ| < |gm(S)|. If we compute the term SOD(gm(S)), we will
arrive to the next expression:

SOD(gm(S)) =
n∑

i=1

d(gi, gm(S)) =
n∑

i=1

(|gi|+ |gm(S)| − 2|gm(S)|) =
n∑

i=1

|gi| − n|gm(S)|

(6)

Notice that gm(S) is the maximum common subgraph of S and, then, it is a
subgraph of any graph gi in S. Therefore, if we compute d(gi, gm(S)) using
expression (1) the term |gm| is exactly |gm(S)|.
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For the computation of SOD(ḡ) we will follow a similar reasoning. Assuming
that |ḡ| < |gm(S)|, we can determine the minimum value that SOD(ḡ) can
take:

SOD(ḡ) =
n∑

i=1

d(gi, ḡ) ≥
n∑

i=1

(|gi|+ |ḡ| − 2|ḡ|) =
n∑

i=1

|gi| − n|ḡ| (7)

Notice that, in this case, if |ḡ| < |gm(S)| then |ḡ| < |gi|. Consequently the
maximum value for |gm| in (1) will be precisely |ḡ| and the minimum value for
SOD(ḡ) will be obtained when |ḡ| = |gm| as expressed in equation (7).

At this point, using equations (6) and (7) and assuming that |ḡ| < |gm(S)| we
arrive to the following conclusion:

SOD(ḡ) ≥
n∑

i=1

|gi| − n|ḡ| >
n∑

i=1

|gi| − n|gm(S)| = SOD(gm(S)) (8)

But this is a contradiction because, by definition of the median, SOD(ḡ) must
be minimum. Thus |ḡ| must be greater or equal than |gm(S)|.

Let’s now proof the second part of equation (5) (i.e. |ḡ| ≤ |gM(S)|). Suppose
now that |ḡ| > |gM(S)|. In this case the term SOD(gM(S)) will take this
value:

SOD(gM(S)) =
n∑

i=1

(|gi|+ |gM(S)| − 2|gi|) = n|gM(S)| −
n∑

i=1

|gi| (9)

Again, equation 9 holds because if gM(S) is the minimum common supergraph
of S, then any gi will have precisely gi as a maximum common subgraph
between itself and gM(S) and consequently the term |gm| in (1) is exactly |gi|.

To compute the minimum value of SOD(ḡ), if |ḡ| > |gM(S)| then every graph
gi can share at most |gi| nodes with ḡ and then the maximum value for |gm|
in (1) is |gi|. Then:

SOD(ḡ) ≥
n∑

i=1

(|gi|+ |ḡ| − 2|ḡi|) = n|ḡ| −
n∑

i=1

|gi| (10)

Then, from equations (9) and (10), and assuming that |ḡ| > |gM(S)| we obtain:

SOD(ḡ) ≥ n|ḡ| −
n∑

i=1

|gi| > n|gM(S)| −
n∑

i=1

|gi| = SOD(gM(S)) (11)
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Again, this is a contradiction and, thus |ḡ|must be less or equal than |gM(S)|.�

4.2 Reduction of the Upper Bound on the SOD of the Median Graph

Theorem 2: Let S = {g1, g2, ..., gn} be a set of graphs and ḡ a possible median
graph of S. Given the cost function and the distance measure presented in
section 2.4, the SOD(ḡ) falls in the limits

SOD (ḡ) ≤ SOD(gm(S)) ≤ min {SOD (ḡe) , SOD (ḡu)} (12)

Proof: First, we start by computing the term min {SOD (ḡe) , SOD (ḡu)}.
Using the definition of distance given in expression (1):

SOD (ḡe) =
n∑

i=1

d(gi, ḡe) =
n∑

i=1

(|gi|+ |ḡe| − 2|ḡe|) =
n∑

i=1

|gi|

Notice that, in this expression ḡe is the empty graph. Then, the mcs between
any graph gi and ḡe in expression (1) is ḡe, and |ḡe| = 0. A similar reasoning
can be done for SOD (ḡu). In this case, the mcs between any graph gi and ḡu

is gi, and |ḡu| =
∑n

i=1 |gi|. Therefore,

SOD (ḡu) =
n∑

i=1

d(gi, ḡu) =
n∑

i=1

(|gi|+ |ḡu| − 2|gi|) = (n− 1)
n∑

i=1

|gi|

Thus, for n ≥ 2

min {SOD (ḡe) , SOD (ḡu)} = min

{
n∑

i=1

|gi|, (n− 1)
n∑

i=1

|gi|
}

=
n∑

i=1

|gi|

Now we derive an expression for the term SOD(gm(S)). If gm(S) is the max-
imum common subgraph of S, then any gi will have precisely gm(S) as a
maximum common subgraph between itself and gm(S). Therefore,

SOD(gm(S)) =
n∑

i=1

d(gi, gm(S)) =
n∑

i=1

(|gi|+ |gm(S)| − 2|gm(S)|) =

=
n∑

i=1

|gi| − n|gm(S)| (13)
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Thus, we have that SOD(gm(S)) ≤ min{SOD(ḡe), SOD(ḡu)} =
∑n

i=1 |gi|.
In addition, by the definition of median graph, the inequality SOD(ḡ) ≤
SOD(gm(S)) must be satisfied. Consequently, Equation (12) holds.�

5 Genetic Search Algorithm

In this section we show how the new bounds presented in the previous section
can be used to develop a new sub-optimal algorithm for the computation of
the generalized median graph that takes advantage of these theoretical results
to reduce the search space of the median graph. Computing the median graph
is an optimization problem where a search space has to be explored to find
the optimal solution. Among the several optimization techniques – such as
Tabu search, genetic algorithms, etc.– that could be used, we have adopted
a genetic search approach. This decision was motivated by different factors.
Firstly, genetic search has already been successfully applied to the median
graph computation. The use of the same strategy gives us the opportunity
to be able to compare the two algorithms in a common framework. Secondly,
as we will see in the next section, the codification of one possible solution as
a chromosome is very intuitive and simple. Although this codification is not
unique to the genetic algorithms, it will permit to manipulate and evaluate
possible solutions in a very straightforward way.

5.1 Basics on Genetic Search

Genetic search techniques are general-purpose optimization methods inspired
by the theory of the biological evolution. They have been successfully applied
to difficult search tasks, optimization problems, machine learning, etc. It has
also been shown that they are good candidates to give good approximate solu-
tions to general NP-complete problems [23]. They have been applied to solve
graph matching problems [1,11,34] and to compute approximate solutions for
the generalized median graph [22].

The basics of genetic algorithms are as follows. A possible solution of the
problem is encoded using chromosomes. Each chromosome has a cost. Such
cost is computed by means of a fitness function. Given an initial population of
chromosomes, genetic algorithms use genetic operators to alter chromosomes
in the population, generating a new population. The genetic operators are
typically the crossover and mutation. In the former, a pair of chromosomes
of the current population are randomly chosen and some of their positions
are interchanged. The latter takes only one chromosome and alter some of its
positions randomly. The process is iteratively repeated until one or more stop
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conditions are satisfied. For more information about genetic algorithms the
reader is referred to [26].

5.2 Our Approach

5.2.1 Chromosome Representation

In [18] it is shown that using the cost function and the distance based on
the maximum common subgraph given in section 2.4, the possible candidate
medians are all the possible induced subgraphs of gM(S). That is, the search
space is composed only of all these induced subgraphs. This is an implication
of the cost function given before: it is demonstrated in [7] that there exists an
optimal edit path between two given graphs that implies neither non-identical
node substitutions nor non-identical edge substitutions. Then, only node in-
sertions and deletions need to be considered and all candidate medians can be
obtained exploring only the induced subgraphs of gM(S). Then, the chromo-
some representation should be able to encode all of these induced subgraphs
of gM(S). By the definition of induced subgraph given in Section 2.1, a subset
of nodes of a given graph uniquely defines a subgraph. The set of edges linking
the nodes will be determined by the set of edges of gM(S). Thus, we have cho-
sen the size of the chromosome equal to the size of the gM(S). Each position
in the chromosome is associated to one node of gM(S), and may store either a
value of ”1” or a value of ”0” depending on whether that node belongs or not
to the candidate median. In order to clarify such representation an example
is given in Figure 1.

1 2

3

4
5

6

7

(a)

1

3

4
5

7

(b)

1 0 1 1 1 0 1

Corresponding nodes in gMS

1 2 3 4 5 6 7

(c)

Fig. 1. A graph gM (S) (a), an induced subgraph g of gM (S) (b) and the chromosome
representing g (c).

Assume that gM(S) is the graph shown in figure 1(a). As we can see, a number
is assigned to each node of gM(S). A possible induced subgraph of gM(S) is
shown in figure 1(b), which is composed only of the nodes 1,3,4,5 and 7 of
gM(S). Then, the chromosome representation of such induced subgraph is
shown in the figure 1(c). In such chromosome the total number of positions is
equal to the number of nodes of gM(S). Notice that the chromosome has only
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set to ”1” the positions of the nodes of gM(S) which are present in the induced
subgraph. The edges connecting these nodes will be the same as in gM(S). In
this way, the chromosome represents the induced subgraph of gM(S) of the
figure 1(b).

5.2.2 Fitness Function

The fitness function of each chromosome corresponds to the SOD of the in-
duced subgraph of gM(S) represented by the chromosome. That is, if the
chromosome c represents a graph g, then its fitness function f(c) is:

f(c) = SOD(g, S) =
n∑

i=1

d(g, gi) =
n∑

i=1

(|g| − |gi| − 2|mcs(g, gi|) (14)

Clearly, the lower its fitness function is, the better the chromosome is. The
computational complexity of this fitness function is related to the computa-
tional complexity of the maximum common subgraph of two graphs, which is
exponential in the general case. Nevertheless, such computational complexity
becomes polynomial when the considered graphs have unique node labels [24].

5.2.3 Genetic Operators

We apply the classical operators of the genetic algorithms adapted to this
particular case in order to include the new bounds that we have presented in
Section 4. In our algorithm, the roulette wheel sampling implementing fitness-
proportionate selection is chosen to create the descendants (also called off-
spring). Conceptually, it is equivalent to give a slice of a circular roulette
wheel to each chromosome, proportional in area to the fitness of the chro-
mosome. The crossover operator simply interchanges an arbitrary position of
two chromosomes (selected with a uniform probability) to form two offspring.
Mutation is accomplished by changing randomly a number in the array with
a mutation probability. After the genetic operators have been applied and a
new population is created, every chromosome is checked in order to validate
whether it fulfils the bounds given in the last section. If the chromosome is
out of such limits, it is randomly altered until it fulfils the conditions. This
procedure has two effects. On the one hand it reduces the search space from
all the possible induced subgraphs of gM(S) to only the induced subgraphs
that fulfil the conditions given in the last section. On the other hand, as the
search space is reduced and the non-admissible candidate medians will never
appear in the population, the convergence of the algorithm is expected to be
faster compared with the same algorithm without taking into account the new
limits.
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5.2.4 Population Initialization

The length of the initial population is set according to a predefined value
K, determined empirically. Then, the first n chromosomes (with n ≤ K) are
set as the induced subgraphs of gM(S) corresponding to the n graphs in S. It
assures that the initial population includes the graphs in S and by extension it
includes the set median graph, which is a potential generalized median graph.
The remaining K-n chromosomes are generated randomly but all of them must
fulfil the new bounds given in Section 4.

5.2.5 Termination Condition

The population evolution process is continued until one of the two following
conditions is fulfilled. The first criterion is that the maximum number of gen-
erations (which is set according to a predefined constant at the beginning of
the algorithm) is reached. The second stop condition is related to the best
SOD in the population. If the chromosome in the population has a SOD less
than the SOD of the set median graph, then the algorithm finishes too.

6 Experimental Results

In order to experimentally evaluate both the new theoretical properties and the
new genetic approach, we present in this section three experiments using a real
database of graphs representing webpages. Such graphs have a large number
of nodes (around 200) but they are a particular class of graphs with unique
node labels. Such kind of graphs allow the computation of the maximum
common subgraph of two graphs in polynomial time [24]. That makes the
computation of the edit distance based on the maximum common subgraph
(and for extension, the computation of the median graph) applicable to large
graphs. Due to the large size of graphs that we manage in this experiment, all
other methods for the median graph computation are not applicable.

6.1 Dataset

Our dataset is composed of 2,340 documents representing webpages belong-
ing to 6 main classes (Business (B), Entertainment (E), Health (H), Poli-
tics (P), Sports (S) and Technology (T)). It is the same as that used in
[32]. These web documents were originally hosted at Yahoo as news pages
(http://www.yahoo.com). The graph-based representation of these webpages
is as follows. First, all words appearing in the web document are converted
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into nodes in the web graph, except for those which contain little informa-
tion, i.e. conjunctions, stop words, etc. The nodes are attributed with the
corresponding word and its frequency. That is, even if the word appears more
than once in the web document, only one node is added to the graph and the
frequency of the word is used as an additional attribute. Then, if a word wi

immediately precedes the word wj in the document, a directed edge between
the nodes corresponding to both words is added to the graph. In order to
keep the essential information of the document, only the most frequently used
words (nodes) are kept in the graph and the terms are combined to the most
frequently occurring form. Table 1 shows the number of graphs in each class.

Table 1
Number of graphs in each class.

Class

B E H P S T

Number of graphs 142 1389 494 114 141 60

6.2 Parameters of the Genetic Algorithm

Table 2 shows the basic configuration parameters for the genetic algorithm.
We have chosen the value for these parameters empirically. For the two first
parameters, we have chosen the same value as in [22]. The value of the popu-
lation size has been set in such a way that both the computation time of each
iteration and the convergence speed are optimized. Finally, as the size of the
chromosome can be large, the maximum number of iterations has been set in
order to allow the genetic algorithm to iterate a sufficient number of times to
deal with such a huge search space.

Table 2
Configuration Parameters for the Genetic Algorithm.

Parameter Value

Mutation probability 0.1

Crossover probability 0.9

Initial population size (K) 20

Maximum number of iterations 400

6.3 Experiments

In this section we present three experiments. In the first one, we show the
computational effort that is needed to synthesize a median graph. In a second
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experiment, we evaluate the quality of the median graph according to the
SOD. Finally, in a third experiment, we conduct a preliminary classification
experiment in order to assess the median as a good representative of a given
set of graphs.

6.3.1 Experiment 1: Median Computation

This experiment was intended to quantitatively evaluate the median graph
computation achieved by the genetic approach. To this end, we computed
the median graph of each class using 3, 4, 5, 6 and 7 graphs for each class,
randomly selected.

Tables 3 and 4 show some interesting results of the median graph computation.
In both tables, the first row represents the sum of nodes of all the graphs used
to compute the median, the second row depicts the number of iterations needed
to achieve a graph with a SOD better than the set median graph and the third
row shows the total computation time. While in the first table the results are
grouped by class, in the second table the results are shown as a function of the
number of graphs used to compute the median. In both cases, the results are
the mean values over every class or over the number of graphs, respectively.

Table 3
Statistics for median graph grouped by class

Class

B E H P S T∑
|gi| 1,021.2 777 845 940.4 806.2 566.2

# iterations 66.40 8.40 2.40 11.80 32.20 3.20

Computation time (sec) 4,636 274.1 65.05 179.6 1,428.748 75.8

Table 4
Statistics for median graph grouped by the number of graphs used to compute the
median.

Number of graphs in S

3 4 5 6 7∑
|gi| 467.1 701.1 813.3 1,041.1 1,107.1

# iterations 1.5 58.50 2.83 21.6 19.1

Computation time (sec) 13.8 3,362.4 82.3 1,278.2 2,159.6

The results show that the number of iterations needed to find a median better
than the set median graph is very low (less than 100 in all cases). It is not
proven that the obtained graph is the true median graph, but it means that
the genetic algorithm always find a graph with a SOD better than the SOD
of the set median graph.
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In addition, in the first and third row of both tables, we can observe that
the sum of nodes of the graphs used to compute the median range from 400
to 1,000, while the computation times range from 13 to 3,000 seconds. Such
numbers show that the computation of the median graph can be applied to a
real dataset of large graphs with reasonable computation times. It is important
to notice that previously existing methods could not be applied to this kind
of data due to their high computational requirements.

One of the possible problems of the genetic algorithms is the premature con-
vergence. Some additional experiments performed on very limited data (where
the true median can be computed) show that our approach is able, in most of
the cases, to obtain the optimal solution. In the experiments reported in this
paper, due to the size of the graphs, we are not able to compute the true me-
dian. However the algorithm performs quite good in terms of both the number
of comparisons and the SOD (as we will see in the next section). Therefore,
this result gives us the proof that the premature convergence does not exist
here as well. For this reason we have not adopted any specific strategy to solve
this problem.

6.3.2 Experiment 2: Median Accuracy

The results shown above are suitable to quantitatively evaluate the proposed
algorithm in terms of computation time with respect to the size of the set S.
Nevertheless, it is also of interest to qualitatively evaluate the median accord-
ing to the final SOD. In this case, due to the size and the number of graphs of
the dataset, it is not possible to compare our method with other approaches,
since the existing methods cannot deal with such large sets and graphs. Thus,
using the same dataset as in the first experiment, we have decided to com-
pare the SOD of the median obtained using the genetic algorithm with the
SOD of the set median. This comparison can give a good idea of whether it is
potentially a good median.

Figures 2 and 3 show the results of this comparison as a function of the classes
in the dataset, and the number of graphs in the set S, respectively.

The results of Figure 2 show that we always obtain medians with a SOD lower
than the set median SOD for all the classes. These results validate that the
method is able to obtain good approximations of the median graph regardless
of the class.

Figure 3 shows that we also obtain a better SOD with our method than with
the set median for any number of graphs in the set. What is important in this
figure is the tendency in the difference between the set median SOD and the
SOD of the approximate median. This difference increases as the number of
graphs in S increases. This tendency suggests that the more information of
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With these results at hand, we can conclude that we obtain good approxima-
tions of the median graph with this new genetic approach.
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6.3.3 Experiment 3: Classification Accuracy

In the previous experiments we have shown that, with the new algorithm, we
are able to compute good approximations of the median graph in a reasonable
time for sets of real data with large graphs. In this experiment we present
a limited and preliminary classification experiment that intends, for the first
time, to evaluate the median graph as a representative of a set of graphs in
a real application. The median is used to obtain the representative of each
class using the training set. Then, every element in the test set is classified
according to the class of the most similar median. Thus, we avoid comparing
all the elements in the test set against all the elements in the training set. The
results are compared with those obtained using a classical nearest-neighbor
classifier.

The experiment setup is as following. For every class, except for class T where
all the elements are used, we took randomly 60 out of all the elements in the
class. Thus, we have a total number of 360 elements to perform the classifi-
cation experiment. In order to better generalize the results, we performed 10
repetitions of the classification task. To this end, we divided each class into
10 sets of 6 elements each. For a given repetition, the training set is composed
of one of these sets of 6 elements per class (a total number 36 elements). It is
used both for the 1NN classification and to compute the median graph. The
remaining 324 elements (54 elements per class) are used as the test set.

Figure (4) shows, for each repetition of the experiment, the classification ac-
curacy both the nearest neighbor and the median graph approach. The results
are the mean values over all classes. These results show that in general, the
1NN approach clearly outperforms the median approach, except for the repe-
tition number 9. Nevertheless it is important to remark two issues: firstly, the
number of comparisons (and therefore, the total computation time) needed us-
ing the median graph is 6 times lower that the number of comparisons needed
using the nearest neighbor (specifically, 1,944 against 11,664 comparisons).
Secondly, the results of the median graph show a great variability depending
on the set of graphs used as training set.

In order to better analyze these results, we have performed an extended clas-
sification experiment, combining the computation of the median graph with
the classical 1NN classifier. We compare every element of the test set against
the median graph of all the classes and we use these results as a filter before
applying the 1NN classifier. For every element in the test set, we rank all the
classes according to the distance to the median graphs. After that, the ele-
ment is classified using the 1NN classifier but using only the elements in the
training set of the best k classes according to the previous ranking, instead of
using all the classes as in the 1NN classical approach. It is clear that, if k is
set to 1, then the results are the same as those obtained with the classification
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Fig. 4. Classification accuracy for both the 1NN and the median graph approach,
for every repetition of the experiment.

using simply the median. Conversely, if k is equal to 6, then the results are
the same as in the classical 1NN classifier.

Figure 5 shows, for every value of k, the maximum, the average and the min-
imum classification accuracy achieved along the 10 repetitions of the exper-
iment. In addition, Figure 6 show the results for two individual repetitions,
representing extreme cases of good (i.e. the median approach outperforms the
1NN classifier for k ≤ 6) and bad (i.e. the median approach does not outper-
form the 1NN classifier for k ≤ 6) results, respectively. The first remark to
be done is that, while the 1NN classifier (k = 6) exhibits a good stability, the
results when the classification depends on the median graph (k = 1, . . . , 5)
show a high variability. In some cases, as in the Figure 6(a), we can obtain
better results using the median graph with a low value of k than with the
1NN classifier. In Figure 5 we can observe that, even for k = 1 or k = 2, the
best results using the median graph can outperform the worse results using
the 1NN classifier. That means that, with the median graph, it is possible to
achieve similar results to the 1NN, but using a lower number of comparisons.
This reduction in the computation time can be very important for some real
applications. In order to reinforce this idea we show, in Figure 7, for every
value of k the number of repetitions where this value of k permits to obtain
the same or better classification results as in the 1NN classifier. We can see
that, in almost half of the repetitions, we only need at most 3 classes (k = 4)
to obtain better results. However, in the worst cases (for example, Figure 6(b))
the results of the median graph approach are very poor. This variability sug-
gests a dependency of the quality of the median graph on the training set and
opens the door to find methods for the selection of the best graphs for the
computation of the median graph.

Finally, it is important to recall that this is a preliminary experiment with the
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Fig. 6. One of the best (a) and worse (b) cases among the 10 repetitions.

aim to show that the median graph can be a good option to represent a set of
graphs. For a real application of the median graph to classification problems,
further work is required in order to find the best strategy to use the median
graph in the existing classification methods.
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7 Conclusions

The median graph has been presented as a good alternative to compute the
representative of a set of graphs. Although some theoretical properties and
algorithms have been introduced so far related to the median graph, existing
methods do not permit to used it in real pattern recognition applications.

In this paper we have derived new theoretical properties of the median graph
and we have developed a new algorithm using these properties that permit
to extend the computation of the median graph to real datasets with large
graphs. The main contributions of this paper are twofold. Firstly, from a theo-
retical point of view, we have shown that using a particular cost function and
a distance measure based on the maximum common subgraph, the original
bounds for the median graph related to its size and its sum of distances can
be reduced. Such reductions can be used either to obtain a better knowledge
of the median graph or can be used to develop more efficient and accurate
algorithms. This is precisely, the second contribution of this work. Using the
new bounds we present a new approximate algorithm for the median graph
computation based on genetic search.

With these new bounds and the new algorithm we performed a set of experi-
ments using webpages extracted from real data. The first conclusion of these
experiments is that, with this new algorithm, we are able to obtain accurate
approximations of the median graph (in terms of SOD) with a computation
time that permits to work with sets of graphs composed of around 200 nodes
each. Although the applicability of the median graph to real problems is still
limited, these results show that the concept of median graph can be used in
real world applications. It demonstrates, for the first time, that the median
graph is a feasible alternative to obtain a representative of a set of graphs.
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For instance, we have shown in a preliminary experiment that the classifica-
tion using the median graph can obtain similar results as a nearest-neighbor
classifier but with a much lower computation time.

Nevertheless, there are still a number of issues to be investigated in the future.
These theoretical results give us the opportunity to increase the knowledge
about the median graph and open a door towards a better understanding of
its behavior. In this sense, more accurate bounds or properties might be inves-
tigated using these new results. Such advances in the theoretical level may lead
also to obtain more accurate and efficient approximate solutions of the me-
dian graph, either by producing enhanced versions of the existing algorithms
or by developing new approaches to compute the median graph. Although the
genetic algorithms are a class of optimization techniques widely used to solve
high computational problems, they are not the unique alternative. Other op-
timization techniques such as Tabu search seem also suitable to address the
median graph computation under this cost function in order to obtain better
accuracy and computation time. Thus, applying other optimization algorithms
remains as an open path to be explored. In addition, the preliminary experi-
ments on classification open the possibility of extending the application of the
median graph to classification algorithms where a representative of the set of
graphs is required.
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