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Abstract—Motivated by the need of a robust and practical
Inverse Kinematics (IK) algorithm for the WAM robot arm,
we reviewed the most used Closed-Loop IK (CLIK) methods
for redundant robots, analysing their main points of concern:
convergence, numerical error, singularity handling, joint limit
avoidance, and the capability of reaching secondary goals. As
a result of the experimental comparison, we propose two en-
hancements. The first is a new filter for the singular values
of the Jacobian matrix that guarantees that its conditioning
remains stable, while none of the filters found in literature is
successful at doing so. The second is to combine a continuous task
priority strategy with selective damping to generate smoother
trajectories. Experimentation on the WAM robot arm shows that
these two enhancements yield an IK algorithm that improves
on the reviewed state-of-the-art ones, in terms of the good
compromise it achieves between time step length, Jacobian
conditioning, multiple task performance, and computational time,
thus constituting a very solid option in practice. This proposal
is general and applicable to other redundant robots.

I. INTRODUCTION

Moving robot arms in task space requires efficient and
well-behaved Inverse Kinematics (IK) solutions. Along

several decades, a lot of effort within the Robotics community
has been devoted to obtaining fast and robust IK algorithms.
Analytical methods have always been preferred to iterative
ones, because their solution is exact and usually faster to
compute. However, with the rise of redundancies in robots,
analytical solutions become harder to obtain [1] [2] [3] and
thus again alternatives need to be explored [4] [5], especially
in order to benefit from the additional degrees of freedom [6].
In addition, complex tasks impose more restrictions on IK
solutions, such as in the case of medical robots [7] [8].

In tuning the IK of the 7-dof WAM manipulator to the par-
ticular requirements of some applications, we noticed that the
existing generic KDL algorithm [9] could sometimes fail due
to joint limits. We tried other open-source IK algorithms [10],
but none performed to entire satisfaction, thus we explored
other possibilities for redundant IK.

Although there exist many alternatives for trying to solve
the IK problem, such as interval methods [11], distance-based
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methods [12], or even neural networks [13] [14] [15] and
Bézier maps [16] [17], probably the most popular way is
to use closed-loop algorithms, where a first-order Jacobian
matrix [18] [19] of the robot kinematics is computed, which
maps joint velocities into task space velocities, and inverted to
map the error into an update of the joint values that is likely
to reduce the task error. The updated joint state at step k + 1
is then θk+1 = θk +∆θk, for some computed ∆θk:

∆θk = αJ?e, (1)

where α is a gain, J? is an inverse of the geometric Jacobian
matrix and e is the positioning error. The first attempts to
close the IK loop used the Moore-Penrose pseudoinverse [20]
of the Jacobian matrix [21] to invert the differential kine-
matics equation of the robot. In other works, the Jacobian
transpose was used [22], which is faster to compute. As
a distinctive advantage over alternative IK methods, CLIK
algorithms do not require any previous knowledge or learning
process with the robot, other than its Jacobian matrix, this
being the main reason for its preferred use over other options.
However, CLIK algorithms become unstable when the robot
is close to a singularity: the condition number of the Jacobian
becomes very large, thus amplifying the numerical error at
each iteration, and also requiring large variations in some
joints in order to reduce the error in a given direction. To
solve these problems, the Jacobian matrix can be damped or
filtered [25] [26], reducing this condition number, but not
always reducing large joint variations. Some attempts also
use second-order derivatives of motion, i.e., calculating the
Hessian matrix of the forward kinematics [27], although this
requires much more computation time.

In a continuous time assumption, the convergence of closed-
loop methods can be demonstrated in terms of Lyapunov
theory [28] [29]. Nevertheless, real-time computations have
a fixed step, lower bounded by the computation capability of
a processor, thus convergence cannot always be ensured by
means of Lyapunov theory. Although there exist discrete-time
versions of it [30], their application is not immediate, and
some additional assumptions must be made.

There is also some literature about the convergence of these
methods which takes the discrete-time system as a sequence
and proves its convergence. In [31], an upper bound on the
gain α that guarantees convergence is found, but restricting
the operational space to a subset where the Jacobian is full-
rank with bounded singular values, so its application is not



general. Nevertheless, this work points out the relevance of
the initial error dependency for these methods to converge, so
the closer to the goal, the better these methods perform in the
initial steps. In general, a smaller step improves convergence
rate on the one hand, but slows the algorithm on the other.

To avoid large gains near a singularity, reducing the global
gain is not a truly effective strategy, as we will be also damping
the gain in the directions we would like the robot to move.
For this reason, and without loss of generality, we will omit
the step α from now on. In [32] a Selective Damping (SD)
of the gain on the joint variations derived from each task-
space error component is proposed, that modifies each gain
depending on the corresponding column of the Jacobian and
a predefined maximum joint variation γmax. This effectively
solves the gain issue, but does not solve singularity issues,
such as the loss of rank and algorithmic singularities.

Using first-order derivative algorithms of robot motion has
also the drawback that, depending on the goal position, the
robot can get stuck at an algorithmic singularity, a pose where
the error e belongs to the kernel of the inverted Jacobian, or
in a multiple-task algorithm, as we will see later, the joint
variation derived from a secondary task takes the opposite
value of that for the primary task, thus the total computed
joint variation becomes ∆θ ' 0.

The main advantadge of redundancy is to be able to perform
secondary tasks and/or to choose which solution suits some
criterion best. To this purpose, an optimization function can
be set to find, within the set of IK solutions, the one that
performs best according to the criterion. The most common
procedure is to project a gradient of a secondary task into
the kernel of the Jacobian matrix, in order not to affect
much the position error. Other algorithms like the Augmented
Jacobian or the Extended Jacobian [33], in which rows are
added to the Jacobian, have been used. Among the existing
criteria for optimization, the manipulability measure [34] [35]
is often used. Other criteria such as collision avoidance [36]
(by setting a minimum distance to a certain object), minimum
effort kinematics [37] or structural stiffness are also used [38].
But respecting joint limits is often the main priority when
exploiting the redundancies of a robot.

This paper provides an overview of the different CLIK
algorithms found in literature, also regarding numerical error
propagation, which is sometimes forgotten when analysing
these algorithms. Focusing on solving the IK with feasible
joint values, two enhancements upon the state-of-the-art are
proposed. The first one is a way of filtering the Jacobian
matrix that ensures a given numerical conditioning, while the
second uses the advantages of the latest works on continuity
of inverse operators applied to robotics [39] with a controlled
step size [32] to smoothen the motion of the robot. All the
analysed algorithms, as well as the proposed enhancements,
have been implemented on a Barrett WAM and tested both in
simulation and in real experimentation.

II. PRELIMINARIES

A. Notation
Along this work, the notation in Table I will be used and,

for the methods presented, we will be using the abbreviations

in Table II.

TABLE I
NOTATION

J Geometric Jacobian
J† Jacobian pseudoinverse
θ = [θ1, ..., θm], ∆θ Joint state, and joint state variation
e Positioning error of the robot
κ(·) Condition number of a matrix
f(·) Forward kinematics function
α Gain in a CLIK algorithm
σ1, ..., σn Jacobian singular values
m Number of joints
n Task space dimension

TABLE II
METHODS ABBREVIATIONS

Name Abbreviation Equation/Section
Jacobian Pseudoinverse JP (4)
Jacobian Transpose JT (7)
Selective Damping SD Section III-A
Jacobian Damping JD (9)
Jacobian Filtering JF (12)
Error Damping ED (13)
Improved Error Damping IED (14)
Singular Value Filtering SVF Section VII
Jacobian Weighting JW (22)
Gradient Projection GP (23)
Joint Clamping JC (26)
Task Augmentation TA Section V-D
Task Priority TP (31)
Continuous Task Priority CTP (32)

For the position and orientation error representation as an
n-dimensional vector, the incommensurability of position and
orientation units is a limiting situation, as the Jacobian inverse
is not invariant to rescalation and translation. This was a major
problem at earlier stages of hybrid control theory [40], which
relied on an orthogonal complements structure that was not
invariant wrt rescaling of the units taken. One solution to
this problem was to use metrics that converted all Jacobian
components to energy units [41] [42]. However, when using
a Jacobian matrix with disparate units for IK, despite it being
dependent on the units taken and the relation between them,
the convergence of CLIK algorithms is not affected. Using
the orientation error in [36], the equivalence of 2rad = 1m
is often taken and provides a reasonable error ratio between
position and orientation.

B. Condition Number (CN)

Given a system of the type ∆θ = J?e, where ? denotes
an inverse operator, it is very common to have numerical or
measurement errors on the robot’s task position, or uncertainty
on the kinematic parameters of the robot [43] [44]. Therefore,
we need to take into account some uncertainty δe on the posi-
tion error e (difference between target and current positions).
It is fundamental to avoid amplifying this uncertainty when
computing ∆θ. To this purpose, the relative error δθ on ∆θ
coming from the uncertainty δe on e can be estimated using
the condition number of J? [45] [46]:

‖δθ‖
‖∆θ‖

≤ κ(J)
‖δe‖
‖e‖

, (2)



where κ(J?) is the condition number of J?, computed as the
ratio of its maximum and minimum singular values:

κ(J?) =
σmax(J

?)

σmin(J?)
(3)

Note that the dependency of the Jacobian on the units taken
and the orientation-translational equivalence chosen may affect
the CN of the linear system solved to obtain ∆θ. Nevertheless,
the CN will only grow to infinity when the Jacobian is not
full-rank, which happens when approaching a singularity. As
singularities are invariant to rescalation, we can conclude that
the error propagation when solving the linear system for joint
increments will have the same behaviour for any scale chosen
for angles and distances.

III. CONVERGENCE AND SINGULARITIES

Regarding Equation (1), to make the algorithm converge
to zero error, an appropiate inverse of the Jacobian matrix
must be applied. The Jacobian Pseudoinverse (JP) algorithm
is widely used, inverting the Jacobian with the Moore-Penrose
pseudoinverse matrix [20], a generalized inverse for non-
square matrices, that can be defined as J† = JT (JJT )−1

when J is full-rank. With this inverse, the JP update rule is:

∆θ = J†e, (4)

e being the task error.
When a robot reaches a singularity, the algorithm might

get stuck in a point or the pseudoinverse matrix may have too
large values. By computing the Singular Value Decomposition
(SVD) of J:

J = UΣV T , (5)

and taking the singular values of J , σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0:

J =
n∑

i=1

σiuivTi =
r∑

i=1

σiuivTi , with ui and vi being the ith

columns of U and V, respectively, and r = maxi{i | σi > 0}.
As U and V are orthonormal matrices, the pseudoinverse

of J is:

J† = V Σ†UT =
r∑

i=1

1

σi
viuT

i . (6)

This expression shows that when the robot gets close to
a singularity (one σi becomes very small), very large gains
occur when computing ∆θ = J†e. In addition, the CN of
the pseudoinverse is κ(J†) = σ1

σn
, which tends to infinity at a

singularity, thus losing numerical precision.
To gain computation speed, the Jacobian Transpose (JT)

method uses, instead of an inverse of the matrix J , its
transpose with the following control rule [47]:

∆θ = JT e, (7)

where JT is now the transpose of the geometric Jacobian of
the manipulator. This method has a computationally very fast
step, although it may require more steps than other methods,
and not being a least-squares solution can derive in chattering.

In the following subsections other alternatives to Eq.(1)
are described, both to reduce the gain magnitude or large
conditioning on the matrix inversion.

A. Selectively Damped Pseudoinverse (SD)

As seen in the previous section, a small singular value in
the Jacobian yields large gains in all directions. In [32], a
new way of controlling the step magnitude is defined, which
consists in damping differently the effect of each one of the
components of the position error, expressed in the basis of
the singular value decomposition of J . Hence small singular
values of the Jacobian, which would turn into large gains, are
damped more severely.

In [32], a unitary error in the direction of one of the
eigenvectors in the task space (columns of U ) is taken, e = ui,
and a bound on the joint variation associated to this error
component is obtained, which is then used to damp the gain
of the corresponding error component and, finally, the gains
over all the error components are added up. This results in a
∆θ with limited gains at each component of the task space.

B. Jacobian Damping (JD)

To avoid the discontinuity of the JP operator which results in
a large conditioning of the Jacobian, meaning numerical error,
the Jacobian Damping or singularity robust pseudoinverse was
proposed [23] [24] [25] [26] [38]. If we redefine the Jacobian
matrix as:

JD =
r∑

i=1

σ2
i + λ2

σi
uivT

i , (8)

then the Jacobian Damping algorithm will use the following
pseudoinverse:

J†D = J†
D = JT (JJT + λ2I)−1 =

n∑
i=1

σi

σ2
i + λ2

viuT
i , (9)

which, for some small λ (usually around 10−3), is almost the
same matrix as the ordinary pseudoinverse when σ2

i � λ2

∀i < n, and when the smallest singular value σn is close to
zero, limσn→0

σn

σ2
n+λ2 = 0, instead of ∞.

The JD algorithm avoids discontinuities in the Jacobian’s
singular values, and it provides the solution minimizing
‖J∆θ − e‖ + λ2‖∆θ‖, which will result in a smaller norm
solution. However, a small λ value does not guarantee that
‖∆θ‖ will be small and an analysis of the CN shows it
provides no guarantee of keeping the numerical error within
an acceptable range.

Let g(σ) = σ
σ2+λ2 be the function used instead of a

trivial inversion 1/σ when computing the pseudoinverse of
the Jacobian as in Eq.(6). This function g, as we see in Fig. 1,
has a maximum at σ = λ with a value of g(λ) = 1

2λ .
Now, considering the problem of solving e = JD∆θ, we

can distinguish several cases depending on the least singular
value (σn) of the geometric Jacobian:

• σn > λ, or λ2

σi
< σn < λ, ∀i 6= n. Then g(σn) > g(σi),

∀i 6= n and the condition number is:

κ(J†D) =
σn(σ

2
1 + λ2)

σ1(σ2
n + λ2)

σn→λ−→ λ2 + σ2
1

2σ1λ
∈ O

(
1

λ

)
(10)

• ∃i, j so that λ2

σi
< σn < λ2

σj
. Then we have g(σi) <

g(σn) < g(σj) and, as the condition number bound will
not depend on σn, it will be bounded.
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Fig. 1. Inverse of a singular value for the Jacobian Damping algorithm for
λ = 10−3. Note its maximum at g(λ) = 1

2λ
.

• σn < λ2

σi
, ∀i 6= n. Then g(σn) < g(σi) and we now have

(for some k):

κ(J†D) =
σk(σ

2
n + λ2)

σn(σ2
k + λ2)

σn→0−→ ∞ (11)

This means that, on the one hand, λ should have a high
value to avoid the maximum 1/(2λ) of the condition number
at σn = λ, but on the other hand, λ must also have a very small
value to avoid entering the last case, in which the conditioning
tends to infinity as σn decreases.

As it is not always necessary to damp the Jacobian, and
in many cases the necessary damping may vary, a singular
region can be defined so that damping is applied only when
entering it. To this purpose, a variable damping factor, leading
to Jacobian Filtering (JF) can be used as in [26]:

λ2 =

{
0 if σn ≥ ε
(1− (σn

ε )2)λ2
max if σn < ε

(12)

where σn is the smallest singular value of the Jacobian matrix,
ε is the width of a singular region (in terms of singular values)
in which the damping factor takes a non-zero value, and λmax

is the maximum damping factor allowed.
When using the JF algorithm, the function g becomes

gF (σ) =
σ

ασ2+λ2 , with α = 1− (1/ε2), so the CN behaviour
does not change wrt. the JD algorithm.

C. Error Damping (ED)

Another option for damping the pseudoinverse matrix is
to use the current positioning error. In this way, Chan and
Lawrence [48] proposed an Error Damped (ED) pseudoinverse
matrix defined as:

J†ED = JT
(
JJT + EIm

)−1
=

n∑
i=1

σi

σ2
i + E

viuT
i , (13)

where E = 1/2eT e. Using this damping term strongly reduces
the gains when far from the goal, but if σn < E

σi
, ∀i,

then κ(J†ED ) ∈ O
(

1
σn

)
which can still become a large

conditioning.
Equation (13) may have small singular values when the error

is small. In such case, the condition number would rise again.

To avoid this situation, in [49], an improved version of the
error-damped pseudoinverse (IED) is proposed by adding a
term ωIm = diag(ω1, ..., ωm), being ωi ' 10−1l2 ∼ 10−3l2,
with l the characteristic length of the links [49]:

J†IED = JT
(
JJT + EIm + ωIm

)−1
=

n∑
j=1

σi

σ2
i + E + ωi

viuT
i .

(14)
This last proposal (14) is more robust than the filter-

ing/damping methods, but when the goal position is singular,
the inversion behaves in the same way and it may suffer
conditioning issues as all the other filtering algorithms.

IV. SINGULAR VALUE FILTERING (SVF)

In order to overcome the conditioning problems of the JD,
we propose to modify the Jacobian matrix’ singular values so
that it never loses rank and its condition number is bounded.
To this purpose, if we take the SVD of J :

J = UΣV T =
m∑
i=1

σiuivTi , (15)

then we define

Ĵ =
m∑
i=1

hν,σ0(σi)uivTi , (16)

where

hν,σ0(σ) =
σ3 + νσ2 + 2σ + 2σ0

σ2 + νσ + 2
(17)

is our proposed filtering rational function, where σ0 is the
minimum value we want to impose to the singular values of
J , and ν is a shape factor, that regulates the curvature (shape)
of function hν,σ0(σ).

With Eq. (17) we can compute (assuming σi > σi+1 ∀i)

Ĵ† =
n∑

i=1

1

hν,σ0(σi)
viuT

i , (18)

to use it as the pseudoinverse. In this expression, it can be
easily seen that hν,σ0(σ) verifies:

• hν,σ0(σ) is continuous and differentiable on the positive
side of R which is where the singular values are.

• limσ→0 hν,σ0(σ) = σ0, ∀ν , thus σ0 is the minimum
value we will allow for the singular values of the Jacobian
matrix.

• hν,σ0
(σ) has an asymptote of equation y = σ for σ → ∞,

as limσ→∞
hν,σ0 (σ)

σ = 1 and limσ→∞ (hν,σ0
(σ)− σ) =

0, ∀ν and ∀σ0.
• hν,σ0

(σ) is monotonic wrt σ if ν and σ0 are defined
verifying ν > σ0 and 2 > νσ0, which are not very
restrictive conditions. This monotonicity guarantees that
the condition number of the pseudoinverse (18) is always:

κ(Ĵ†) =
(σ3

1 + νσ2
1 + 2σ1 + 2σ0)(σ

2
n + νσn + 2)

(σ2
1 + νσ1 + 2)(σ3

n + νσ2
n + 2σn + 2σ0)

.

(19)



Therefore we have:

lim
σn→0

κ(Ĵ†) =
(σ3

1 + νσ2
1 + 2σ1 + 2σ0)

σ0(σ2
1 + νσ1 + 2)

=
A(σ1)

σ0
,

(20)
which is always bounded by the inverse of the minimum
value assigned to the singular values.

To sum up, Ĵ has lower-bounded singular values and tends
to J when its singular values move away from 0. Moreover,
with this filtering, the Jacobian matrix never loses rank as the
singular values are strictly positive.

Figure 2 displays the condition number of different methods
in the case of a 4R planar manipulator moving towards a
singularity, for a damping factor of λ = 10−2, and allowing a
maximum damping factor on the filtering algorithm (variable
damping factor) of λmax = 5λ. The results, plotted in
logarithmic scale, show that all previous filtering methods fail,
at some point, at keeping the CN stable, while our proposal,
with σ0 = 0.005, ν = 10, presents a bounded conditioning.
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Fig. 2. Condition Number, in logarithmic scale, for different methods on a
4R planar robot approaching a target singular position.

As a first test, these filtering algorithms have been applied
to an example trajectory with a 4R manipulator, as recorded
in Fig. 3, where it is clear that, while the JP and the JF have
very large gains, and the JT and the IED are easily stuck and
still unable to solve the gain issue, the SD performs smoothly,
and our proposal, combining a method to avoid large condition
number (SVF) with a bound on the gains (SD) makes the robot
move smoother than with the other methods presented up to
this point.

In addition, Table III shows the reprojection error on the task
space for each algorithm, i.e., the computed difference on each
eigenvector component between JP and the other alternatives.
We can see that, the larger the parameter ν is, the smaller the
reprojection error, thus a reasonably large number verifying
σ0 < ν < 2/σ0 is recommended (a value of 10 has been used
throughout this paper).

TABLE III
REPROJECTION ERROR.

Method J? J(J†e− J?e)

JP 1
σ

0
JT σ σ − 1

JD σ
σ2+λ2

λ2

σ2+λ2

JF σ
σ2+λ2

max(1−(σ/ε)2)
λ2
max(1−(1/ε)2)

σ2(1−(σ/ε)2)+λ2
max

ED σ
σ2+0.5·eT e

0.5·eT e
σ2+0.5·eT e

IED σ
σ2+0.5eT e+ω

0.5·eT e+ω
σ2+0.5eT e+ω

SVF σ2+νσ+2
σ3+νσ2+2σ+2σ0

σ0
σ3+νσ2+2σ+2σ0

V. MULTIPLE TASKS

Usually, when computing the IK of a robot, it is a good idea
to compute not just a solution of the inverse kinematics, but the
solution that behaves best according to a certain criterion. Even
more with redundant robots, where the number of solutions
may be infinite.

A. Jacobian Weighting (JW)

Apart from considering metrics on the task space, metrics
on the joints space can also be used. This metric (which can
be variable) can be used to achieve secondary goals, prioritize
the motion of certain joints, or even block a joint. In [53],
Chan and Dubey defined the ∆θ that minimizes

‖∆θ‖W =
√
∆θTW∆θ, (21)

where W is an m×m diagonal matrix applying a weight to
each joint depending on its relevance (according to a specified
criterion), instead of the common Euclidean norm. Taking
∆θW = J†

W∆x, then

∆θ = W−1JT (JW−1JT )−1e, (22)

where the influence of wi = Wi,i is that, the greater the wi,
the less θi will vary in the given step.

B. Gradient Projection (GP)

Another optimization option is to create a secondary task
as a gradient of a function, and project it to the kernel of the
primary task.

Given a cost function H , one can calculate its gradient ∇H ,
and project it onto the kernel of the matrix J . Knowing that
for any position of the manipulator, δx = Jδθ. This means
that if δθ ∈ ker(J), then δe = 0, so the added term would
not affect the error. In practice, as the step is not infinitely
small, the linearization done by projecting the vector to the
nullspace would indeed generate some additional error.

This projection onto the kernel is accomplished by multi-
plying any vector v by the matrix P = I − J†J .

Hence the GP is expressed as:

∆θ = J†e + µP∇H, (23)

with µ a scalar indicating the magnitude of the projection, and
∇H the vector to project.
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C. Task Priority (TP)

The GP idea can be generalised to Task Priority (TP)
algorithms [50], where an ordered set of tasks t1, ..., tk is
specified, their errors e1, ...ek and Jacobians J1, ...Jk are
computed, and next each task error is projected onto the kernel
of the Jacobian of the previous tasks. Then ∆θ1 = J?

1 e1,
where ? is an inverse operator (commonly, the pseudoinverse).
For each i from 2 to the number of tasks k, one can compute

∆θi = ∆θi−1 + (Ji · PA
i−1)

?(ei − Ji∆θi−1), (24)

where PA
i−1 = I − JA

i
?
JA
i is the kernel projection operator

and JA
i is an augmented Jacobian of the first i tasks

JA
i =

[
J1; . . . ; Ji

]
.

For online position-tracking problems, a variant of this
method can be implemented as explained in [51] to avoid
singularity issues.

D. Task Augmentation (TA)

Instead of projecting a secondary task onto the kernel of the
robot position tracking task, in the case of a redundant robot
a secondary task can be added as a new row of the Jacobian
matrix to complete it and obtain a square matrix [52].

Completing the Jacobian matrix to a square matrix has the
advantadge of allowing to use its inverse directly when it
is full rank. Nevertheless, it is possible that the added rows
are linearly dependent on the geometric Jacobian rows. To
overcome this problem, a general weighted Jacobian can be
used [55] in which a Gramm-Schmidt orthonormalisation is
performed to ensure that the added task does not originate
rank problems.

Moreover, an activation threshold may be used for the added
task (e.g., when it entails avoiding joint limits).

VI. JOINT LIMIT AVOIDANCE

Joints usually have limits on their prismatic/rotational
ranges, and a solution to the IK with a joint value outside



its limits is not a feasible solution. Hence one of the most
important properties of a good IK solution is that it lies inside
these limits. The redundant degrees of freedom of a robot are
often used to achieve such a goal.

A. Joint Limits as a Secondary Task

A first approach to avoid joint limits may be to use gradient
projection. One can use a joint-centering function and project
it to the kernel of the main task. For example, taking [56]

H = − 1

2m

m∑
i=1

(θmax
i − θmin

i )2

(θmax
i − θi)(θi − θmin

i )
, (25)

which tends to infinity when approaching a joint limit, and
has a minimum value at the joint range’s center.

Using the GP equation (23) with the gradient of the H
function defined, joints are pushed to their range center values,
but joint limits are not always avoided. This is due to the fact
that the push-to-center function H is only activated on the
kernel of the position reaching task. In [57], the obtained joint
variations are rescaled at each iteration to keep joints within
the valid range.

B. Avoiding Joint Limits with Activation Matrices

To avoid joint limits, one can also use a weighting matrix
that penalizes the motion of the joints approaching a limit [53],
or even block them. This is called Joint Clamping (JC).

In [54], a factor is added when updating the joint state at
step k: θk+1 = θk +H∆θk is used instead of θk+1 = θk +
∆θk, where H is a diagonal activation matrix, with:

hi =

{
0 if qi > qmax

i or qi < qmin
i

1 otherwise
This control law clamps any motion that violates joints’

limits, but does not push the joints away from them. In this
way, when the robot reaches a joint limit, it may loose this
degree of freedom, and go on with the others to reach the
target. The algorithm follows the expression:

∆θ = H(JH)†e. (26)

A problem that may arise when using this algorithm is that,
even with an activation matrix continuous wrt. joint activation
as in [54], the pseudoinverse operator is not continuous with
respect to this activation matrix. Theorem 4.2 in [58] states
that the effect of any nonzero hi in (26) is the same (in the
sense that there is no dependency on the value hi as long as
it is not zero). In fact, it can also be seen that damping the
pseudoinverse does not solve the problem, outside of a very
small interval [59]. To resolve these issues, this previous work
proposes a continuous (wrt. activation matrix) pseudoinverse
operator, defined as follows.

For task-activation matrices G = diag(g1, .., gn):

J⊕G =
∑

P∈℘(N)

(∏
i∈P

gi

)(∏
i/∈P

(1− gi)

)
J†
P , (27)

℘(N) being the power set of N = {1, .., n}, and JP = G0J ,
where G0 is a square diagonal matrix with G0i = 1 if i ∈ P
and 0 otherwise.

And for joint-activation matrices H = diag(h1, .., hm):

JH⊕ =
∑

Q∈℘(M)

∏
i∈Q

hi

∏
i/∈Q

(1− hi)

 J†
Q, (28)

℘(M) being now the power set of M = {1, ..,m}, JQ = JH0,
where H0i = 1 if i ∈ P , and 0 otherwise. The idea behind
these pseudoinverse expressions is that the transition between
activated and deactivated tasks is smooth wrt. the activation
parameters hi, gi. For further development of these inverses,
see [59].

Therefore, by using:

∆θ = JH⊕e, (29)

the continuity problem is solved. However, when blocking a
joint, the robot would still lose one degree of freedom and
eventually may not reach the goal.

C. Joint Limits as the Primary Task
Although one can add secondary tasks to avoid joint limits,

the only way to guarantee such avoidance is to set it as the
primary task and include the positioning goal as a secondary
task. To this purpose, it is defined J1 = Hm, m being the
number of joints of the manipulator, and matrix Hm as

Hm = diag(hβ(θi)), (30)

where hβ is a continuous function (usually a piecewise func-
tion, as in [39]) that progressively deactivates the joint when
it reaches a specified distance β from its limits.

Then the main task error in (24) is defined as e1 = −λJLθ,
λJL being a scalar to weigh the importance of joint limits.
Typically, λJL ∈ [0.1, 0.5].

With these definitions of e1 and J1, ∆θ1 is zero when the
joints’ positions are far from their limits (at a distance greater
than β for each joint), and has a push-to-center value when in
the limits neighbourhood. On its kernel (i.e., the joints which
are not forced to move to the center due to their proximity to
the limit), a secondary task is applied to reach the goal with
J2 = J , the Jacobian matrix of the robot, and e2 = xd − x,
the positioning error.

Then the algorithm following this task-priority hierarchy is:

∆θ = J1e1 + J2(Im − J†
1J1)

†(e2 − J2J1e1). (31)

Moreover, this task-priority scheme can be performed with
the continuous pseudoinverse operator [39], to get: ∆θ1 =
J⊕H
1 e1, H being the same matrix defined in (30). And the

following tasks would be defined as:

∆θi = ∆θi−1 + J
P i−1

⊕ ⊕
i (ei − Ji∆θi−1), (32)

where P 0
⊕ = I , and P i

⊕ = P i−1
⊕ − JP i−1

⊕ ⊕Ji is the kernel
projection operator. For the case considered, (31) is equivalent
to:

∆θ = ∆θ1 + J
P 1

⊕⊕
2 (e2 − J2∆θ1), (33)

with ∆θ1 = JH⊕
1 e1 = H(−λjlθ), as J1 = Im and e1 =

−λjlθ. Therefore:

∆θ = H(−λjlθ) + J
(Im−H)⊕
2 (e2 + λjlJ2Hθ). (34)



VII. SMOOTHING ENHANCEMENT

The TP scheme may present large steps and gains, resulting
in an almost-chaotic behaviour. To solve these uncontrolled
gains, it would be necessary to avoid large steps and condition
numbers. Paying attention to (31), we can reorder the terms
and separate the position error-dependent terms (e) from those
that don’t depend on it:

∆θ =
(
I − J (Im−H)⊕J

)
H(−λjlθ) + J (Im−H)⊕e. (35)

We intend to apply the ideas underlying SD [32], so as to
damp selectively each one of the task space eigenvectors of
the Jacobian matrix J , or its filtered version with SVF, taking
care of the dependency of the position variation J∆θ with
respect to the position error e.

To do so, we have to find a bound for J∆θ, i.e., the position
variation after each step, which can be written using (35) and
separating the position error-depending part (e) from the rest
as follows:

J∆θ = J
(
I − J (I−H)⊕J

)
H(−λθ) + JJ (I−H)⊕e. (36)

Now, after calculating J (I−H)⊕, we can use its SVD,
keeping in mind that the result of this decomposition has to
be expressed knowing J (I−H)⊕ is an inverse of J , thus

J (I−H)⊕ = V̂ Σ̂−1ÛT =

n∑
i=1

σ̂−1viuT
i . (37)

And knowing that (uT
k ·e) = (uT

k ·
n∑

s=1
(uT

s ·e)us) =
n∑

s=1
(uT

s ·

uk)(uT
s · e) in the expression

J (I−H)⊕e =

r∑
i=1

σ̂−1
i viuT

i e, (38)

we can take, by analogy to the SD algorithm, for e = us, the
joints variation ∆θs used by SD as:

J (I−H)⊕us = σ̂−1
s vs ⇒ ∆θs = σ̂−1

s Jvs (39)

which has an effect on the jth joint of:

∆θsj = σ̂−1
s Jjvj,s, (40)

where vj,s is the jth position on the sth column of matrix V ,
and Jj is the jth column of matrix J .

Therefore, adding the norms for all joints we get the bound
Ms as defined in [32]:

m∑
j=1

|∆θsj | ≤ σ̂−1
s

m∑
j=1

|vj,s|‖Jj‖ = Ms. (41)

This Ms is a bound on the position change gain in the task
space generated by the error-dependent part of the algorithm,
for each component of the error, and thus with it we can set,
for each s = 1..n, the maximum joints change γmax:

γs = min(1, 1/Ms)γmax (42)

To then proceed exactly as in SD:

We will first compute the joints change for each error
component (m-dimensional vector):

ws = σ̂−1
s vs

(
uT
s · e

)
, (43)

and we will bound this variation with the γs obtained in (42):

∆qs =

{
1 if ‖ws‖ < γs
ws

‖ws‖γs if ‖ws‖ ≥ γs
(44)

Now, differing from SD algorithm, we have to add the
non error-dependent part of the algorithm to the sum of each
component :

∆θ̂ = (I − J (I−H)⊕J)H(−λθ) +
∑
s

∆qs, (45)

to finally bound the total joint variation by γmax:

∆θ =

{
1 if ‖∆θ̂‖ < γmax

∆θ̂
‖∆θ̂‖

γmax if ‖∆θ̂‖ ≥ γmax
(46)

In this way, we ensure that ∆θ is bounded, respects joint
limits, and it is sufficiently well-conditioned.

The described joint limit-concerned methods have also been
compared on an example trajectory in the 4R manipulator
in order to check which ones respect joint limits and which
do not, as displayed in Fig. 4. In all cases the joint limits
are sometimes surpassed, as the push-to-center value action is
done a posteriori, but the following iteration pushes this joint
value back to its feasible interval. As expected, neither JW,
nor GP or TA are capable of succesfully avoiding joint limits.
On the other hand, JC is uneffective because it tends to block
joints, losing degrees of freedom.

Furthermore, CTP, which continuously activates/deactivates
joints, is not capable of converging nor of mantaining a
smooth trajectory. Our proposal solves these problems and
significantly improves performance.

VIII. EXPERIMENTATION

As a benchmark to test both the reviewed and proposed
algorithms, all of them have been implemented in Matlab
and C++ (using a ROS library) in a 7-dof redundant WAM
robot arm (with Denavit-Hartenberg parameters as shown in
Table IV) and their performance has been tested as global
IK solvers. To do so, 1000 random feasible initial and target
positions have been generated, using a uniform probability
distribution for all joints within their limits, and mapped into
a cartesian position with the forward kinematics function.

TABLE IV
DENAVITT-HARTENBERG STANDARD PARAMETERS FOR THE WAM

ROBOT ARM, WHERE d3 = 0.55, d5 = 0.3 AND d7 = 0.06.

link ai αi di θi θmin
i θmax

i
1 0 −π/2 0 θ1 -2.6 2.6
2 0 π/2 0 θ2 -2.0 2.0
3 a −π/2 d3 θ3 -2.8 2.8
4 -a π/2 0 θ4 -0.9 3.1
5 0 −π/2 d5 θ5 -4.8 1.3
6 0 π/2 0 θ6 -1.6 1.6
7 0 0 d7 θ7 -2.2 2.2
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Fig. 4. Behaviour of some CLIK algorithms (see Table II for notation) applied to a 4R planar manipulator. The robot frame evolves from a dashed light
color start position (horizontal) to a darker ending one, with its end-effector’s trajectory plotted in black (thin line). Note the different scales for the x-axis.
In the CTP algorithms, the joints have been allowed to cross joint limits to show how they are capable of moving back to a centered joint value.

Note that, for the algorithms taking into account joint
limits, this sampling as such was not adequate to assess their
performance, as the arm has several assembly modes (different
arm configurations for the same end-effector position), which
added to the joint limits restriction, could make the desired
configuration sometimes impossible to reach with the same
assembly mode as the initial configuration. This fact has an
impact on CLIK algorithms by sometimes requiring very dif-
ferent initial and final joint configurations, leading to moving
the arm in unintiutive ways so as to have feasible solutions.
In these cases, a path planner is needed, which is out of the
scope of this study.

To avoid the mentioned situations, in the experiments in-
volving algorithms taking into account joint limits (those in
Table VI), we generated the samples by obtaining an initial
joint position θ0 and a final one θF . If |θi0−θiF | < A, ∀i = 1..7,
for a given constant value A, the sample was accepted. This
ensures that there exists a solution of the desired position in
the same assembly mode or another assembly mode close to it.
This A parameter will be used later to check the sensitivity of

the different algorithms to the initial/ending position distance,
as shown in Fig. 5.

TABLE V
BEHAVIOUR OF THE STUDIED METHODS NOT CONCERNED WITH JOINT
LIMITS FOR A SAMPLE OF 1000 RANDOM INITIAL AND END POSITIONS

FOR THE WAM ROBOT ARM. NOTATION AS IN TABLE II.

Method % sol. tsol
(ms) enosol

itsol

JP 100.0 42.6 - 12.2
JT 40.70 504.8 0.302 148.7
SD - γmax = 0.5 98.4 154.3 0.042 43.5
JD - λ = 0.005 100.0 39.4 - 11.6
JF - λmax = 4λ 100.0 38.6 - 11.2
ED 100.0 36.9 - 10.6
IED - Ω = 0.01Im 100.0 38.7 - 11.1
SVF - nu = 10, σ0 = 0.01 100.0 37.1 - 10.7
SVF+ED 100.0 35.8 - 10.3
SVF+SD 99.7 145.2 0.041 41.1

The results of a Matlab simulation can be seen in Tables V
and VI, where the columns in Table V show the percentage
of solutions found, the average computation time (tsol), the



TABLE VI
BEHAVIOUR OF THE STUDIED METHODS TAKING INTO ACCOUNT JOINT
LIMITS FOR A SAMPLE OF 1000 RANDOM INITIAL AND END POSITIONS

FOR THE WAM ROBOT ARM. NOTATION AS IN TABLE II AND PARAMETER
A=1.0 RAD.

Method % sol. %
sol(JL)

tsol
(ms) enosol

itsol

JW - as in [53] 100.0 45.3 37.5 - 9.6
GP - µ = 0.2 100.0 34.7 43.0 - 11.0
TA - as in [55] 100.0 84.6 147.3 - 28.3
JC - H as in [39] 73.6 53.5 73.1 0.826 18.9
TP - H as in [39] 33.6 33.6 48.9 1.005 12.0
CTP - H as in [39] 83.7 83.7 366.8 0.381 21.8
CTP+SVF 86.6 86.6 300.4 0.401 48.2
CTP+SD 97.1 97.1 660.0 0.867 26.2
CTP+SD+SVF 98.3 98.3 568.7 0.719 22.6

remaining error when convergence was not achieved (enosol)
with the position-orientation metric in Section II-A), and
the average number of iterations needed to find a solution
(itsol). In Table VI an additional column (second) shows the
percentages of solutions where joint limits were respected. As
the algorithms in Table V do not consider joint limits, we only
show this information in the second Table. The performance
of the reviewed state-of-the-art methods is compared with our
proposals, which are highlighted in bold face in the Tables. Be-
sides the filtering enhancement SVF in different combinations,
we have used the CTP algorithm in (34) together with the SD,
as proposed in Section VII, and we have also combined them
with SVF to compare results. With these data, we can draw
the following conclusions:

• Low convergence ratio of JT. This is due to chattering
when activating/deactivating joints, as commented before.
The remaining algorithms not considering joint limits
always converge, except for SD, due to the limited
number of iterations.

• Using SVF improves the speed of JP, requiring less
iterations on average and, combined with ED, performs
much faster than the rest of methods. Nevertheless, we
also recommend using SD+SVF, because this guarantees
the steps will always be smooth, even in the case of a
singular goal position.

• JW, TA and GP do not respect joint limits. This is due
to the fact that avoiding limits is not treated as a priority,
thus zero-error positioning prevails.

• All the algorithms not fully respecting joint limits have
higher convergence ratios, since they can cross regions
with unfeasible joint values to reach the goal.

• The TP algorithm does not converge most of the times.
This is due to the discontinuity commented before, caus-
ing large gains which then block the joints.

• CTP algorithms do not always converge, but when they
do, the solution respects joint limits. This shows that us-
ing these limits as a primary task is a successful strategy.
Adding SD improves the convergence ratio, and it also re-
duces computation time. Overall, CTP computation times
are large, due in part to the non optimality of Matlab
for its calculation. This could be reduced by finding an
approximate value of the continuous pseudoinverse.
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Fig. 5. Percentage of solutions found within joint limits for different sampling
thresholds A, an indicator of the distance between initial joint position and
goal joint positions.

The non-convergence cases of our CTP proposed algorithms
are due to algorithmic singularities. These happen when, close
to a joint limit, the push-to-center value of the joint limit
avoidance task compensates the position tracking error. This
is like saying that the algorithm walks into a dead end in
joint space. To avoid this convergence problem, some works
in literature try to find a better initial point through a biased
random sampling over other possible starting configurations,
or it is also possible to use a path planning algorithm in order
not to get stuck.

To further test our proposals, we repeated the experiment
in Table VI with different values of the parameter A defined
before. Figure 5 shows the percentage of solutions found
within joint limits for each algorithm and each value of A.
There we can see that SVF improves the performance of the
CTP algorithms, and that the combination of CTP, SD and
SVF outperforms the other algorithms in literature. In addition,
we see that some algorithms without the selective damping
have worse results for very small values of A; this is because
they have large gains, as explained along this work, and they
sometimes surpass the goal.

IX. CONCLUSIONS

In this work, the most relevant CLIK algorithms for redun-
dant robots have been compared. Special attention has been
paid to three issues: The JP algorithm may have very large
gains along certain directions, and reducing the global gain
is not the best solution. In fact, having such large gains is
similar to a random positioning in joint space, whose topology
is equivalent to an m-torus mapped into the workspace, and the
high convergence rate of JP in Table V is due to the fact that
large steps are taken until the end-effector reaches a position
from which the goal is achievable. The JT algorithm does
not have such problem, but in some cases presents so much



chattering that makes its computational cost grow. Since SD
efficiently solves this problem, it is recommended to use such
damping in most algorithms.

Looking for good matrix conditioning, we have compared
the capability of the different algorithms to avoid amplifying
the numerical error in robot positioning. The outcome has been
that most of the existing methods do not perform well near a
singularity. Filtering or damping the Jacobian matrix improves
this conditioning, but with no numerical guarantees. On the
other hand, using the current error as a damping factor reduces
the condition number, but when close to the goal, the ED
algorithm (or its improved version, IED) behaves similarly to
filtering or damping.

Therefore, we proposed a new filtering method based on
a continuous modification of the singular values of the Jaco-
bian, which we named SVF. We proved theoretically and in
practice that our proposal improves the existing methods for
numerically filtering or damping the Jacobian pseudoinverse
of a matrix. We have also shown that this does not entail
a significant growth in the computational cost. With this
filtering, the Jacobian matrix can be assumed to be always
full rank, without generating much additional error on the
algorithms, thus the pseudoinverse operator would not have
discontinuities due to a rank change in the Jacobian matrix.
This can be used in all control-based methods to improve their
performance.

We have also presented a review of first-order approaches
to achieve secondary tasks. In particular, we have tried to
devise an algorithm that efficiently avoids joint limits. Through
experimentation, we have seen that the only way to ensure
avoiding such limits is to treat them as the main priority task
by adding an activation matrix on this main task. This then
results in discontinuities of the pseudoinverse operator when
activating or deactivating a joint push-to-center value to avoid
a joint limit. However, this shortcoming is solved with the
continuous pseudoinverse (CTP) which, when combined with
SD and our proposed filtering (SVF), ensures controlled steps
and a full-rank behaviour of the Jacobian.

As it is well-known, and it showed up in our testing with a
redundant robot such as the Barrett WAM arm, CLIK methods
used as global IK solvers do not always reach the goal. This
is because of algorithmic singularities, i.e., when the main
task and the secondary task compensate one another and the
computed joint variation becomes zero. To solve this issue, it
is recommended to add a path planner to the algorithm or a
randomized initial value to iterate upon, so as to prevent the
robot getting stuck in such a situation. Despite the convenience
of a path planner to obtain smoother joint changes, our
last proposal (CTP+SD+SVF) performs well without such
a planner, keeping over a 90 percent success rate with pa-
rameter A ≤ 1.5rad in Fig. 5, it being the best among all
the tested algorithms. Additional experimentation using such
algorithms in a trajectory-tracking experiment can be found in
http://www.iri.upc.edu/groups/perception/inverseKinematics/ .

As future work we will try to speed up the algorithms,
specially the CTP cases where several sparse matrix pseu-
doinverses must be computed, in order to improve the results
as regards to computational time.

REFERENCES

[1] S. Sasaki, ”Feasibility Studies of Kinematic Problems in the Case of a
Class of Redundant Manipulators.” Robotica, vol 13, pp 233-241, 1995.

[2] G. K. Singh, J. Claassens, ”An analytical Solution for the Inverse
Kinematics of a Redundant 7-dof Manipulator with Link Offsets”.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp 2976-
2982, 2010.

[3] X. Ding and C. Fang, ”A Novel Method of Motion Planning for an
Anthropomorphic Arm Based on Movement Primitives”.IEEE/ASME
Transactions on Mechatronics, vol 18, no 2, pp 624-636, 2013.

[4] V. Ruiz de Angulo and C. Torras. ”Learning inverse kinematics: Reduced
sampling through decomposition into virtual robots”. IEEE Transactions
on Systems, Man and Cybernetics, part B, vol 38 no 6, pp 1571-1577,
2008.

[5] S. Ulbrich, V. Ruiz de Angulo, T. Asfour, C. Torras and R. Dillman.
”General robot kinematics decomposition without intermediate mark-
ers”. IEEE Transactions on Neural Networks and Learning Systems, vol
23 no 4, pp 620-630, 2012.

[6] S. Chiaverini, G. Oriolo, I.D. Walker, ”Kinematically Redundant Ma-
nipulators.” Springer Handbook of Robotics part B, chapter 11, 2008.

[7] K. Ki-Young, ”A Novel Surgical Manipulator with Workspace-
Conversion Ability for Telesurgery.” IEEE/ASME Trans. on Mechatron-
ics vol 18, no 1, pp 200-211, 2013.

[8] J. Funda, R.H. Taylor, B. Eldridge, S. Gomory, K.G. Gruben, ”Con-
strained Cartesian Motion Control for Teleoperated Surgical Robots”
IEEE Trans. on Robotics and Automation, vol 12, no 3, pp. 453-465,
1996.

[9] Inverse Kinematics with KDL. url:
http://www.orocos.org/forum/orocos/orocos-users/inverse-kinematics-
kdl.

[10] ROS package repository with Barrett WAM/Hand interface.
url:http://code.google.com/p/lis-ros-pkg/wiki/README

[11] R. S. Rao, A. Asaithambi, and S. K. Agrawal. ”Inverse kinematic
solution of robot manipulators using interval analysis.” J. of Mechanical
Design, 120(1): pp 147-150, 1998.

[12] J. M. Porta, Ll. Ros, and F. Thomas. ”Inverse kinematic by distance
matrix completion.” 12th Int. Workshop on Computational Kinematics,
2005.

[13] V. Ruiz de Angulo and C. Torras. ”Self-calibration of a space robot”.
IEEE Transactions on Neural Networks, vol 8, no 4, pp 951-963, 1997.

[14] V. Ruiz de Angulo and C. Torras. ”Speeding up the learning of robot
kinematics through function decomposition”. IEEE Transactions on
Neural Networks, vol 16, no 4, pp 1504-1512, 2005.

[15] S.F.M. Assal, K. Watanabe, K. Izumi. ”Neural Network-Based Kine-
matic Inversion of Industrial Redundant Robots Using Cooperative
Fuzzy Hint for the Joint Limits Avoidance.” IEEE/ASME Trans. on
Mechatronics vol 11, no 5, pp 593-603, 2006.

[16] S. Ulbrich, V. Ruiz de Angulo, T. Asfour, C. Torras and R. Dillman.
”Rapid learning of humanoid body schemas with kinematic Bézier
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”Kinematic Bézier maps”. IEEE Transactions on Systems, Man and
Cybernetics, part B, vol 42, no 4, pp 1215-1230, 2012.

[18] O. Khatib. ”A unified approach for motion and force control of robot
manipulators.” Int. Conf. on Robotics and Automation (ICRA) vol. RA-3,
no 1, pp 43-53, 1987.

[19] D.E. Orin and W.W. Schrader. ”Efficient computation of the jacobian
for robot manipulators.” Int. J. Robot Research, vol 3, no 4, pp. 66-75,
1984.

[20] A. Ben-Israel, T. Greville. Generalized Inverses. Springer-Verlag 2003.
ISBN 0-387-00293-6.

[21] D. E. Whitney. ”Resolved motion rate control of manipulators and
human prostheses.” IEEE Trans. on Man-Machine Systems, vol 10, pp
47-53, 1969.

[22] W. A. Wolovich and H. Elliott. ”A computational technique for inverse
kinematics.” 23rd IEEE Conf. In Decision and Control, vol 23, pp 1359-
1363, 1984.

[23] Y. Nakamura and H. Hanafusa. ”Inverse Knematic Solutions with Singu-
larity Robustness for Robot Manipulator Control.” Journal of Dynamic
Systems, Measurement and Control, vol 108, pp 163-171, 1986.

[24] C. W. Wampler II, ”Manipulator Inverse Kinematic Solutions Based
on Vector Formulations and Damped Least-Squares Methods.” IEEE
Transactions on Systems, Man and Cybernetics, vol SMC-16, no 1, pp
93-101, 1986.



[25] S. Chiaverini, O. Egeland, and R.K. Kanestrom. ”Achieving user-
defined accuracy with damped least-squares inverse kinematics.” Fifth
Int. Conf. on Advanced Robotics ’Robots in Unstructured Environments’,
91 ICAR., vol 1, pp 672-677, 1991.

[26] S. Chiaverini, B. Siciliano, and O. Egeland. ”Review of the damped
least-squares inverse kinematics with experiments on an industrial robot
manipulator.” IEEE Trans. on Control Systems Technology, pp 123-134,
1994.

[27] B. Siciliano. ”A closed-loop inverse kinematic scheme for on-line joint-
based robot control.” Robotica, no 8, pp 231-243, 1990.

[28] H. Das, J.E. Slotine, T.B. Sheridan. ”Inverse kinematic algorithms
for redundant systems.” IEEE Int. Conf. on Robotics and Automation
(ICRA), vol 1, pp 43-48, 1988.

[29] G. Antonelli. ”Stability Analysis for Prioritized Closed-Loop Inverse
Kinematic Algorithms for Redundant Robotic Systems.” IEEE Trans.
on Robotics vol 25, no 5, pp 5892-5897, 2009.

[30] Z Jiang. ”A converse lyapunov theorem for discrete-time systems with
disturbances.” Systems & Control Letters, vol 45, pp 49-58, 2002.

[31] P. Falco and C. Natale. ”On the stability of closed-loop inverse kine-
matics algorithms for redundant robots.” IEEE Trans. on Robotics, vol
27, no 4, pp 780-784, 2011.

[32] S. R. Buss, J.-S. Kim. ”Selectively Damped Least-Squares for Inverse
Kinematics.” J. of Graphics Tools, vol 10, pp 37-49, 2004.

[33] J. Baillieul. ”Kinematic programming alternatives for redundant manip-
ulators.” IEEE Int. Conf. on Robotics and Automation (ICRA), vol 2, pp
722-728, 1985.

[34] T. Yoshikawa. ”Dynamic manipulability of robot manipulators.” IEEE
Int. Conf. on Robotics and Automation (ICRA), vol 2, pp 1033-1038,
1985.

[35] T. Yoshikawa. ”Analysis and Control of Robot Manipulators with
Redundancy.” First Int. Symposium Robotics Research, pp 735-748,
1984.

[36] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. ”Modelling,
Planning and Control.” Advanced Textbooks in Control and Signal
Processing. Springer. 2009.

[37] A. S. Deo and I.A. Walker. ”Minimum Effort Inverse Kinematics for
Redundant Manipulators.” IEEE Trans. on Robotics and Automation,
vol 13, no 5, pp 767-775, 1997.

[38] Y. Nakamura, ”Advanced Robotics: Redundancy and Optimization”,
Addison-Wesley Pub. Co., 1991.

[39] N. Mansard, O. Khatib, A. Kheddar, ”A unified Approach to Integrate
Unilateral Constraints in the Stack of Tasks.” IEEE Trans. on Robotics,
vol 25, no 3, pp 670-685, 2009.

[40] J. Duffy, ”The Fallacy of Modern Hybrid Control Theory that is Based
on ’Orthogonal Complements’ of twist and Wrench Spaces.” Journal of
Robotic Systems, vol 7, is 2, pp 139-144, 1999.

[41] K.L. Doty, C. Melchiorri, E. M. Schwartz and C. Bonivento, ”Robot
Manipulability”, IEEE Trans. on Robotics and Automation, vol 11, no
3, 1995.

[42] F. Ranjbaran, J. Angeles, A. Kecskemethy. ”On the Kinematic Con-
ditioning of Robotic Manipulators” IEEE Int. Conf. on Robotics and
Automation (ICRA) vol 4, pp 3167-3172, 1996.

[43] F. Aghili, ”Adaptive Control of Manipulators Forming Closed Kinematic
Chain With Inaccurate Kinematic Model” IEEE/ASME Transactions on
Mechatronics, vol 18, no 5, pp 1544-1554, 2013.

[44] P. In-Won, L. Bum-Joo, Ch. Se-Hyoung, H. Young-Dae, K. Jong-
Hwan, ”Laser-Based Kinematic Calibration of Robot Manipulator Using
Differential Kinematics” IEEE/ASME Trans. on Mechatronics vol 17, no
6, pp 1059-1067, 2012.

[45] C.A. Klein, B.E. Blaho, ”Dexterity Measures for the Design and Control
of Kinematically Redundant Manipulators.” Int. J. of Robotics Research,
vol 6, no 2, pp 72-83, 1987.

[46] A.K. Cline, C.B. Moler, G.W.Steward and J.H. Wilkinson. ”An Estimate
for the Condition Number of a Matrix.” SIAM J. on Numerical Analysis,
vol 16, no 2, pp 368-375, 1979.

[47] S. R. Buss. ”Introduction to Inverse Kinematics with Jacobian Trans-
pose, Pseudoinverse and Damped Least Squares methods.” Unpublished,
http://math.ucsd.edu/ sbuss/ResearchWeb, 2004.

[48] S. K. Chan, P. D. Lawrence, “General Inverse Kinematics with the Error
Damped Pseudoinverse.“ IEEE Int. Conf. on Robotics and Automation
(ICRA), vol.2, pp 834-839, 1988.

[49] T. Sugihara, ”Solvability-Unconcerned Inverse Kinematics by the
Levenberg-Marquardt Method.” IEEE Trans. on Robotics, vol 27, no
5, pp 984-991, oct 2011.

[50] Y. Nakamura, H. Hanafusa, T. Yoshikawa, ”Task-priority based redun-
dancy control of robot manipulators.” Int. J. of Robotics Research, vol
6, no 2, pp 3-15, 1987.

[51] S. Chiaverini. ”Singularity-Robust Task-Priority Redundancy Resolution
for Real-Time Kinematic Control of Robot Manipulators.” IEEE Trans.
on Robotics and Automation, vol 13, no 3, pp 398-410, 1997.

[52] L. Sciavicco, B. Siciliano. ”A solution to the inverse kinematic problem
for redundant manipulators.” IEEE J. of Robotics and Automation vol
4, pp 403-410, 1988.

[53] T. Fung Chan, R. V. Dubey. ”A Weighted Least-Norm Solution Based
Scheme for Avoiding Joint Limits for Redundant Joint Manipulators.”
IEEE Trans. on Robotics and Automation vol 11, no2, pp 286 - 292,
1995.

[54] D. Raunhardt, R. Boulic. ”Progressive Clamping.” IEEE Int. Conf. on
Robotics and Automation (ICRA), pp 4414-4419, 2007.

[55] J. Xiang, C. Zhong, Wei Wei. ”General Weighted Least-Norm Control
for Redundant Manipulators.” IEEE Trans. on Robotics, vol 26, no 4,
pp 660-669, 2010.

[56] H. Zghal, R.V. Dubey, J.A. Euler, ”Efficient gradient projection opti-
mization for manipulators with multiple degrees of redundancy.” Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA) vol 2, pp 1006-
1011, 1990.

[57] F. Flacco, A. De Lucca, O. Khatib, ”Prioritized multi-task motion control
of redundant robots under hard joint constraints.” IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), pp. 3970-3977, 2012.

[58] N. Mansard, A. Remazeilles, and F. Chaumette, ”Continuity of
varying-feature-set control laws.” IRISA Technical report, 2007. url:
ftp://ftp.irisa.fr/techreports/2007/PI-1864.pdf

[59] N. Mansard, A. Remazeilles, F. Chaumette, ”Continuity of Varying-
Feature-Set Control Laws.” IEEE Trans. on Automatic Control, vol 54,
no 11, pp 2493-2505, 2009.
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