Published as a conference paper at ICLR 2021

SELF-SUPERVISED POLICY ADAPTATION
DURING DEPLOYMENT

Nicklas Hansen'2, Rishabh Jangir'3, Yu Sun®, Guillem Alenya?,
Pieter Abbeel?, Alexei A Efros*, Lerrel Pinto®, Xiaolong Wang'
1UC San Diego 2Technical University of Denmark

3[RI, CSIC-UPC 4UC Berkeley *NYU

ABSTRACT

In most real world scenarios, a policy trained by reinforcement learning in one en-
vironment needs to be deployed in another, potentially quite different environment.
However, generalization across different environments is known to be hard. A
natural solution would be to keep training after deployment in the new environment,
but this cannot be done if the new environment offers no reward signal. Our work
explores the use of self-supervision to allow the policy to continue training after de-
ployment without using any rewards. While previous methods explicitly anticipate
changes in the new environment, we assume no prior knowledge of those changes
yet still obtain significant improvements. Empirical evaluations are performed on
diverse simulation environments from DeepMind Control suite and ViZDoom, as
well as real robotic manipulation tasks in continuously changing environments,
taking observations from an uncalibrated camera. Our method improves general-
ization in 31 out of 36 environments across various tasks and outperforms domain
randomization on a majority of environments. '

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved considerable success when combined with convolu-
tional neural networks for deriving actions from image pixels (Mnih et al., 2013; Levine et al., 2016;
Nair et al., 2018; Yan et al., 2020; Andrychowicz et al., 2020). However, one significant challenge
for real-world deployment of vision-based RL remains: a policy trained in one environment might
not generalize to other new environments not seen during training. Already hard for RL alone, the
challenge is exacerbated when a policy faces high-dimensional visual inputs.

A well explored class of solutions is to learn robust policies that are simply invariant to changes in
the environment (Rajeswaran et al., 2016; Tobin et al., 2017; Sadeghi & Levine, 2016; Pinto et al.,
2017b; Lee et al., 2019). For example, domain randomization (Tobin et al., 2017; Peng et al., 2018;
Pinto et al., 2017a; Yang et al., 2019) applies data augmentation in a simulated environment to train a
single robust policy, with the hope that the augmented environment covers enough factors of variation
in the test environment. However, this hope may be difficult to realize when the test environment
is truly unknown. With too much randomization, training a policy that can simultaneously fit
numerous augmented environments requires much larger model and sample complexity. With too
little randomization, the actual changes in the test environment might not be covered, and domain
randomization may do more harm than good since the randomized factors are now irrelevant. Both
phenomena have been observed in our experiments. In all cases, this class of solutions requires
human experts to anticipate the changes before the test environment is seen. This cannot scale as
more test environments are added with more diverse changes.

Instead of learning a robust policy invariant to all possible environmental changes, we argue that it is
better for a policy to keep learning during deployment and adapt to its actual new environment. A
naive way to implement this in RL is to fine-tune the policy in the new environment using rewards
as supervision (Rusu et al., 2016; Kalashnikov et al., 2018; Julian et al., 2020). However, while it
is relatively easy to craft a dense reward function during training (Gu et al., 2017; Pinto & Gupta,
2016), during deployment it is often impractical and may require substantial engineering efforts.

"Webpage and implementation: https: //nicklashansen.github.io/PAD/

https://nicklashansen.github.io/PAD/

Published as a conference paper at ICLR 2021

In this paper, we tackle an alternative problem setting in vision-based RL: adapting a pre-trained
policy to an unknown environment without any reward. We do this by introducing self-supervision
to obtain “free” training signal during deployment. Standard self-supervised learning employs
auxiliary tasks designed to automatically create training labels using only the input data (see Section
2 for details). Inspired by this, our policy is jointly trained with two objectives: a standard RL
objective andadditionally, a self-supervised objective applied on an intermediate representation of
the policy network. During training, both objectives are active, maximizing expected reward and
simultaneously constraining the intermediate representation through self-supervision. During testing /
deployment, only the self-supervised objective (on the raw observational data) remains active, forcing
the intermediate representation to adapt to the new environment.

We perform experiments both in simulation and with a real robot. In simulation, we evaluate
on two sets of environments: DeepMind Control suite (Tassa et al., 2018) and the CRLMaze
ViZDoom (Lomonaco et al., 2019; Wydmuch et al., 2018) navigation task. We evaluate generalization
by testing in new environments with visual changes unknown during training. Our method improves
generalization in 19 out of 22 test environments across various tasks in DeepMind Control suite, and
in all considered test environments on CRLMaze. Besides simulations, we also perform Sim2Real
transfer on both reaching and pushing tasks with a Kinova Gen3 robot. After training in simulation, we
successfully transfer and adapt policies to 6 different environments, including continuously changing
disco lights, on a real robot operating solely from an uncalibrated camera. In both simulation and real
experiments, our approach outperforms domain randomization in most environments.

2 RELATED WORK

Self-supervised learnings a powerful way to learn visual representations from unlabeled data (Vin-
cent et al., 2008; Doersch et al., 2015; Wang & Gupta, 2015; Zhang et al., 2016; Pathak et al., 2016;
Noroozi & Favaro, 2016; Zhang et al., 2017; Gidaris et al., 2018). Researchers have proposed to
use auxiliary data prediction tasks, such as undoing rotation (Gidaris et al., 2018), solving a jigsaw
puzzle (Noroozi & Favaro, 2016), tracking (Wang et al., 2019), etc. to provide supervision in lieu of
labels. In RL, the idea of learning visual representations and action at the same time has been investi-
gated (Lange & Riedmiller, 2010; Jaderberg et al., 2016; Pathak et al., 2017; Ha & Schmidhuber,
2018; Yarats et al., 2019; Srinivas et al., 2020; Laskin et al., 2020; Yan et al., 2020). For example,
Srinivas et al. (2020) use self-supervised contrastive learning techniques (Chen et al., @0&0; H
etal., 2019; Wu et al., 2018; He et al., 2020) to improve sample ef ciency in RL by jointly training

the self-supervised objective and RL objective. However, this has not been shown to generalize to
unseen environments. Other works have applied self-supervision for better generalization across envi-
ronments (Pathak et al., 2017; Ebert et al., 2018; Sekar et al., 2020). For example, Pathak et al. (2017)
use a self-supervised prediction task to provide dense rewards for exploration in novel environments.
While results on environment exploration from scratch are encouraging, how to transfer a trained
policy (with extrinsic reward) to a novel environment remains unclear. Hence, these methods are not
directly applicable to the proposed problem in our paper.

Generalization across different distributionsis a central challenge in machine learning. In domain
adaptation, target domain data is assumed to be accessible (Geirhos et al., 2018; Tzeng et al., 2017;
Ganin et al., 2016; Gong et al., 2012; Long et al., 2016; Sun et al., 2019; Julian et al., 2020). For
example, Tzeng et al. (2017) use adversarial learning to align the feature representations in both the
source and target domain during training. Similarly, the setting of domain generalization (Ghifary
etal., 2015; Li et al., 2018; Matsuura & Harada, 2019) assumes that all domains are sampled from
the same meta distribution, but the same challenge remains and now becomes generalization across
meta-distributions. Our work focuses instead on the setting of generalizing tatrsgerchanges in

the environment which cannot be anticipated at training time.

There have been several recent benchmarks in our setting for image recognition (Hendrycks &
Dietterich, 2018; Recht et al., 2018; 2019; Shankar et al., 2019). For example, in Hendrycks
& Dietterich (2018), a classi er trained on regular images is tested on corrupted images, with
corruption types unknown during training; the method of Hendrycks et al. (2019) is proposed to
improve robustness on this benchmark. Following similar spirit, in the context of RL, domain
randomization (Tobin et al., 2017; Pinto et al., 2017a; Peng et al., 2018; Ramos et al., 2019; Yang
etal., 2019; James et al., 2019) helps a policy trained in simulation to generalize to real robots. For
example, Tobin et al. (2017); Sadeghi & Levine (2016) propose to render the simulation environment
with random textures and train the policy on top. The learned policy is shown to generalize to real

Published as a conference paper at ICLR 2021

Figure 1. Left: Training before deployment. Observations are sampled from a replay buffer for
off-policy methods and are collected during roll-outs for on-policy methods. We optimize the RL and
self-supervised objectives jointlRright: Policy adaptation during deployment. Observations are
collected from the test environment online, and we optimize only the self-supervised objective.

robot manipulation tasks. Instead of deploying a xed policy, we train and adapt the policy to the
new environment with observational data that is naturally revealed during deployment.

Test-time adaptation for deep learningis starting to be used in computer vision (Shocher et al.,
2017; 2018; Bau et al., 2019; Mullapudi et al., 2019; Sun et al., 2020; Wortsman et al., 2018). For
example, Shocher et al. (2018) shows that image super-resolution can be learned at test time (from
scratch) simply by trying to upsample a downsampled version of the input image. Bau et al. (2019)
show that adapting the prior of a generative adversarial network to the statistics of the test image
improves photo manipulation tasks. Our work is closely related to the test-time training method of
Sun et al. (2020), which performs joint optimization of image recognition and self-supervised learning
with rotation prediction (Gidaris et al., 2018), then uses the self-supervised objective to adapt the
representation of individual images during testing. Instead of image recognition, we perform test-time
adaptation for RL with visual inputs in an online fashion. As the agent interacts with an environment,
we keep obtaining new observational data in a stream for training the visual representations.

3 METHOD

In this section, we describe our proposed Policy Adaptation during Deployment (PAD) approach.
It can be implemented on top of any policy network and standard RL algorithm (both on-policy
and off-policy) that can be described by minimizing some RL objectiyg w.r.t. the collection of
parameters using stochastic gradient descent.

3.1 NETWORKARCHITECTURE

We design the network architecture to allow the policy and the self-supervised prediction to share
features. For the collection of parametersf a given policy network , we split it sequentially into

=(¢; a), Where ¢ collects the parameters of the feature extractor, and the head that outputs
a distribution over actions. We de ne networks with parameterse and , with parameters,
suchthat (s;)= a(«(S)), wheres represents an image observation. Intuitively, one can think of

¢ as a feature extractor, ang as a controller based on these features. The goal of our method is to
update . at test-time using gradients from a self-supervised task, such ¢iand consequently)
can generalize. Lets with parameterss be the self-supervised prediction head and its collection
of parameters, and the input tg be the output of ¢ (as illustrated in Figure 1). In this work, the
self-supervised task is inverse dynamics prediction for control, and rotation prediction for navigation.

3.2 INVERSEDYNAMICS PREDICTION AND ROTATION PREDICTION

At each time step, we always observe a transition sequence in the fdsy af; si+1), during both

training and testing. Naturally, self-supervision can be derived from taking parts of the sequence
and predicting the rest. An inverse dynamics model takes the states before and after transition, and
predicts the action in between. In this work, the inverse dynamics md#berates on the feature
space extracted by.. We can write the inverse dynamics prediction objective formally as

L(s; &)= a s(e(s); els+1)) - 1)
For continuous actions,is the mean squared error between the ground truth and the model output.
For discrete actions, the output is a soft-max distribution over the action spaceisahé cross-

Published as a conference paper at ICLR 2021

entropy loss. Empirically, we nd this self-supervised task to be most effective with continuous
actions, possibly because inverse dynamics prediction in a small space of discrete actions is not as
challenging. Note that we predict the inverse dynamics instead of the forward dynamics, because
when operating in feature space, the latter can produce trivial solutions such as the constant zero
feature for every state If we instead performed prediction with forward dynamics in pixel space, the
task would be extremely challenging given the large uncertainty in pixel prediction.

As an alternative self-supervised task, we use rotation prediction (Gidaris et al., 2018). We rotate
an image by one of 0, 90, 180 and 270 degrees as input to the network, and cast this as a four-way
classi cation problem to determine which one of these four ways the image has been rotated. This
task is shown to be effective for learning representations for object con guration and scene structure,
which is bene cial for visual recognition (Hendrycks et al., 2019; Doersch & Zisserman, 2017).

3.3 TRAINING AND TESTING

Before deployment of the policy, because we have signals from both the reward and self-supervised
auxiliary task, we can train with both in the fashion of multi-task learning. This corresponds to the
following optimization problem during trainingnin _. .. . J(a; e)+ L (s; ¢); Wwhere > 0Ois

a trade-off hyperparameter. During deployment, we cannot optidhene@ymore since the reward

is unavailable, but we can still optimide to update both s and .. Empirically, we nd only
negligible difference with keeping, xed at test-time, so we update both since the gradients have

to be computed regardless; we ablate this decision in appendix C. As we obtain new images from
the stream of visual inputs in the environmenkeeps being updated until the episode ends. This
corresponds to, for each iteratiorr 1:::T:

St p(stjar 138t 1))
s(= st 1) r L(s s(t 1) e(t 1)) ®)
e(= et 1) r L(s; st 1) e(t 1) 4
ar= (s (1) with () =(e(t); a); ®)
where 5(0) = s; «(0) = , So is the initial condition given by the environmeiay = (Sp), pis

the unknown environment transition, ahds the self-supervised objective as previously introduced.

4 EXPERIMENTS

In this work, we investigate how well an agent trained in one environment (denotédithiag
environmentgeneralizes toanseerand diverse test environments. During evaluation, agents have
no access to reward signals and are expected to generalize without trials nor prior knowledge about
the test environments. In simulation, we evaluate our method (PAD) and baselines extensively on
continuous control tasks from DeepMind Control (DMControl) suite (Tassa et al., 2018) as well as
the CRLMaze (Lomonaco et al., 2019) navigation task, and experiment with both stationary (colors,
objects, textures, lighting) and non-stationary (videos) environment changes. We further show that
PAD transfers from simulation to a real robot and successfully adapts to environmental differences
during deployment in two robotic manipulation tasks. Samples from DMControl and CRLMaze
environments are shown in Figure 2, and samples from the robot experiments are shown in Figure 4.
Implementation is available &ttps://nicklashansen.github.io/PAD/

Network details. For DMControl and the robotic manipulation tasks we implement PAD on top of
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and adopt both network architecture and hyperparam-
eters from Yarats et al. (2019), with minor modi cations: the feature extractdras 8 convolutional
layers shared between the RL headand self-supervised head, and we split the network into
architecturally identical heads following.. Each head consists of 3 convolutional layers followed

by 4 fully connected layers. For CRLMaze, we use Advantage Actor-Critic (A2C) as base algorithm
(Mnih et al., 2016) and apply the same architecture as for the other experiments, but implement
with only 6 convolutional layers. Observations are stacks oblored framesk = 3 on DMControl

and CRLMazek =1 in robotic manipulation) of siz&00 100and time-consistent random crop is
applied as in Srinivas et al. (2020). During deployment, we optimize the self-supervised objective
online w.rt. ¢; s for one gradient step per time iteration. See appendix F for implementation details.

2A forward dynamics model operating in feature space can trivially achieve a loss of 0 by learning to map
every state to a constant vector, €dgAn inverse dynamics model, however, does not have such trivial solutions.

Published as a conference paper at ICLR 2021

Figure 2. Left: Training environments of DMControl (top) and CRLMaze (bottoRight: Test en-
vironments of DMControl (top) and CRLMaze (bottom). Changes to DMControl include randomized
colors, video backgrounds, and distractors; changes to CRLMaze include textures and lighting.

Table 1. Episodic return in test environments with randomized colors, mean and std. dev. for 10
seeds. Best method on each task is in bold and blue compares SAC+IDM with and without PAD.

10x episode length

Random colors SAC +DR +IDM +IDM (PAD) +IDM +IDM (PAD)
Walker, walk 414 74 594 104 406 29 468 47 3830 547 5505 592
Walker, stand 719 74 715 96 743 37 797 46 7832 209 8566 121

Cartpole, swingup 592 so 647 48 585 73 630 63 6528 539 7093 592
Cartpole, balance 857 0 867 37 835 40 848 29 7746 526 7670 293
Ballin cup, catch 411 183 470 252 471 75 563 50 - -
Finger, spin 626 163 465 314 757 62 803 72 7249 642 7496 655

Finger, turneasy 270 43 167 26 283 51 304 46 - -
Cheetah, run 154 2 145 29 121 38 159 28 1117 s30 1208 487

Reacher, easy 163 45 105 37 201 =32 214 44 1788 441 2152 506

4,1 DeePMIND CONTROL

DeepMind Control (DMControl) (Tassa et al., 2018) is a collection of continuous control tasks
where agents only observe raw pixels. Generalization benchmarks on DMControl represent diverse
real-world tasks for motor control, and contain distracting surroundings not correlated with the reward
signals.

Experimental setup. We experiment with 9 tasks from DM-

Control and measure generalization to four types of test environ-

ments: (i) randomized colors; (ii) natural videos as background;

(iii) distracting objects placed in the scene; and (iv) the un-

modi ed training environment. For each test environment, we

evaluate methods across 10 seeds and 100 random initializa-

tions. If a given test environment is not applicable to certain

tasks, e.g. if a task has no background for the video background

setting, they are excluded. Tasks are selected on the basis of di-

versity, as well as the success of vision-based RL in prior work

(Yarats et al., 2019; Srinivas et al., 2020; Laskin et al., 2020;

Kostrikov et al., 2020). We implement PAD on top of SAC and

use an Inverse Dynamics Model (IDM) for self-supervisiopyy,re 3. Relative improvement in
as we nd that learning a model of the dynamics works wgl\ctantaneous reward over time for
for motor control. For completeness, we ablate the choiceF(ﬁD on the random color env.
self-supervision. Learning curves are provided in appendix B.

We compare our method to the following baselines: (i) SAC with no changes (de®a@x(ii) SAC
trained with domain randomization on a xed set of 100 colors (denef@R); and (iii) SAC trained
jointly with an IDM but without PAD (denotedIDM). Our method using an IDM with PAD is
denoted by+IDM (PAD). For domain randomization, colors are sampled frormrstimae distribution

as in evaluation, but with lower variance, as we nd that training directly on the test distribution does
not converge.

Random perturbation of color. Robustness to subtle changes such as color is essential to real-
world deployment of RL policies. We evaluate generalization on a xed set of 100 colors of
foreground, background and the agent itself, and report the results in Table 1 (rst 4 columns). We
nd PAD to improve generalizatiom all tasks consideredutperforming SAC trained with domain

Published as a conference paper at ICLR 2021

randomization iré out of 9 tasks. Surprisingly, despite a substantial overlap between training and test
domains of domain randomization, it generalizes no better than vanilla SAC on a majority of tasks.

Long-term stability. We nd the relative improvement of PAD to improve over time, as shown in
Figure 3. To examine the long-term stability of PAD, we further evaluate on 10x episode lengths and
summarize the results in the last two columns in Table 1 (goal-oriented tasks excluded). While we do
not explicitly prevent the embedding from drifting away from the RL task, we nd empirically that
PAD does not degrade the performance of the policy, even over long horizons, and when PAD does
notimprove, we nd it to hurt minimally. We conjecture this is because we are not learning a new
task, but simply continue to optimize the same (self-supervised) objective as during joint training,
where both two tasks are compatible. In this setting, PAD still improves generalizatoouitnof 7

tasks, and thus naturally extends beyond episodic deployment. For completeness, we also evaluate
methods in the environment in which they were trained, and report the results in appendix A. We nd
that, while PAD improves generalization to novel environments, performance is virtually unchanged
on the training environment. We conjecture this is because the self-supervised task is already fully
learned and any continued training on the same data distribution thus has little impact.

Non-stationary environments. Table 2. Episodic return in test environments with video back-
To investigate whether PAD cangrounds (top) and distracting objects (bottom), mean and std.
adapt in non-stationary envidev. for 10 seeds. Best method on each task is in bold and blue
ronments, we evaluate generatompares SAC+IDM with and without PAD.

ization to diverse video back-
grounds (refer to Figure 2). WeVideo backgrounds ~ SAC +DR +IDM +IDM (PAD)

nd PAD to outperform all base- wajker, walk 616 s0 65555 694 85 717 79
lines on7 out of 8 tasks, as alker, stand 899 53 869 60 90251 935 20
shown in Table 2, by as muchCartpole, swingup 375 90 485 67 487 %0 521 76
as104% over domain random-Cartpole, balance 693 109 766 92 691 76 687 58
ization onFinger, spin Domain Ballin cup, catch 393 175 271 189 362 69 436 55
randomization generalizes comFinger, spin 447 102 338 207 605 61 691 so0
parably worse to videos, whichFinger, turneasy =~ 355 108 223 o1 355 110 362 101
we conjecture is not because th&heetah, run 194 30 150 34 164 42 206 34
environments are non-stationangyisracting objects ~ SAC ~ +DR +IDM +IDM (PAD)

but rather because the image -
statistics of videos are not covEartpole, swingup 815 e 809 24 776 58 771 64
ered by its training domain 0fCartpoIe, balance 969 20 938 35 964 26 960 29
randomized colors. In fact dO—Ba” incup, catch 177 111 331 189 482 128 545 173

) ; Finger, spin 652 184 564 288 836 62 867 72

main randomization is outper;
. . inger, turneas 302 165 326 347
formed by the vanilla SAC in g y % 2 o ®

most tasks with video back-
grounds, which is in line with the ndings of Packer et al. (2018).

Scene contentWe hypothesize that: (i) an agent trained with an IDM is comparably less distracted

by scene content since objects uncorrelated to actions yield no predictive power; and (ii) that PAD
can adapt to unexpected objects in the scene. We test these hypotheses by measuring robustness
to colored shapes at a variety of positions in both the foreground and background of the scene (no
physical interaction). Results are summarized in Table 2. PAD outperforms all baselestinf5

tasks, with a relative improvement 808% over SAC onBall in cup, catch In the two cartpole tasks

in which PAD does not improve, all methods are already relatively unaffected by the distractors.

Choice of self-supervised taskWe investigate how much the choice of self-supervised task con-
tributes to the overall success of our method, and consider the following ablations: (i) replacing
inverse dynamics with the rotation prediction task described in Section 3.2; and (ii) replacing it with
the recently proposed CURL (Srinivas et al., 2020) contrastive learning algorithm for RL. As shown
in Table 3, PAD improves generalization of CURL in a majority of tasks on the randomized color
benchmark, and in 4 out of 9 tasks using rotation prediction. However, inverse dynamics as auxiliary
task produces more consistent results and offers better generalization overall. We argue that learning
an IDM produces better representations for motor control since it connects observations directly to
actions, whereas CURL and rotation prediction operates purely on observations. In general, we nd
the improvement of PAD to be bigger in tasks that bene t signi cantly from visual information (see
appendix A), and conjecture that selecting a self-supervised task that learns features useful to the RL
task is crucial to the success of PAD, which we discuss further in Section 4.2.

Published as a conference paper at ICLR 2021

Table 3.Ablations on the randomized color domain of DMC. All methods use SAC. CURL represents
RL with a contrastive learning task (Srinivas et al., 2020) and Rot represents the rotation predic-
tion (Gidaris et al., 2018). Of ine PAD is here denoted O-PAD for brevity, whereas the default usage
of PAD is in an online setting. Best method is in bold and blue compares +IDM w/ and w/o PAD.

Random colors CURL CURL(PAD) Rot Rot(PAD) IDM IDM (O-PAD) IDM (PAD)

Walker, walk 445 99 495 70 335 7 330 20 406 29 441 16 468 47
Walker, stand 662 54 753 49 673 4 653 27 743 37 727 21 797 46
Cartpole, swingup 454 110 413 67 493 52 477 38 585 73 578 e9 630 63
Cartpole, balance 782 13 763 5 710 72 734 81 835 40 796 37 848 29
Ballin cup, catch 231 92 332 78 291 s4 314 0 471 75 490 16 563 50
Finger, spin 691 12 588 22 695 36 689 20 757 62 767 43 803 72
Finger, turneasy 202 32 186 2 283 68 230 s3 283 s1 321 10 304 46
Cheetah, run 202 22 211 20 127 3 135 12 121 38 112 35 159 28
Reacher, easy 325 32 378 62 99 29 120 7 201 32 241 24 214 a4

Table 4.Episodic return of PAD and baselines in CRLMaze environments. PAD improves general-
izationin all considered environmengsd outperforms both A2C and domain randomization by a
large margin. All methods use A2C. We report mean and std. error of 10 seeds. Best method in each
environment is in bold and blue compares rotation prediction with and without PAD.

CRLMaze Random A2C +DR +IDM +IDM (PAD) +Rot +Rot (PAD)
Walls 870 30 380 145 260 137 302 150 428 135 206 166 74 116
Floor 868 23 320 167 438 59 47 198 530 106 294 123 209 94
Ceiling 872 30 171 175 400 74 166 215 508 104 128 196 281 &3
Lights 900 29 30 213 310 106 239 270 460 114 84 53 312 104

Of ine versus online learning. Observations that arrive sequentially are highly correlated, and we
thus hypothesize that our method bene ts signi cantly from learning online. To test this hypothesis,
we run anof ine variant of our method in which network updates are forgotten after each step. In
this setting, our method can only adapt to single observations and does not bene t from learning
over time. Results are shown in Table 3. We nd that our method bene ts substantially from online
learning, but learning of ine still improves generalization on select tasks.

4.2 CRLMAzE

CRLMaze (Lomonaco et al., 2019) is a time-constrained, discrete-action 3D navigation task for
VizDoom (Wydmuch et al., 2018), in which an agent is to navigate a maze and collect objects. There
is a positive reward associated with green columns, and a negative reward for lanterns as well as for
living. Readers are referred to the respective papers for details on the task and environment.

Experimental setup. We train agents on a single environment and measure generalization to
environments with novel textures for walls, oor, and ceiling, as well as lighting, as shown in Figure 2.
We implement PAD on top of A2C (Mnih et al., 2016) and use rotation prediction (see Section 3.2) as
self-supervised task. Learning to navigate novel scenes requires a generalized scene understanding,
and we nd that rotation prediction facilitates that more so than an IDM. We compare to the following
baselines: (i) a random agent (denoRandon); (i) A2C with no changes (denote#i2C); (iii)

A2C trained with domain randomization (denoteldR); (iv) A2C with an IDM as auxiliary task
(denotedtIDM); and (v) A2C with rotation prediction as auxiliary task (denot&tbt). We denote

Rot with PAD as+Rot (PAD) Domain randomization uses 56 combinations of diverse textures,
partially overlapping with the test distribution, and we nd it necessary to train domain randomization
for twice as many episodes in order to converge. We closely follow the evaluation procedure of
(Lomonaco et al., 2019) and evaluate methods across 20 starting positions and 10 random seeds.

Results. We report performance on the CRLMaze environments in Table 4. PAD improves gener-
alizationin all considered test environmentautperforming both A2C and domain randomization

by a large margin. Domain randomization performs consistently across all environments but is less
successful overall. We further examine the importance of selecting appropriate auxiliary tasks by a
simple ablation: replacing rotation prediction with an IDM for the navigation task. We conjecture
that, while an auxiliary task can enforce structure in the learned representations, its features (and
consequently gradients) need to be suf ciently correlated with the primary RL task for PAD to be

