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Abstract— Enabling a robot to perform new tasks is a
complex endeavor, usually beyond the reach of non-technical
users. For this reason, research efforts that aim at empowering
end-users to teach robots new abilities using intuitive modes
of interaction are valuable. In this article, we present INtuitive
PROgramming 2 (INPRO2), a learning framework that allows
inferring planning actions from demonstrations given by a
human teacher. INPRO2 operates in an assistive scenario, in
which the robot may learn from a healthcare professional (a
therapist or caregiver) new cognitive exercises that can be later
administered to patients with cognitive impairment. INPRO2
features significant improvements over previous work, namely:
(1) exploitation of negative examples; (2) proactive interaction
with the teacher to ask questions about the legality of certain
movements; and (3) learning goals in addition to legal actions.
Through simulations, we show the performance of different
proactive strategies for gathering negative examples. Real-world
experiments with human teachers and a TIAGo robot are also
presented to qualitatively illustrate INPRO2.

I. INTRODUCTION

Socially Assistive Robots (SARs) are intended to help
humans via social interactions. Among the different fields in
which these robots have been employed, cognitive training
therapy is one area of interest in which SARs have proven
their potential for enhancing therapists’ effectiveness and
lessening their workload [1]. A recent study, by Andriella et
al. [2], describes a novel personalised framework embedded
in a social robot to provide tailored assistive behaviour
to Persons with Dementia (PwDs) while playing cognitive
training exercises as part of their daily therapy.

One limitation of this approach is that the initial set of
cognitive exercises may be limited in terms of type and
complexity. Indeed, the ability to tailor the exercise to the
patient is key to making the therapy effective and keeping
them motivated. The most straightforward approach for in-
troducing new exercises relies on hand-crafting a description
of the rules of the exercise in a formal language. However,
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Fig. 1. Teaching an exercise consisting in moving the odd numbers
horizontally to the rightmost column, and the even numbers vertically to
the topmost row. Each step, a number must move to an adjacent cell.

this approach would require HRI experts to manually code
new exercises, since healthcare professionals do not have the
technical skills to extend the robot’s repertoire of exercises
by themselves. Therefore, novel ways to intuitively program
new exercises seem necessary to make robots more accessi-
ble to non-experts [3].

To address this research gap, we propose a novel frame-
work that allows therapists to teach the robot new exercises
via demonstrations (Fig. 1). In previous approaches, this
robot-caregiver interaction was addressed through the INtu-
itive PROgramming (INPRO) framework [4], [5] for learning
STRIPS [6] action schemata that encode the rules of the
exercise in their preconditions.

In the present article, we propose INPRO2, a learning al-
gorithm that features significant improvements over INPRO.
Unlike INPRO, INPRO2 relies on Online Action Recognition
through Unification (OARU) [7], an algorithm for learning
and recognizing STRIPS action schemata from a stream of
symbolic states given by the teacher (the caregiver for our
use case).

Our contributions are: (1) the use of OARU in INPRO2
allows the robot to learn complex exercises without a priori
knowledge of the number of schemata nor their parameters;
(2) the ability to learn from forbidden state transitions
(negative examples) to fix overly permissive preconditions;
(3) learning goals, in addition to legal moves; and (4) proac-
tive interventions in critical moments of the teaching process,
asking for the legality of certain actions to potentially dis-



cover negative examples and learn from them.
While INPRO2 can work with unembodied devices, sev-

eral studies indicate that robots, because of their embod-
iment, favor a better social response [8], [9], [10]. With
INPRO2, we aim at empowering therapists with the ability
to teach new personalised exercises to the robot, making ex-
isting applications [1] more suitable for long-term therapies.

This article is structured as follows: Section II anal-
yses related literature; Section III presents concepts and
notations required to understand the problem formulation
and methodology, presented respectively in Section IV and
Section V; Section VI contains a quantitative evaluation of
our framework, as well as the report of some real-world
qualitative experiments with a TIAGo robot; and, finally,
Section VII shows our conclusions and future work.

II. RELATED WORK

Martı́nez et al. use Reinforcement Learning (RL) to learn
actions with stochastic effects [11] with the help of teacher
demonstrations. Unlike INPRO2, this approach requires ac-
tion signatures (i.e. the number of available actions and their
parameters) to be given. MuZero [12] has been used to learn
games like chess and go. Notwithstanding its ability to learn
both the rules of the game and play skillfully, it is not feasible
for a caregiver to provide the amount of required data.

Inverse RL (IRL) [13], [14] makes use of the teacher
demonstrations to learn the reward of the different actions
under different circumstances. This can be used in principle
to distinguish between legal and illegal moves (actions with
high and low reward, respectively). While this method is not
as data intensive as MuZero, it requires a non-empty action
set. Another disadvantage is that it does not provide precise
preconditions (as the STRIPS formalism does), and thus lack
INPRO and INPRO2’s explainability.

Algorithms for inductive learning of high-level action
models [15], [16], [17] observe interactions with the envi-
ronment, and refine planning operators to match the obser-
vations. System-centric algorithms like ARMS [18] gener-
ate deterministic planning operators with weighted MAX-
SAT solvers. SLAF [19] learns from partial observations.
FAMA [20] computes STRIPS operators from minimal
observations using classical planning. UDAM [21] uses a
similar approach to FAMA, but removes the limitation of
requiring action signatures. INPRO [5] was inspired by
UDAM. However, INPRO2 uses OARU [7], which is based
on a notably different principle of clustering actions more
suitable for online learning and recognition.

Senft et al. [22] and Efthymiou et al. [23]’s motivation is
reminiscent of ours. In particular, they empower adult edu-
cators to design the behavior of a robotic tutor for children.
Winkle et al. [24] seek to allow the robot’s behavior to be
tailored to the user needs in a SAR context for a coaching
use case. These methods offer a different perspective of the
learning challenge: they are adequate for learning how to
interact, but not to learn precise logical descriptions, like
INPRO2 for board exercises. It is also worth mentioning the
work of Causo et al. [25]. Like in our cognitive exercise

use case, teacher robots could benefit from intuitive ways of
being programmed for giving new lessons.

III. BACKGROUND

Let us start introducing some concepts from First-Order
Logic (FOL), STRIPS and the OARU algorithm.

A. First Order Logic

We denote as D the domain of discourse, a set of world
objects. In Fig. 1, for instance, board locations a1 and b2,
and tokens 113 and 1722 are objects within D. A predicate
consists of a predicate symbol p and an arity n. A predicate
variable is an n-ary predicate parameterized with a tuple
of n objects (e.g. p(x1, . . . , xn), with {x1, . . . , xn} ⊆ D),
and evaluates to either true or false. An interpretation of
an n-ary predicate is a set of n-tuples from Dn for which
a predicate evaluates to true. In a slight abuse of notation,
from now on we will refer to predicate variables simply as
predicates. In FOL, we use formulas to express statements
over the objects in D. In this paper, we consider restricted
formulas that consist of either single predicates or conjunc-
tions (∧) of predicates1. Consider, for instance, the predicates
at(x, y) and empty(z), whose semantics are, respectively,
”token x is at cell y” and ”cell z is empty”. In Fig. 1,
the following formulas evaluate to true: (1) at(113, a3),
and (2) at(1722, e1) ∧ empty(e4). On the other hand, the
following formulas evaluate to false: (3) empty(a3), and (4)
at(113, a3) ∧ at(1722, a1).

We use the notation set(X), where X = x1∧x2∧. . .∧xn is
a restricted FOL formula, to denotes the set {x1, x2, . . . , xn}.

A state s consists of a collection of assignments to a set
of binary variables. Alternatively, s can be viewed as an
interpretation over a set of predicates2, each one representing
a fact about the world. A state can be compactly represented
as the set of active predicates (i.e. predicates that evaluate to
true). The following is an excerpt of the state from Fig. 1:

s = {at(113, a3), at(1722, e1), empty(a4), empty(b4), . . .}

In the rest of the paper, any manipulation of world states
expressed with set operators is based on this compact form.

B. STRIPS Actions

STRIPS is a formalism to specify actions. A STRIPS action
schema is a tuple a = ⟨heada, prea, adda, dela⟩, where:

• heada is the action signature. It consists in a duad
⟨Na, Pa⟩, where Na is a human-readable name for the
action, and Pa is a list of free variables which constitute
the action parameters that take values over D.

• prea is the precondition, a restricted FOL formula that
must evaluate to true in the current state in order for
the action to be applicable.

1The full specification of FOL includes negations, disjunctions and
quantifiers, but these are not used for our method.

2Since predicates are statically evaluated, in dynamic settings the concept
of fluent (variables that vary over time) is often used instead. Despite this
technicality, for simplicity we will adhere to the use of the term predicate.



pick-and-place

params:
?token, ?location1, ?location2

pre:
at(?token,?location1), empty(?location2)

add:
at(?token,?location2), empty(?location1)

del:
at(?token,?location1), empty(?location2)

pick-and-place

params:

pre:
at(113,a3), empty(b3)

add:
at(113,b3), empty(a3)

del:
at(113,a3), empty(b3)

Fig. 2. Action schema with a possible grounding

• adda is the add list, the list of predicates that will be
set to true (or added to the compact form of the state)
after the execution of the action.

• dela is the delete list, the list of predicates that will be
set to false (or deleted from the compact form of the
state) after the execution of the action.

Predicates in prea, adda, and dela may be parameterized
with objects and free variables from D∪Pa. A schema with
no parameters is said to be grounded. Any schema a can be
grounded through a substitution g : Pa → D, resulting in
action ag . ag is constructed by replacing each occurrence of
the parameters Pa in prea, adda, and dela according to g. We
always assume that set(addag ) ∩ set(delag ) = ∅ (otherwise,
the grounding is not possible). A grounded action ag causes
a state transition s → s′ when set(preag

) ⊆ s and s′ =
s∪ set(addag

) \ set(delag). Equivalently, we may say that ag
explains the transition s → s′. Fig. 2 shows an example of
a STRIPS action schema that allows the movement of any
token to any empty position of the board, together with a
possible grounding. As a convention in this paper, names
starting with a question mark (?) are action parameters.

C. OARU

OARU is an algorithm for recognizing the STRIPS action
schema and the grounding behind each transition in a stream
of states. More importantly for our purposes, OARU learns
a new STRIPS schema when the existing ones in its internal
action library cannot explain a transition.

OARU maintains and edits an action library A, initially
empty. OARU receives as input a stream of states S =
s1 → s2 → . . . s|S|. A pair oi = ⟨si, si+1⟩ represents a
state transition, or observation. For each observation, OARU
may output: (1) a grounding of one of a schema a ∈ A
that explains the observation, possibly editing a to introduce
new parameters and relax the precondition; or (2) add an
entirely new schema with no parameters with a stringent
precondition (e.g. the entire state si as a precondition, or si
filtered according to some criterion) that we call Trivially
Grounded Action (TGA), with the intention of relaxing it
when future similar transitions are observed.

OARU’s procedure to introduce new parameters and re-
laxing preconditions is called Action Unification (AU), and
works by merging two action schemata, producing a new one.
To merge two actions, AU solves an optimization problem,
encoded as a Weighted Partial MaxSat (WPMS) problem.
To solve this problem, we resort to the Z3 SMT solving
software. The merging procedure incurs in introducing new

parameters and relaxing preconditions. Therefore, AU can
be seen as a tool for generalizing actions. OARU uses AU
as a subroutine to perform hierarchical clustering over the
learnt actions. Please, refer to the original paper for a more
in-depth explanation of AU and OARU [7].

We highlight that OARU was conceived to operate in
open-world settings to allow partial observability (i.e. pred-
icates with unknown evaluations are allowed). However, in
this paper, we consider only fully observable settings.

IV. PROBLEM FORMULATION

We address the challenge of learning board exercises from
human-given demonstrations. We assume that the teacher al-
ways provides correct demonstrations and that the learner has
access to the entire state (full observability). We formalize
this problem in terms of input and expected output.

A. Input

The demonstrations given by the teacher are structured
into a series of independent executions of the exercise called
runs: R = {S1, S2, . . . , S|R|} (|R| ≥ 1). A run Si =
si,1 → si,2 → . . . → si,li is a stream of li states and
consists of: (1) an initial state si,1, given by the teacher, that
represents an arbitrary starting configuration of the board; (2)
several intermediate states {si,2, . . . , si,li−1}, each one being
consequence of a move made by the teacher on the previous
state; and (3) a final state si,li = si,li−1∪{goal-achieved()},
where the special predicate goal-achieved() serves to assert
that the goal of the exercise has been accomplished.

In addition, we allow to enrich the input with a set
of negative examples: N = {n1, . . . , n|N |}. Each ni is
an observation (i.e. a pair of states) that showcases an
impossible transition, according to the rules of the exercise
taught by the teacher.

We assume that there is a routine that analyzes each world
state, extracts the relevant features for describing the board
and the interaction among tokens, and expresses them into
predicates. This is typical in robotic applications, in which
there exists a scene understanding module that transforms
sensor raw data into a workable format.

B. Expected Output

INPRO2 is expected to output a library of STRIPS
schemata, A such that: (1) the entire set of observations
among all the runs can be explained by the grounding of
some action in A; and (2) none of the negative examples in
N are possible under any grounding of the actions in A.

Later in Section V-B we will see how the definition of
the problem’s inputs and outputs, as defined in this section,
naturally allows learning the goal of the exercises.

V. METHODOLOGY

INPRO2 uses OARU at its core to learn and maintain
an action library A that encodes the rules and goal of the
exercise, without requiring action signatures. In this section,
we explain how we have extended OARU to learn from
negative examples and INPRO2’s flow of execution.



Algorithm 1: OARU’s updates for negative examples

1 A := ∅ // Action library
2 N := ∅ // Set of negative examples
3 Function Legal(a)

Input: Action schema a
Output: false if a allows any negative example,

true otherwise
4 for n = ⟨s, s′⟩ ∈ N do
5 if ∃g s.t. ag explains s → s′ then
6 return false
7 end
8 end
9 return true

10 end
11 Function ProcessObservation(s, s′)

Input: Observation ⟨s, s′⟩
Output: Grounded action ag explaining s → s′

12 atga := BuildTGA(s, s′)
13 a := ∅, a′ := ∅, dmin := ∞
14 for β ∈ A do
15 ⟨au, dβ,ag

⟩ := MergeAU(β, atga)
16 if dβ,atga < dmin and Legal(au) then
17 a := au, a′ := β, dmin := dβ,atga

18 end
19 end
20 if a′ ̸= ∅ then
21 A := A ∪ {a} \ {a′}
22 ag := grounding of a that explains s → s′

23 end
24 else
25 A := A ∪ {atga} ag := atga
26 end
27 return ag
28 end
29 Function AddNegativeExample(s, s′)

Input: Observation ⟨s, s′⟩
Output: None

30 N := N ∪ {⟨s, s′⟩}
31 while ∃a ∈ A s.t. not Legal(a) do
32 A := A∪{LeftParent(a), RightParent(a)}\{a}
33 end
34 while ∃a, a′ ∈ A s.t. a ̸= a′, ⟨au, da,a′⟩ =

MergeAU(a,a′) with da,a′ < ∞, and
Legal(au) do

35 A := A ∪ {au} \ {a, a′}
36 end
37 end

A. Learning from Negative Examples

One of the original limitations of OARU is that it always
merges schemata with the same effect. This is undesirable
when the only correct way of accurately reflecting the rules
of an exercise using STRIPS is with two actions with identical
effects but different preconditions. This situation arises in
the exercise from Fig. 1: both odd and even numbers can be

moved in a pick-and-place fashion, but odd numbers must
move horizontally while even ones must move vertically.
Without the modifications presented in this section, OARU
would produce a single pick-and-place action for moving a
token anywhere. We overcome this by enhancing OARU with
the ability to undo previously merged actions via negative
examples. The changes are shown in Algorithm 1. We note
that the routine MergeAU (used in lines 15 and 34) merges
two actions via Action Unification and returns the resulting
action and the distance (real value) between the merged
actions (∞ if the actions cannot be merged). Including
negative examples forces two changes.

First, whenever a new observation is fed to OARU (i.e. a
demonstration s → s′ given by the teacher), the algorithm
must guarantee that, if it edits any action in its internal action
library, the resulting action is not able to produce any of
the negative examples. Function ProcessObservation,
defined in line 11, is almost identical to OARU’s original
algorithm [7], with the exception of the additional check in
line 16 to verify that the newly constructed au is a legal
action (using method Legal defined in line 3).

Second, when a negative example is added to OARU
(via the AddNegativeExample method at line 29), every
illegal action must be undone. Each illegal action a is
decomposed back into its left parent and its right parent
(the actions that were merged via MergeAU to form a).
This refactoring process is depicted in lines 31-33. While
this would be enough to guarantee that no illegal action is
present in A, it could happen that some of the ancestors of
the actions that were undone can be (re)merged with different
actions, producing legal actions. This remerging process is
depicted in lines 34-36.

Fig. 3 depicts this mechanism with our running example of
moving odd and even numbers. Since there are two kind of
action with the same effect for odd and even numbers, OARU
merges them together. However, after just one negative ex-
ample, OARU is able to fix this mistake. This feature allows
OARU to learn much more complex domain mechanics than
before, because it allows to contextualize action based not
just on their effect, but also on their precondition.

B. INPRO2

Our INPRO2 framework’s top procedure coordinates
demonstration gathering, negative example gathering, and
calls to OARU during a teaching session. It follows the next
flow of execution:

1) The teacher specifies which tokens are available for
the exercise to establish the domain of discourse D.

2) The initial position for a new run of the exercise is set.
3) INPRO2 gathers observations for the current run,

registering the configuration of the board after each
teacher’s move. Each observation is fed to OARU.

4) After each observation, INPRO2 may ask for the
legality of a move different from the teacher’s (see
Section V-C). If the move is illegal it is fed to OARU
as a negative example.



Action after merging

pick-and-place

params:
?token, ?source, ?destination

pre:
at(?token,?source),
empty(?destination)

add:
at(?token,?destination),
empty(?source)

del:
at(?token,?source),
empty(?destination)

move-odd-piece-right

params:
?token, ?source, ?destination

pre:
at(?token,?source), empty(?destination),
odd(?token), right(?source,?destination)

add:
at(?token,?destination), empty(?source)

del:
at(?token,?source), empty(?destination)

move-even-piece-up

params:
?token, ?source, ?destination

pre:
at(?token,?source), empty(?destination),
even(?token), up(?source,?destination)

add:
at(?token,?destination), empty(?source)

del:
at(?token,?source), empty(?destination)

Actions before merging
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Negative example (forbidden transition)
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1. First, OARU merges the 
two actions, removing the 
predicates in red from 
the precondition.

2. A forbidden move is shown to OARU

3.OARU splits pick-and-place 
back to the original actions, 
which will not be merged 
again.

Fig. 3. Undoing an overly relaxed action thanks to a negative example.
The human-readable names of actions and parameters have been chosen by
us for the purpose of clarity in this paper, not by INPRO2.

5) Once the teacher has finished demonstrating one run of
the exercise, they either conclude the teaching session
or start a new run (go back to step 2). At this point,
INPRO2 uses the last state of the run to learn or refine
the goal of the exercise.

In addition to legal actions, INPRO2 is able to learn goals
of moderate complexity thanks to our problem formulation:
appending a new state si,li = si,li−1 ∪ {goal-achieved()}
at the end of each Si ∈ R leads OARU to learn one
or more special schemata whose sole purpose is to assert
the achievement of the goal. Since the final observation
at the end of each run always corresponds to adding the
goal-achieved() predicate, there is a non-empty set B =
{b|bi ∈ A, addb = {goal-achieved()} of schemata whose
preconditions precisely reflect the learnt goal of the exercise.

C. Proactive Gathering of Negative Examples

Our rationale for actively gathering negative examples is
twofold: (1) it sets a two-way interaction with the robot, pro-
viding the teacher feedback about the learning progression;
and (2) while it is natural for a human teacher to provide
examples on how a task is performed, it may be not so
obvious to give examples of wrong ways to complete the task
(especially if the teacher does not have technical knowledge
about the learner). We consider three different strategies for
collecting negative examples.

Random: The robot asks for the validity of random
moves at random times during the teaching process. The
random move can be sampled from one of the groundings
of the available actions in A (if there is any). After each
demonstration, the learner can decide with a certain fixed
probability p whether to ask for the legality of a move. While
simple, this strategy does not use any information about the

given demonstration, nor its currently learnt schemata, to
choose the movement to ask about, nor the proper moment
at which it should do it.

Planning: A more sophisticated strategy to elicit and
exploit negative examples that takes advantage of the learnt
goals. We observe that actions that are learnt incorrectly
usually have overly relaxed preconditions. Therefore, IN-
PRO2 may find plans towards the goal significantly shorter
than the length of the demonstrated runs. When the user
demonstrates a move that does not agree with the optimal one
suggested by INPRO2, this indicates that one of the learnt
actions is too lax. Then, the robot asks about the legality of
the supposedly optimal move to potentially gather negative
examples. If the demonstrated movement is optimal, this
strategy prompts the user when the planned action is different
from the demonstrated one with a certain probability p. This
ensures that negative examples can still be collected when
the overly relaxed actions do not allow for shorter plans.

VI. EVALUATION

We have implemented and evaluated our framework3. A
TIAGo robot has been used as the physical embodiment of
the learning agent. We use 5× 4 electronic board equipped
with RFID sensors and RFID tokens. This setup allows
us to keep the robot informed at all times of the current
configuration of the board.

We start by showcasing INPRO2 with an example teach-
ing session. We also provide the results of several sim-
ulations in order to quantitatively evaluate the different
proactive strategies for gathering negative examples.

A. Example of a Teaching Session

The system has been tested with human teachers and a
variety of exercises. Fig. 4 shows three teaching sessions
with human participants. Next, we will analyze in detail the
session depicted in the middle image, which features the
exercise from Fig. 1.

Fig. 5 shows the states observed by the robot during the
teaching session. Each column is a different state stream (i.e.
run), while each row is a state in the corresponding stream.
The following is a step-by-step log of the events registered
by INPRO2 with the planning strategy and p = 0.15 (i.e. the
robot has a 15% probability of prompting the user when the
demonstrated movement is optimal, but different from the
planned one):

0 : new_demonstration. Added TGA action-1.
1 : new_demonstration. Action action-1

upgraded to action-3.
2 : new_demonstration. Action action-3

upgraded to action-5. (...)
3 : new_demonstration. No updates, action

action-5 already explains the
demonstration. (...)

4 : new_demonstration. Added goal transition
action-7. (...)

5 : new_demonstration. No updates, action
action-3 already explains the

3Source code: https://github.com/sprkrd/sat strips learn/



Fig. 4. Three teachers demonstrating different exercises to the robot: a spelling exercise (left); and numerical ones (middle and right).
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Fig. 5. Movements demonstrated during a teaching session.

demonstration). (...). Robot prompts the
teacher: "In the previous position, could
you have moved 113 from B2 to E3 and
achieve the goal faster?".
User answers: "No".

6 : new_negative_example. Added negative
example (...). Added actions
[action-8, action-3]. Removed actions:
[action-5].

7 : new_demonstration. No updates (...)
8 : new_demonstration. No updates (...)
9 : new_demonstration. No updates (...)
10: new_demonstration. Action action-7 (goal)

upgraded to action-14.

Events 0 to 4 correspond to states 1 to 5 from S1 during the
first run, S1. Fig. 6 shows the status of the action library, and
the history of merged actions, after the first run. Redundant

Action library

action-5

params:
?location1 ?location2
?number-token1

pre:
(at ?number-token1
?location1), (empty
?location2)

add:
(at ?number-token1
?location2), (empty
?location1)

del:
(empty ?location2), (at
?number-token1 ?location1)

action-7

params:

pre:
(last-row c4), (at 1722 c4),
(at 113 e3), (last-column e3)

add:
(goal-achieved)

del:
<empty>

action-1

params:

pre:
(left d3 c3), (at 113 c3),
(empty d3), (right c3 d3)

add:
(at 113 d3), (empty c3)

del:
(empty d3), (at 113 c3)

dist.:   1.50

norm. dist.:  0.05 

action-2

params:

pre:
(at 113 d3), (left e3 d3),
(last-column e3), (right d3
e3), (empty e3)

add:
(at 113 e3), (empty d3)

del:
(at 113 d3), (empty e3)

action-3

params:
?location1 ?location2

pre:
(left ?location1 ?location2),
(at 113 ?location2), (empty
?location1), (right ?location2
?location1)

add:
(at 113 ?location1), (empty
?location2)

del:
(empty ?location1), (at 113
?location2)

dist.:   4.50

norm. dist.:  0.53 

action-4

params:

pre:
(up c2 c3), (at 1722 c2),
(empty c3), (down c3 c2)

add:
(empty c2), (at 1722 c3)

del:
(empty c3), (at 1722 c2)

Fig. 6. Action library after S1.

merges (i.e. those that do not update the action library) have
been omitted for the sake of brevity. The diagram shows
which actions have been merged, and the distance between
the merged actions according to the AU algorithm. The
action shown in green is the last modification to the library
(the goal transition, from event 4).

Event 5 is noteworthy: the user has demonstrated a move-
ment of the token 113 from b2 to c2. Using action-5 from
Fig. 6, however, INPRO2 can find a sequence of actions that
leads to the learned goal much faster (directly moving 113 to



Action library

action-3

params:
?location1 ?location2

pre:
(left ?location1 ?location2),
(at 113 ?location2), (empty
?location1), (right ?location2
?location1)

add:
(at 113 ?location1), (empty
?location2)

del:
(empty ?location1), (at 113
?location2)

action-8

params:
?location1 ?location2

pre:
(up ?location1 ?location2),
(at 1722 ?location1), (empty
?location2), (down ?location2
?location1)

add:
(empty ?location1), (at 1722
?location2)

del:
(empty ?location2), (at 1722
?location1)

action-14

params:
?location1 ?location2

pre:
(last-row ?location1), (at
1722 ?location1), (at 113
?location2), (last-column
?location2)

add:
(goal-achieved)

del:
<empty>

action-1

params:

pre:
(left d3 c3), (at 113 c3),
(empty d3), (right c3 d3)

add:
(at 113 d3), (empty c3)

del:
(empty d3), (at 113 c3)

dist.:   1.50

norm. dist.:  0.05 

action-2

params:

pre:
(at 113 d3), (left e3 d3),
(last-column e3), (right d3
e3), (empty e3)

add:
(at 113 e3), (empty d3)

del:
(at 113 d3), (empty e3)

action-4

params:

pre:
(up c2 c3), (at 1722 c2),
(empty c3), (down c3 c2)

add:
(empty c2), (at 1722 c3)

del:
(empty c3), (at 1722 c2)

dist.:   1.50

norm. dist.:  0.05 

action-6

params:

pre:
(last-row c4), (at 1722 c3),
(empty c4), (down c4 c3), (up
c3 c4)

add:
(empty c3), (at 1722 c4)

del:
(empty c4), (at 1722 c3)

action-7

params:

pre:
(last-row c4), (at 1722 c4),
(at 113 e3), (last-column e3)

add:
(goal-achieved)

del:
<empty>

dist.:   0.40

norm. dist.:  0.05 

action-13

params:

pre:
(last-row d4), (at 113 e2),
(last-column e2), (at 1722 d4)

add:
(goal-achieved)

del:
<empty>

Fig. 7. Action library after S2.

e3). The robot prompts the teacher about this move and finds
out that it is not valid. This situation was already depicted in
Fig. 3. The negative action helps INPRO2 notice that action-
5 is too lax and splits it back into action-3 and action-4.
Internally, OARU re-merges the transitions in a way that the
negative example is not allowed by any action. The resulting
action library after processing the remaining movements and
the goal transition (events 6 to 10) is shown in Fig. 7. Notice
that one action has been learned to move the odd number
(action-3), another for the even number (action-8) and a last
one for asserting the achievement of the goal (action-14).
Thus, two runs and one negative example have been enough
to learn this exercise.

B. Quantitative Evaluation

We simulate a human teacher showing demonstrations
to the robot until the exercise is learnt. We simulate 1000
teaching sessions for the following exercises:

1) Spelling: 10 letters are initially arranged at the bottom
two rows of the board. The goal is to spell either the
word MARIE or the word CURIE at the top, from left
to right moving one token at a time.

2) Ordering: 10 numbers are initially arranged at the
bottom two rows of the board. The goal is to pick
5 of those numbers, one at a time, and place them in
the top row ordered.

TABLE I
AVERAGE D AND P (ROUNDED TO CLOSEST INTEGER) FOR DIFFERENT

EXERCISES (E) AND STRATEGIES.

p = .00 p = .15 p = .50 p = .85 p = 1.0 Plan
E D P D P D P D P D P D P

1 - - 15 2 13 5 10 7 10 8 15 2
2 - - 15 2 14 6 10 6 10 8 15 2
3 - - 12 2 9 4 7 5 7 5 7 1
4 18 0 18 3 18 8 18 12 18 16 18 3

3) Odd-Even: the running example through this article.
4) Pacman: a token (player character) is moved around

capturing other tokens (pellets).

For each teaching session, we measure: D, the number
of demonstrations given by the teacher until the exercise is
learnt; and P, the number of times the robot has prompted
the teacher for the legality of a move. We evaluate the
mean of D and P across the 1000 teaching sessions for
the Random and Planning strategies (Tab. I). The Random
strategy is evaluated for p ∈ {0, 0.15, 0.5, 0.85, 1}. The
Planning strategy is evaluated for p = 0.15 and n = 3. We
note that when p = 0 there are no prompts, and with p = 1
the robot tries to prompt the teacher after each demonstration.

Our first highlight is that some of the exercises (Spelling,
ordering and Odd-Even) cannot be learnt without negative
examples (p = 0). Spelling and Ordering need negative
examples because the tokens cannot be put in the top row in
any order (there is a left-to-right constraint). For Odd-Even,
the reason has already been exposed in Fig. 3.

Secondly, we observe that for the random strategies, P ̸=
pD necessarily (let us remember that p is the probability
of prompting the teacher for the legality of a random move
after a demonstration). In particular, one might expect that,
with p = 1, P = D (one prompt after each teacher’s move).
This is not the case because when the robot has just started
to learn, it is very unlikely that there is a grounding of an
action in A that can be applied in the current state.

Notice that, for Spelling and Ordering, there is not
much difference between Random with p = 0.15 and
Planning. The reason for this is that these two exercises
require negative examples to undo an overly permissive
action that allows placing the tokens in any non left-to-right
sequence. However, this action does not allow to complete
the exercise faster. Thus, the Planning strategy falls back to
Random with p = 0.15. On the other hand, if we observe
Random with larger values of p, we can see that the number



of needed demonstrations decreases (negative examples are
found sooner), and the number of prompts increases.

In Odd-Even the situation is different. This exercise leads
OARU to learn an overly permissive action that allows it to
move a token to its final destination, without performing the
intermediate steps. This is quickly caught by the Planning
strategy, which is able to reduce both the number of needed
demonstrations and the number of prompts.

In Pacman we can see that, since negative examples do
not help, the number of needed demonstrations is about
the same for every strategy. This exercise requires a large
number of demonstrations because it showcases two kinds
of moves: displacements to adjacent cells, and captures. This
means that the Random strategies with low values of p,
and the Planning strategies, offer less overhead in terms of
unnecessary prompts to the user. Still, it could be argued that
some degree of feedback is desirable to offer some feeling
of progression to the teacher.

These results seem to suggest that the Planning strategy
can be very helpful in certain exercises, while not incurring
excessive overhead in terms of the number of prompts,
performing similarly to Random with small values of p.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented INPRO2, a framework
based on OARU’s algorithm to enable a robotic agent to
effectively learn cognitive exercises in terms of STRIPS
action schemata. We have extended OARU with the ability to
process negative examples, which is valuable to learn certain
exercises. These negative examples are gathered proactively
by the robot. We have proposed a simple random strategy and
a planning-based one to actively engage the user and gather
negative examples. In addition, our problem formulation
allows us to learn exercise goals.

In this work, we have not focused on effective ways of
explaining to the teacher the learnt exercises. This is indeed
an interesting research direction since it can contribute to
the explainability of the method. Future work also includes
analyzing the impact of proactive strategies in humans in
terms of cognitive load and subjective experience. This study
is currently being conducted, and seeks to shed light on
the compromise between the number of demonstrations and
prompts preferred by users.
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