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Figure 1: In (a), the workflow of actions expected to be performed by the robot, divided into two stages. In step A, the robot
searches for a new patient in the waiting room. In step B, it brings the patient to the evaluation room. In step C, the patient
performs the tests with the instructions of the robot. In step D, the robot accompanies the patient back to the waiting room. In
(b), an illustration of an ambulatory floor with the locations of the above-mentioned steps: the robot is currently at step A and
it needs to find the patient in green. In (c), an example of feedback provided by the Temi robot during step C.

ABSTRACT
Frailty is a crucial indicator in determining the well-being of older
adults in terms of their health. With the growing number of elderly
people, the demand for geriatricians is increasing, which means that
they have less time to spend with each patient. The current meth-
ods for frailty assessment use simple tests that are time-consuming
and do not require specific medical expertise. To address this issue,
this paper proposes the use of social robots to assess frailty au-
tonomously. It presents a practical proposal that defines the robot’s
behavior and explains the design and implementation concepts.
Finally, it discusses some of the challenges that may arise from
introducing social robots as frailty evaluators.
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1 INTRODUCTION
The aging population is growing rapidly [22], and it has become a
major concern for health organizations worldwide [28]. This demo-
graphic shift has resulted in an increased demand for healthcare
services by older adults. As a consequence, healthcare resources
such as personnel, time, space, and technology must be expanded
to effectively meet this rising demand. In addressing the challenges
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associated with the aging population, one critical aspect is frailty.
Frailty is a geriatric syndrome that commonly affects older adults,
leading to a decline in their physical and mental health [17]. It
makes them more vulnerable to illnesses, disabilities, and mortality
due to a decrease in their physiological reserve and adaptive ca-
pacity. Studies have shown that a person’s frailty profile is a better
predictor of treatment tolerance and survival than their chronolog-
ical age [21, 30].

To address the challenges associated with frailty in the aging
population, the World Health Organization (WHO) has developed
the framework of Integrated Care for Older People (ICOPE)[1]. The
ICOPE framework, which employs questionnaires and validated
scales, comprises six key components: cognitive impairment, mobil-
ity, nutrition, vision, hearing, and mood. By addressing these areas,
the ICOPE framework aims to enhance the health and well-being
of older individuals and alleviate the burden on healthcare systems.

Concerning mobility, there are some standardized tests to evalu-
ate this dimension, such as the Timed Up and Go (TUG) [27] and the
Short Physical Performance Battery (SPPB) [20], amongst many oth-
ers [15]. However, while these tests are simple and require minimal
effort on the part of the patient, they are time-consuming for both
patients and healthcare professionals. In this context, robots can be
valuable tools in facilitating mobility assessments, ensuring they
are conducted more efficiently and accurately, augmenting thera-
pist effectiveness, and lessening their burden. Indeed, robots have
been proven to be very effective in repetitive tasks e.g., physical and
cognitive training [5]. Furthermore, robots can provide additional
information than the current gathered by professionals at sight. De-
spite the significance of frailty assessments, only a limited number
of studies have tackled the challenge of autonomously administer-
ing these tests using computer vision techniques [14, 18, 19, 33] or
physical sensors [29, 31] and even fewer studies involved robots.
For instance, Olde et al.[25] used a social robot to explain differ-
ent physical exercises to diminish people’s frailty, but a healthcare
professional delivered the tests.

While recognizing the positive impact of a robot’s social pres-
ence in improving patient engagement [32] and reducing dropout
rates[13], our central goal is to advance beyond Olde’s work and
develop a more sophisticated system. The main contribution of
this work is the definition of a new framework for robotic frailty
assessment co-designed with healthcare professionals, in which the
robot serves as a social facilitator for the medical staff. The frame-
work consists of two stages. In the first stage, the robot locates
patients in the waiting room and brings them to the evaluation
room. In the second stage, the robot guides them through a series
of well-established tests to assess their level of frailty. We present
the framework and discuss the need to address various aspects of
human-robot interactions (HRIs), including patient identification,
effective communication, motivation during the tests, and ensuring
understanding, among other factors.

2 PROPOSED APPROACH
In this section, we will discuss the framework for automatic frailty
assessment and its two main stages (see Fig. 1(a)). We will explain
the procedures and implementation for each of the two stages, as

well as the challenges we anticipate needing to address to success-
fully achieve our objective. It is worth noting that we have already
started working on the second stage and we will be sharing some
preliminary results. However, the first phase is still in its early
stages and the primary building blocks still need to be implemented
on the robot.

2.1 Stage 1: Seeking for patient
Aiming to lessen the healthcare personnel’s workload, an important
stage that shall be automatized in the frailty assessment process is
the patients’ localization. At this stage, the robot’s goal is to locate
the patient, who is next in line, in the waiting room. The robot will
then accompany them to the evaluation room, which corresponds
to steps A and B in Fig. 1(a).

Procedure. The first step for the robot is to check for new
patients to serve. The patient list is retrieved from the hospital
database queue, which is updated every time a patient registers at
the entry.

Once the robot detects that a new patient is available, it will
move to predefined positions in the waiting room. In the example in
Fig. 1(b), the robot can move to points A or B. During the navigation,
the robot calls the patient using synthesized speech and also with
its name written on the screen to grab their attention.

The last step consists of guiding the patient to the evaluation
room while the robot ensures that the patient is following. If the
robot can’t locate the patient within a time set, it will proceed to
the next one in the queue.

Implementation. There are different methods for designing the
architecture of a social robot in the current context. These methods
include Finite State Machines (FSM) and Behavior Trees (BTs). The
use of BTs in social robot applications in dynamic environments
has been documented in the literature as they offer more advan-
tages over FSM [11], such as higher flexibility, responsiveness, and
modularity.

Therefore, in our work, the robot’s software architecture is based
on BTs. Those offer the possibility to modify the actions of the robot,
for example adding a new test or condition, without increasing the
complexity of implementation. This makes the framework easily
adaptable to the specific needs of each healthcare center.

In Fig. 2(a), we can see the structure of the BT. The robot begins
the stage with a sequence that first ticks in a sanity check selector
to ensure there is enough battery for both stages. Next, it moves
to the sequence branch in charge of bringing a patient into the
evaluation room. This sequence is split into three selectors. First,
the robot looks for a new patient in the database queue, then it
searches for them, and finally, they proceed to the evaluation room
together. The selector in charge of checking the patients in the
queue first checks if a patient has already been selected. If not, it
then checks if there are any patients in the queue. If there are, the
first patient in the queue is marked as selected. The BT then moves
on to the next sequence branch, which is finding the patient. When
searching for a patient, the BT first checks a conditional variable to
determine if the patient has already been found. If the patient has
not been found, the next node in the BT is a selector. Each branch of
the selector checks if the patient is in a specific location. When the
robot arrives at the search location, it calls out to the patient and
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Figure 2: Behavior trees for stage 1 (a) and stage 2 (b). The blue octagons are selector nodes, the orange rectangles are the
sequence nodes, the green rounded squares are the action nodes, and the grey ovals are condition nodes.

tries to get their attention. If the patient does not respond, the robot
moves to another search location and repeats the process. If the
patient is found, the system moves to the final branch of the tree,
which involves bringing the patient to the evaluation room. In this
last branch, the robot needs to ensure that both itself and the patient
reach the evaluation room. To do so, the robot constantly checks
that the patient follows it until they both reach the evaluation room.
If the patient is not following, the robot calls out to the patient and
verifies if they have their attention. If the robot succeeds in getting
the patient’s attention, it will keep moving to the evaluation room.

To make the framework more user-friendly for caregivers, the
robot will have a touchscreen menu to turn on, shut down, or
modify the application. Additionally, it will include an application
for building a map of the ambulatory.

Challenges. In this stage, we have identified the following
challenges: (i) How to grab the patient’s attention and identify
them? (ii) How to understand the patient?

The first challenge involves understanding the most effective
social cues that best fit the patient’s physical and cognitive impair-
ment to gather their attention. In ambulatory and hospital contexts,
therapists usually call out the patient’s name and wait for them to
show up in front of them. If that does not work, then they search
for them around the waiting room and finally, they identify the
patient if they are in the room. While this task seems quite straight-
forward for humans it is not trivial to implement that on a robot. A
possible solution would be to replicate the above-mentioned thera-
pist’s behavior. However, instead of navigating around to seek the
patient, the robot tries either another interaction modality (speech,
gesture, or acoustic cues) or moves to a different point on the map.
To identify the patient, one obvious solution would be to use fa-
cial recognition. However, that could raise privacy issues as the
robot would need to record patient’s images. This solution is also
challenging from a technological point of view as automatic facial
recognition systems struggle to work with older adults due to a
limited sample representation of them in the training set [8]. A
viable solution that can address these limitations would be using
QR codes or RFID technologies to identify each patient.

Understanding the patient verbal and non-verbal interaction is an
additional challenge. Humans are naturally good at understanding
each other and adapting to different situations. In our context,
we will primarily concentrate on verbal interactions, since it is
preferred over other communication channels by older adults [6],
and those that can arise from the tablet. To accomplish this, we
require an Automatic Speech Recognition (ASR) system that can
recognize the patient’s intentions using, for instance, rasa [7]. This
will enable the robot to engage in small talk conversations with the
patients. Moreover, the tablet can be used to support the interactions
and clarify what the robot has understood, making the overall
interaction more transparent to the patient. It is important to note
that ASR, like face recognition systems, suffers from the same issue.
Therefore, we need to refine the current speech recognition models
to include a more representative older population in the training
set [9].

2.2 Stage 2: Test performance
At this stage, the robot’s objective is to perform the frailty as-
sessment through the tests and then bring the patient back to the
waiting room. In Fig. 1(a) it corresponds to steps C and D.

Procedure. To begin with, the robot greets the individuals who
have entered the evaluation room. It then directs the patient to
a designated area of the room where the tests will be conducted.
Once the patient reaches the designated area, the robot provides
a detailed explanation of each test and displays a demonstration
video on the screen. The explanations of the tests are presented
both visually and audibly. The robot explains each test to the patient
and monitors the start and end times of each test. Ultimately, it
stores the results in the clinical history database and brings the
patient back to the waiting room.

Implementation. This stage is also developed using BTs (see
Fig. 2(b)) to offer a flexible and reactive service. The robot starts
with a sequence for gathering data. The latter consists of another
sequence (test execution) and various actions. First, the robot greets
the patient using text-to-speech and visual cues on the touchscreen.
Then, it proceeds to execute the tests. The robot activates the camera
with a 3D skeleton pose tracking algorithm to detect the patient.



HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA Aniol Civit, Antonio Andriella, Cristian Barrue, Maite Antonio, Concepción Boqué & Guillem Alenyà

Figure 3: Example of visualization of the tests’ results. As it
can be noted, besides the time to complete them, doctors can
access and visualize additional information.

The skeleton is used to identify the start and end of each test in
real-time, as well as the patient’s performance. The tests start with
an explanation describing how they must be performed. Then the
movements of the patient will be analyzed to detect the moment
when the patient completes each of the tests. The robot will not only
deliver them but also will be able to detect unexpected behaviors
of the patients (e.g., cheating or leaving the room before the end
of the tests, or not performing correctly the test). Additionally, the
robot provides personalized feedback during the tests. The type
of feedback to be given and when to give it is decided to ensure
a comfortable and motivating interaction. Fig. 1(c) provides an
example of feedback and an explanation of the next test.

We are collaborating with the hospital doctors to define an initial
set of tests. The tests that have been implemented are the following:
i) standing balance, ii) 5 times sit-stand, iii) gait speed; and finally,
iv) timed Up and Go. While doctors only collect the time to perform
each test, by introducing a robot we can gather additional measures.
For example, the stride and step lengths and velocities during the
walk, the balance during the walk, and the stability during the
balance test, amongst others. We evaluated the feasibility of our
system to monitor the users and measure their performance both in
our lab with a convenient population and in the healthcare facility
with older adults [26].

After conducting the tests, the subsequent step involves storing
the results in the database and formatting them in a way that
doctors can easily visualize them. This allows the doctor to access
the results during the visit, as shown in Fig. 3. Finally, the robot
accompanies the patient to the waiting room and the robot switches
to stage 1 of the BT.

Challenges. We identify the following challenges: (i) What
kind of techniques could we use to provide personalized interaction,
and how do we provide feedback to them? (ii) How can we detect
unexpected patient behavior, and how should a robot react to it?
(iii) How can we ensure that patients trust the robot to manage
their data?

Concerning personalization, research has demonstrated that tai-
loring a robot’s behavior to an individual’s preferences can signifi-
cantly increase trust and acceptance, particularly during prolonged
interactions [23]. This is especially pertinent when dealing with
older adults, as their physical and cognitive abilities necessitate

a personalized approach [24]. However, collecting data on each
individual can pose a challenge. To address this, we propose im-
plementing a system akin to Andriella [4] whereby therapists can
impart prior knowledge about the patient and specify their initial
preferences. This approach would expedite the learning process
and ensure that the robot’s behavior aligns with the patient’s needs
from the outset. Therefore, incorporating expert prior knowledge
into behavior adaptation techniques could be valuable [10].

Exploring when to offer feedback is an important aspect to con-
sider. In this regard, we will examine research on proactive robot
behavior [2, 12]. Finally, regarding what human-like features the ro-
bot shall be endowed with, previous work suggests that personality
behavioral patterns would be relevant to consider in a motivational
feedback robot [3, 16].

In terms of detecting unexpected behavior from humans, our
focus will be on identifying whether patients are performing their
tests correctly. While it may be possible to recognize these types of
events, we acknowledge that how to address them is still an area of
ongoing research. There are a few potential options, such as having
the patient redo the test, providing feedback to the robot about the
situation, or skipping to the next test and notifying the doctor.

One last hurdle is to ensure that it can explain its data man-
agement, which includes disclosing the information that has been
processed and giving patients the ability to exercise control over
it. One possible solution could be to obtain the patient’s informed
consent, while also explaining how the data that has been gathered
will be utilized by the doctor. Additionally, the patient can agree or
disagree on what data to be shared.

3 CONCLUSION AND FUTUREWORK
This article discusses the feasibility of using social robots to con-
duct frailty assessments in healthcare systems. The framework for
automatic frailty assessment is divided into two main stages, for
each of which we sketched the procedure, implementation, and the
main challenges. Some of those challenges still have no specific
solution, but they are great research opportunities that we aim to
investigate in the near future.

Our next objective is to automate the assessment of tests and
detect the start and end of each test in real-time. This will allow us
also to identify unexpected patient behavior as well as to react to
them. Additionally, we will continue collaborating with healthcare
professionals using a co-design approach to develop our technology.
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