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A. Extended Proof of Proposition 1

1) LMI conditions for Lyapunov stability for polytopic LPV
models: According to Lyapunov theory, if there exists a
discrete-time candidate function 𝑉 (x𝑘) such that ∀𝑘 ≥ 0:

1) 𝑉 (0) = 0 ;
2) 𝑉 (x𝑘) > 0 , ∀x𝑘 ≠ 0
3) 𝑉 (x𝑘+1) −𝑉 (x𝑘) < 0 ,∀x𝑘 ≠ 0

the equilibrium point x𝑘 = 0 is stable in the sense of
Lyapunov. As stated in [13], applying the LMI paradigm
for a generic quadratic candidate function 𝑉 (x𝑘) = x𝑇

𝑘
Px𝑘 ,

above conditions are fulfilled iff there exist a solution matrix
P = P𝑇 > 0 that fulfils the following inequality:

A𝑘PA𝑘
𝑇 −P < 0 (14)

For the polytopic LPV model of the VIC in Eq. (7), defined
by the system evaluated at the convex hull Θ, stability implies
that solution P is common to all the vertex state matrices A𝑖 ,
turning (14) into:

A𝑖PA𝑖
𝑇 −P < 0 (15)

2) Equivalence between 𝐻2 index and quadratic criterion:
First, we have to introduce an auxiliary output y𝑘 such
that the complete system including the discrte-time form of
system. (2) is:{

x𝑘+1 = A0 x𝑘 +B𝑤 u𝑘 +B𝐹 𝐹𝑘

y𝑘 = Cx𝑘 +Du𝑘
(16)

Considering that a state-feedback control is being applied,
i.e. u𝑘 = W𝑘 x𝑘 , system (16) turns into:{

x𝑘+1 = A𝑘 x𝑘 +B𝐹 𝐹𝑘

y𝑘 = (C+DW𝑘)x𝑘

where we can define S = C+DW𝑘 . The effect of the exoge-
nous input 𝐹𝑘 in y𝑘 (which is a modulation of x𝑘) can be
determined through the H2 norm over the infinite horizon of
the transfer function 𝐺 (𝑦,𝐹) ,𝑘 :

∥𝐺 (𝑦,𝐹) ∥2 =

( ∞∑︁
𝑘=0

𝐺 (𝑦,𝐹)
𝑇 𝐺 (𝑦,𝐹)

)1/2

=

( ∞∑︁
𝑘=0

x𝑘
𝑇S𝑇 Sx𝑘

)1/2

Thus, choosing C = [Q𝜂
1/2 0]𝑇 and D = [0 R𝜂

1/2]𝑇 we
obtain

∥𝐺 (𝑦,𝐹) ,𝑘 ∥2 =

( ∞∑︁
𝑘=0

x𝑘
𝑇

[
Q𝜂

1/2

R𝜂
1/2W𝑘

]𝑇 [
Q𝜂

1/2

R𝜂
1/2W𝑘

]
x𝑘

)1/2

=

( ∞∑︁
𝑘=0

x𝑘
𝑇 (Q𝜂 +W𝑘

𝑇R𝜂W𝑘)x𝑘

)1/2

from which we can state the following equivalence with the
quadratic criterion from Eq. (9).

𝐽 = ∥𝐺 (𝑦,𝐹) ∥2
2 < 𝛾 (17)

3) Stability-H2 LMI Conditions for VIC polytopic LPV
model: First, we have to start from the formulation of the
transfer function for each of the vertex systems 𝑖 = 1, ..., 𝑁:

∥𝐺𝑖, (𝑦,𝐹) ∥2
2 =

∞∑︁
𝑘=0

𝐺𝑇
𝑖, (𝑦,𝐹)𝐺𝑖, (𝑦,𝐹)

=

∞∑︁
𝑘=0

trace{𝐺𝑖, (𝑦,𝐹)𝐺
𝑇
𝑖, (𝑦,𝐹) }

= trace

{ ∞∑︁
𝑘=0

[S𝑖 (A𝑖
𝑘−1B𝐹,𝑖) (A𝑖

𝑘−1B𝐹,𝑖)𝑇S𝑖
𝑇

}
= trace

{
S𝑖

( ∞∑︁
𝑘=0

A𝑖
𝑘−1B𝐹,𝑖B𝐹,𝑖

𝑇 (A𝑖
𝑘−1)𝑇

)
S𝑖

𝑇

}
where S𝑖 = C +DW𝑖 . Considering that the controllability

Gramian X𝐶,𝑖 is defined as

X𝐶,𝑖 =

∞∑︁
𝑘=0

A𝑖
𝑘−1B𝐹,𝑖B𝐹,𝑖

𝑇 (A𝑖
𝑇 )𝑘−1 > 0 (18)

we can obtain the following condition applying Eq. (17).

∥𝐺𝑖, (𝑦,𝐹) ∥2
2 = trace{SiX𝐶,𝑖Si

𝑇 } < 𝛾 (19)

Additionally, X𝐶,𝑖 happens to be the solution of the following
Lyapunov equality:

A𝑖X𝐶,𝑖A𝑖
𝑇 −X𝐶,𝑖 +B𝐹,𝑖B𝐹,𝑖

𝑇 = 0 (20)

To generalise this solution to the LMI framework we substi-
tute X𝐶,𝑖 by a common P = P𝑇 > 0 for all the vertex systems.
Thus equation (20) turns into (10a) and condition (19) into
(10b). Stability is also assessed in (10a) as it is equivalent
to (15) considering that B𝐹,𝑖B𝐹,𝑖

𝑇 > 0.



B. Extended Proof of Proposition 2

Operational constraint (11a) can be defined considering the
maximum squared norm:

∥ u𝑘 ∥2
2≤ max

𝑘≥0
∥ u𝑘 ∥2

2≤ 𝑢𝑚𝑎𝑥
2 (21)

Following [13], considering solution matrix P fulfilling
conditions (10) and introducing intermediate variable F =∑𝑁

𝑖=1 [𝜋𝑖 (𝜃𝜃𝜃 (𝑡))W𝑖]P, the maximum squared norm of the
control effort can be defined as follows:

max
𝑘≥0

∥ u𝑘 ∥2
2= max

𝑘≥0
∥ FP−1x𝑘 ∥2

2

which is upper bounded by the norm for the maximum x

max
𝑘≥0

∥ u𝑘 ∥2
2≤ max

x
∥ FP−1x ∥2

2

This equals to the maximum eigenvalue 𝜎 for all the x
contained in x𝑘

𝑇Px𝑘 , i.e. the ellipsoid defined by P:

max
𝑘≥0

∥ u𝑘 ∥2
2≤ 𝜎(P−1/2F𝑇FP−1/2) (22)

Using definition in (21) and applying Schur lemma [14] for
the polytopic formulation leads to (12a), where 𝑢𝑚𝑎𝑥 can be
substituted by 𝑢𝑚𝑎𝑥,𝑖 .

Similarly, for operational constraint (11b):

∥ x𝑘 ∥2
2≤ max

𝑘≥0
∥ x𝑘 ∥2

2≤ 𝑥𝑚𝑎𝑥
2 (23)

Following [13], with P fulfilling conditions (10), the maxi-
mum squared norm of the state leads to:

max
𝑘≥0

∥ x𝑘 ∥2
2= max

𝑘≥0
∥ Ax𝑘−1 ∥2

2≤ max
x

∥ Ax ∥2
2

Again, last term equals to the maximum eigenvalue 𝜎 for all
the x contained in the ellipsoid defined by P:

max
𝑘≥0

∥ x𝑘 ∥2
2≤ 𝜎(P1/2A𝑇AP1/2) (24)

Using definition in (23) and applying Schur lemma [14] for
the polytopic formulation leads to (12b).
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