
3D Vehicle Detection on an FPGA from LiDAR Point
Clouds

Javier García López
FICOSA ADAS S.L.U

08232, Barcelona, Spain

jgarcia@iri.upc.edu

Antonio Agudo
Institut de Robòtica i Informàtica

Industrial CSIC-UPC 08028,
Barcelona, Spain

aagudo@iri.upc.edu

Francesc Moreno-Noguer
Institut de Robòtica i Informàtica

Industrial CSIC-UPC 08028,
Barcelona, Spain

fmoreno@iri.upc.edu

ABSTRACT
In this paper is presented a deep neural network architec-

ture designed to run on a field-programmable gate array

(FPGA) for detection vehicle on LIDAR point clouds. This

works present a network based on VoxelNet adapted to run

on an FPGA and to locate vehicles on point clouds from a

32 and a 64 channel optical sensor. For training the pre-

sented network the Kitti and Nuscenes dataset have been

used. This work aims to motivate the usage of dedicated

FPGA targets for training and validating neural network due

to their accelerated computational capability compared to

the well known GPUs. This platform also has some con-

straints that need to be assessed and taken care during de-

velopment (limited memory e.g.). This research presents an

implementation to overcome such limitations and obtain as

good results as if a GPU would be used.

This paper makes use of a state-of-the-art dataset such us

Nuscenes which is formed by several sensors and provides

seven time more annotations than the KITTI dataset of the 6

cameras, 5 radars and 1 Lidar it is formed by, all with full

360 degree field of view. The presented work proves real-

time performance and good detection accuracy when moving

part of the CNN presented in the proposed architecture to

a commercial FPGA.

CCS Concepts
• Computing methodologies → 3D imaging

Keywords
Deep learning; Vehicle detection; FPGA; Convolutional Neural

Network

1. INTRODUCTION
The emergence of field-programmable gate arrays (FP-

GAs) in image processing and deep learning is increasing

nowadays due to the benefits of such hardware for con-

ducting faster mathematical computations and processing

operations, but mostly because of the appearance of new

frameworks that allowed developers to port their work to an

FPGA in a more straightforward way. Several studies like

[4] proof the advantages of considering FPGAs as an option

for image processing and deep learning applications.

The goal of this research is to present a comparative of the

performance of a 3D vehicle detection based on LIDAR [5]

point clouds and a known network architecture such as

VoxelNet when running such network on a GPU and on an

FPGA. Furthermore, a state-of-the-art dataset like

Nuscenes [3] has been used in the training and validation of

the proposed method. The needed network adaptions to run

on an FPGA platform and with the mentioned dataset are

described within this paper.

In order to overcome the challenge of extracting 3D infor-

mation from 2D data, several researchers have presented

works and methodologies that have proven remarkable re-

sults in human pose estimation or face expression recogni-

tion, e.g. ([6] or [7]).

In the field of vehicle pose estimation, other image-based

approaches suggested a system with two cameras separated a

known distance for feature matching, 2D detection followed

by a 2D-3D matching phase for calculating the 3D position of

the vehicles, such as in [8], or even a system in which the

ground plane equation is known in advance together with a

2D vehicle detection network ([9] e.g.) to predict as last step

the 3D bounding box around the detected vehicles in the

image.

To avoid these mentioned constrains, the usage of point clouds

from optical sensor such us LIDARs is a good option because

these provide already the required 3D information. However

the accuracy of these sensors and the difficulty to manage 3D

point clouds compared to 2D images have led to these sensors

not being widely used in 3D pose estimation problems.

LIDAR sensors in autonomous driving work normally by

reflecting light beams from a light source in an internal mir-

ror that outputs the beam outside the sensor toward the object

to localize. These sensors rotate around themselves so that

they provide depth information of a 360o surrounding area.

The rotation frequency together with the number of light

beams emitted each cycle are key to obtain accurate environ-

ment information to be used for training of a neural network.

In addition, LIDAR is not subjected to environmental illumi-

nation. Normally these sensor were not used in commercial

applications for autonomous driving due to their high price

and difficulty for data synchronization. However, lately pre-

cise 32 or 64 channel LIDAR sensors have come out in the

market with reasonable price and size that make it more rea-

mailto:jgarcia@iri.upc.edu
mailto:aagudo@iri.upc.edu
mailto:fmoreno@iri.upc.edu

sonable to be integrated in a commercial vehicle. As stated

in works such as [10], although graphics processing units

(GPUs) are more suitable for parallel processing they do

need a high power consumption, which could make them a

bottle-neck for the integration of deep learning algorithms

into vehicles, as they have limited power supply. In this

scenario, FPGA are a low-power consumption option more

suitable for embedded applications as they can be pro-

grammed as a customized integrated circuit that is able to

perform massive parallel processing and data communica-

tions on-chip. We believe this is enough motivation for

pursuing a breakthrough in the field of deep learning appli-

cations on FPGA, since the usage of this platform in com-

mercial vehicles is widely extended already (for image data-

stream conversion e.g.) and the appearance of frameworks

for porting networks to run on FPGA platforms is boosting

up their usage in autonomous vehicles against GPUs.

Figure 1: Example of the performance of the presented pipe-

line in this work for vehicle detection. Planar images are only

used for visualization but not for testing.

2. RELATED WORK

2.1 Image based 3D Object Detection
Over the last years, many image-based approaches for 3D

object detection have been presented showing several ways

of predicting 3D information from 2D images such us [11],

[12], [13], [6] or [14].

Studies like [15] have showed very good results when calcu-

lating the 3D human pose from joint localization. This is

achieved by passing the input image through several hour-

glass phases (e.g) to generate heatmaps to capture features at

various scales. The motivation of doing so is the need of

spatial information for calculating the pose. An understand-

ing of the whole body is crutial to prediction the body

pose.

The architecture of hourglass architecture is formed by a

Convolutional and max pooling layers used to process fea-

tures down to a very low resolution. After reaching the

lowest resolution, the network begins the upsampling to the

original resolution and combination of features across scales.

Hourglass networks are symmetric, so for every layer present

on the way down there is a corresponding layer going up.

After reaching the output resolution of the network, two

consecutive rounds of 1x1 convolutions are applied to pro-

duce the final network predictions. The output of the net-

work will be the mentioned heatmaps where the human joint

will be for each one predicted with pixel accuracy [15].

These approaches tend to use the texture information pro-

vided by the input images to predict the 3D bounding boxes

from 2D images. However, the accuracy of image-based 3D

detection approaches are bounded by the accuracy of the

depth estimation. One of the reasons that motivate the usage

of LIDAR point clouds when solving the issue of the 3D

bounding box calculation is this one, since these optical sen-

sors already provide depth measurement and no error is in-

cluded in the detection pipeline when predicting the depth.

2.2 LIDAR Sensors
There are several LIDAR point clouds disposition or pre-

processing approaches for machine learning and deep learning

applications used over the years. Studies like [16], [17] or

[18] the LIDAR points were projected onto the image for later

feature extraction.

Other approaches like [19] created dense depth map from the

LIDAR point cloud to afterwards use this as input for ma-

chine learning techniques and predict 3D shapes.

On the other hand, more recent works such as [20] proposes a

point cloud processing for transforming them to view and top-

view image and combine these with the input image. This

research uses the sparse point clouds directly from the LI-

DAR sensor following a similar approach as the one proposed

in [1] without treating this input data and avoiding the usage

of planar images as training data. The VoxelNet approach

then compensates the high disparity and variance of the input

data by following these steps:

- Voxel creation: 3D gridding is calculated through

the input scene to divide it in different voxels of a

variable size depending on the object to be located.

The points belonging to each voxel will then have

been grouped after this first step.

- Random sampling: To avoid the different number

of point that could be contained in the different

voxels, a random sampling of points inside each

voxels with a number of points bigger than a prede-

fined threshold is conducted.

- Stacked Voxel Feature Encoding: One key of the

work of [1] is precisely this encoding step, in which

the points inside a voxel are converted into concate-

nated feature with surface information and geomet-

rical information.

- Sparse Tensor Representation: Once the voxel fea-

tures together with the voxel spatial information is

obtained, a tensor with this information is created.

This representation reduces the memory usage and

computation cost during backpropagation.

- Convolutional middle layers: The convolutional

middle layers add more context to the shape de-

scription by passing the tensors through convolu-

tion, batch normalization and ReLu to add more

context to the shape description inside the tensor.

Region Proposal Network: A probability score map

and a regression map are finally calculated by pass-

ing the feature maps from the previous CNN to

three FC Layers for downsampling-upsampling for

obtaining the high resolution feature map.

•

•

•

•

•

•

As shown in Figure 3, a set of 3 convolutional layers, batch

normalization (BN) and ReLu follow the data pre-processing

of the 3D point clouds. For simplicity and analog to Voxel-

Net implementation [1], after the last FCN layer before the

CNN layers, a Sparse Tensor Representation by processing

only the non-empty voxels has been followed in this work.

As explained in [21], the obtained tensor representation after

passing through several VFE layers leads to tensor contain-

ing descriptive information about the shape. The next con-

volutional layers provide context information to the shape

detection already obtained from each Voxel or grid.

One of the breakthroughs of this research is the implementa-

tion of the set of CNNs, BN and ReLu layers running on the

FPGA. For that purpose, the leg-up 4.0 [22] framework has

been used together with ModelSim HLS suite to convert the

implemented layers into readable code by the FPGA.

Making use of the mentioned leg-up [22] framework (ver-

sion 4.0) and the Modelsim HLS design Suite for Intel Arria

10 FPGA the porting from the tensorflow source code of the

convolutional, BN and ReLu layers to translated code read-

able by the FPGA was performed. Nevertheless, for making

the best use of the HW resources of the platform and due to

memory limitations, the hyper-parameters of the network

running on the FPGA were optimized with the q-factor

explained in Section 4.2.

3. CHOSEN DATASET
As mentioned before, the datasets chosen for this work are

the known Kitti and Nuscenes [3], which was released in its

last version in March 2019 and contains more than 7000

samples of images and point clouds fully annotated. The

reason of choosing this last state-of-the-art dataset is mainly

because the high quality of its labelling and big availability

of synchronized sensors. This dataset offers full autonomous

vehicle sensor suite composed by 6 cameras, 5 radars and 1

LIDAR. 23 classes and 8 attributes are labelled in each of

the 1000 scenes of 20s long each.

However, Nuscenes is based on a 32-channel Lidar when

Kitti uses a 64-channel one. This makes that point clouds

in the case of the Kitti dataset are more dense and therefore

the Voxelnet configuration varies in one case and the other.

Another motivation for choosing this dataset for this work is

the synchronization assurance between data from different

sensors provided by Nuscenes. The data synchronization

between sensors it crucial for any image processing method-

ology that takes samples from different sensors. Being able

to match LIDAR point clouds with camera frames taken

both at the exact same time, so that a direct matching be-

tween LIDAR measurement and object on the image is

possible, is highly relevant. In the case of this work, since

LIDAR data points were taken for the detection and corre-

spondent images for the visualization this synchronization

between data was also an important point. The chosen da-

taset assures the synchronization of the data of recording

time by triggering exposure of a camera when the top Li-

DAR sweeps across the center of the camera’s FOV, as

explained in [3].

The fact that both mentioned datasets have different ac-

curacy lead to the need of adapting the VoxelNet architec-

ture to be compatible with 32 channel Lidar sensor as de-

scribed in 4.1.

4. PROPOSED METHOD
In this section, the implementation of the presented pipe-

line in this work is described. As previously commented,

the network architecture used in this paper is based on the

promising VoxelNet due to its good results in object locali-

zation with point clouds. However, the CNNs that take

place in this architecture were modified and adapted to the

application presented since they are running on a FPGA

Hardware. This platform has some promising improve-

ments in machine learning and deep learning like being

able to speed up heavy computations, however it has some

implications that need to be considered during implementa-

tion phase.

One of the biggest differences when programming an appli-

cation that runs on a GPU or on a FPGA is the fact that

available memory to handle the multiple meta-parameters

and weights during CNNs training is more constrained in a

FPGA than in a GPU or CPU. Therefore, one of the break-

throughs of this work is the implementation of a simulated

quantization step needed to run the training and validation

on an FPGA based on a similar approach as the one pre-

sented in [10]. As explained there, when using CPU or

GPU floating-point operation are used, which create gradi-

ents during training.

This approach for converting floating point data to fixed point

shall be designed carefully since this conversion could lead to

a considerable accuracy loss, due to the rounding of big vari-

ables with several decimals to less bit consuming integer

variables. This step of the presented pipeline is defined in 4.2.

4.1 Network Configuration
In this approach, the Nuscenes dataset has been used due to

the big amount of training samples available and because it is

a state-of-the-art dataset. The election of mentioned Nuscenes

dataset and after several tests, following voxel grid sizes has

been elected, depending on the object to be localized (For

training the network with Kitti dataset, the configuration of

the network was the one proposed in [1]):

-Vehicle detection: The point cloud range consid-

ered is [-4,2]x[-40,40]x[0,80] meters along Z, Y

and X axis respectively. Therefore, the voxel size

will be vD = 0.2, vH = 0.2 and vW = 0.2 meters

which leads to D’= 30, H’ = 400 and W’ = 400. For this

selection, we took into consideration the point cloud density

and distribution of the selected dataset and we followed the

steps proposed by [1]. As maximum number of points inside a

voxel T, we chose 50. A total of 3 middle convolutional layers

was selected.

- Pedestrian detection: The point cloud range con-

sidered in this case is [-4,2]x[-20,20]x[0,50] meters

along Z, Y and X axis respectively. The voxel size

will be also vD = 0.2, vH = 0.2 and vW = 0.2 meters

and therefore D’ = 30, H’ = 200 and W’ = 1000.

Since the detection of these classes will require a

bigger number of LiDAR points in each voxel to

have a better perception of the shape, the maximum

number of LIDAR points on each voxel in this case

was set to 50.

•

•

Figure 2: Implemented pipeline for 3D object detection inference and training.

Figure 3: Sensor disposition of the used Nuscenes dataset [3]

4.2 Data Quantization: Preparing the Data for

FPGA
As commented in 1, FPGAs have some constraints that

shall be addressed during the implementation of the net-

work. Taking these design constraints into consideration,

one of the most important processing steps that was included

in this work was the quantization of the data to port it from

floating point to fixed-point so that it can be processed by

the FPGA. Fixed-point variables, weights and operations

are normally used in some platforms because they have no

native libraries for floating-point usage and because these

normally have less memory resources such as FPGA.

Floating point operations require big amount of memory

since every value requires normally between 32 and 64 bits

each. That is sometimes not an option on platform with no

GPU and that is the main reason why these value are nor-

mally re-scaled to be stored in smaller data types and also

for that reason is this scaling and the chosen precision

very critical. Errors due to a bad porting from floating

point to fixed point can be very critical and came make a

re-projection step to project a point out of an image or an

algorithm not converge (e.g). GPU platforms generally

use floating-point operations that can generate continuous

gradients in the training.

Table 1: Table representing the F1 score (F1) and average

precision (AP) for different configuration of q-factors for the

data quantization step, Section 4.2

Name F1 (%) AP(%)

no quantization 94.05 88.29

quantization with 12 bits 88.25 79.24

quantization with 16 bits 90.59 84.24

quantization with 18 bits 90.81 86.01

quantization with 24 bits 94.07 92.03

quantization with 32 bits 94.66 88.5

To solve the commented problem on FPGA platform this

works proposes an implementation for a porting to fixed

point from weights and gradients with the following ap-

proach.

First the training and validation phase has to be set on the

GPU platform. After this first step, a short software to go

through all available variables and weights and analyze

their data type and possible values during the execution

was developed. Like this, we can predict the variables that

will overflow if the fixed-point conversion is done and they

have to be re-scaled. An adaptive calculation of some fac-

tors determining how many bits will be dedicated to integer

part and how many for the fractional part has been devel-

oped for this purpose. For the candidate variables to suffer

from overflow at some point of the training that we the

outcome of the mentioned first analysis these factor will

change at the moment that a bit overflow is predicted.

Figure 4: Example of implementation of a parame -ter with 22

bits for the decimal part, 9 bits for the integer a 1 bit for the

sign (marked in orange).

If a weight or variable is defined as a factor 10.21 e.g.,

meaning 10 bits for integer and 21 bits for fractional part,

this bit arrangement can vary if during training one possi-

ble overflow is detected. This detection is done via some

little memory reserved for internal diagnosis (some number

of bits being utilized on execution time for integer and

fractional part to be used by the localized sensible variables

to suffer overflow). This for sure affected the available

resources during training but enabled us the possibility of

dynamically change these factors.

For the utilized hardware the maximum number of weights and

variables to be observed and analyzed during training for this

purpose was 4000.

To evaluate the proposed method for factorizing and optimiz-

ing the weights and variables, we performed the training of

the network with the KITTI [2] dataset for several bit

amounts, as shown in Table 3:

Table 2: Table representing the F1 score (F1), average precision

(AP) and complete runtime execution of the complete pipeline

when doing inference on the test set of 2000 samples.

Name F1 (%) AP(%) Runtime(ms)

Chipnet [10] 94.05 88.29 17.59

Fused CRF[26] 88.25 79.24 2000

Mixed CRF[27] 90.59 84.24 6000

Hybrid CRF [28] 90.81 86.01 1500

LoDNN [29] 94.07 92.03 18

Ours (Kitti) 94.66 88.5 18

Ours (Nuscenes) 87.25 79.54 18

Table 3: Table comparing the performance in 3D detection of the proposed method for 3 levels of occlusion, hard (until 60 % of the

object is visible), moderate (80% visible) and easy (fully visible).These results proof that with the proposed method, similar results

are obtained when using the Kitti dataset running on a FPGA as in the VoxelNet execution on GPU.

Method

Easy
Car

Moderate

Hard

Easy
Pedestrian
Moderate

Hard

VeloFCN [5] 15.20 13.66 15.98 N/A N/A N/A

MV (BV+FV) [23] 71.19 56.60 55.30 N/A N/A N/A

VoxelNet [1] 81.97 65.46 62.85 57.86 53.42 48.87

Ours (Kitti) 81.82 65.11 61.96 56.89 53.01 47.75

Ours (Nuscenes) 69.24 43.36 41.76 54.44 51.03 44.48

4.3 Convolutional block: preparing data for
FPGA

In the method presented in this work a convolutional block

similar than the one proposed by [10] has been implemented.

One of the main issues of the deep neural network implemen-

tation is the so-called vanishing gradient, which means that

the gradient of the error used in the back-propagation during

training to update the weights gets smaller and smaller on

each layer. That leads to the fact that, the deeper the network

is, the smaller the gradient would get on each step and there-

fore the longer the weight update will take. By recirculating

the input in the output, similar as proposed in the ResNet

[24], the mentioned behavior could be avoided. In equation

1 the formula for weight update is presented, in which η is

the learning rate.

𝑊𝑖+= 𝑊𝑖 + 𝜂 ∗
𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑊𝑖
 (1)

To avoid such behavior a convolutional block based on the

good results shown by the [10] proposal has been imple-

mented. As stated there in [10] this proposed convolutional

block is based on three paths. One is a direct copy of the

input, other with a 3x3 convolutional layer to encode local

features and last one is a dilated 3x3 convolutional layer

[25] to compute features in further positions, but takes less

parameters. Adding these three paths a block equivalent to a

5x5 convolutional is obtained but with fewer parameters,

which is helpful to avoid the mentioned vanishing gradient

effect.

5. EVALUATION AND EXPERIMENTAL

RESULTS
In this section, the experimental results on different datasets

are presented. As it can be seen in Table 2 and 3 the pre-

sented methodology achieves comparable results with

other state-of-the-art approaches in terms of accuracy for

vehicle detection with a lower runtime execution (3).

Results with Nuscenes dataset seem to be a bit less accu-

rate than other methodologies, but still acceptable when

considering that LiDAR sensor has 32-channels and there-

fore, point clouds have less point density for the classes to

be detected.

The visualization of the steps of the presented approach with

Nuscenes and KITTI dataset respectively can be seen in

Figure 3. In these visualizations the intermediate heatmaps

obtained during training are presented together with a pro-

jection of the calculated 3D bounding boxes around the

detected vehicles. These heatmaps calculated in the output

of the FCN layer before the 3 CNN-BN-ReLu phases de-

scribed in Section 2.2 show the 2D position of the 3D candi-

dates to be a vehicle projected on a 2D space.

The training of this pipeline was done using a training set of

6000 LIDAR sweeps from the Nuscenes dataset and around

3700 samples of KITTI dataset. The validation set is formed

by 2000 LIDAR sweeps in Nuscenes and around 3500 in

KITTI dataset. The hardware used for the training was 2

NVIDIA GTX 1080 and the FPGA model used for the infer-

ence of the trained network is a Arria 10 Intel FPGA with the

modelsim-altera software for FPGA development also from

Intel.

6. CONCLUSIONS
Here it is presented a method for detecting vehicles from 3D

point clouds based on state-of-the-art network architecture

such us VoxelNet [1] but adjusted and re-trained on the new

dataset Nuscenes, running on a FPGA.

This work presents an implementation based on outstanding

works like [10] to adapt the development to run on an FPGA.

The results shown in table 3 and 2 demonstrate good compa-

rable results with other methodologies of the presented meth-

od running on the KITTI dataset with the particularity that

this work is designed and implemented to run on an FPGA

compared to the rest of methods presented which run on a

GPU.

This paper and the results presented in it motivate the us-

age of this hardware for deep learning purposes due to its

low price (compared to some GPUs) and dedicated hardware

architecture for intense computational load.

7. ACKNOWLEDGMENT
This work was supported by the Catalan Government inside the

program ”Doctorats Industrials” and by the company FICOSA

ADAS S.L.U. J. García López is supported by the industrial

doctorate of the AGAUR.

Thanks specially to Christian Fernandez for his help and hard work.

8. REFERENCES
[1] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for

point cloud based 3d object detection,” 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp. 4490–4499, 2018.

[2] Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel

Urtasun, “Vision meets robotics: The kitti dataset,” The In-

ternational Journal of Robotics Research (IJRR), 2013.

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh

Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu

Pan, Giancarlo Baldan, Oscar Beijbom, “nuscenes: A

multimodal dataset for autonomous driving,” 2019.

[4] R. Anvari, “Fpga implementation of the lane detection

and tracking algorithm,” 2010.

[5] Bo Li, T. Zhang, T. Xia, “Vehicle detection from 3d lidar

using fully convolutional network,” Robotics: Science and

Systems, 2016.

[6] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and

R. Urtasun, “Monocular 3d object detection for au-

tonomous driving,” Computer Vision and Pattern

Recognition (CVPR), 2016.

[7] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox:

Unifying landmark localization with end to end object

detection,” arXiv:1509.04874, 2015.

[8] Florian Chabot , Mohamed Chaouch , Jaonary Rabarisoa ,

Celine Teuliere, Thierry Chateau, “Deep manta: A coarse-

to-fine many-task network for joint 2d and 3d vehicle,”

Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[9] L. Novák, “Vehicle Detection and Pose Estimation for

Autonomous Driving,” 2017.

[10] Yecheng Lyu, Lin Bai and Xinming Huang, “Chipnet:

Real-time lidar processing for drivable region segmen-

tation on an fpga,” arXiv preprint arXiv:1808.03506,

2019.

[11] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S.

Fidler and R. Urtasun, “3d object proposals for accurate

object class detection,” Advances in Neural Information

Processing Systems (NIPS), 2015.

[12] A. Bulat and G. Tzimiropoulos, “Human pose estima-

tion via convolutional part heatmap regression,” Euro-

pean Conference on Computer Vision (ECCV), pp. 4490–

4499, 2016.

[13] S. M. Aiden Nibali, Zhen He and L. Prendergast, “3d

human pose estimation with 2d marginal heatmaps,”

IEEE’s winter conference on applications of computer vision

(WACV), 2019.

[14] M. Z. Zia, M. Stark and K. Schindler, “Towards scene

understanding with detailed 3d object representations,”

Int. J. of Comput. Vision, 2015.

[15] A.Newell, K. ang and J. Deng, “Stacked hourglass

networks for human pose estimation,” European Com-

puter Vision Conference (ECCV), 2016.

[16] Xiaolong Liu and Zhidong Deng, “A graph-based nonpar-

ametric drivable road region segmentation approach for

driverless car based on lidar data,” Proceedings of the 2015

Chinese Intelligent Automation Conference, 2015.

[17] Nicolas Soquet, Didier Aubert and Nicolas Hautiere,

“Road segmentation supervised by an extended

v-disparity algorithm for autonomous navigation,” Intel-

ligent Vehicles Symposium, 2007.

[18] Patrick Y Shinzato, Diego Gomes, and Denis F Wolf,

“Road estimation with sparse 3d points from stereo data.”

Intelligent Transportation Systems (ITSC), 2014.

[19] Alejandro González, Gabriel Villalonga, Jiaolong Xu,

David Vázquez, Jaume Amores, and Antonio M López,

“Multiview random forest of local experts combining rgb

and lidar data for pedestrian detection,” Intelligent Vehicles

Symposium, 2015.

[20] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia,

“Multi-view 3d object detection network for autonomous

driving,” Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017.

[21] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven

3d voxel patterns for object category recognition,” Com-

puter Vision and Pattern Recognition (CVPR), 2015.

[22] A. Canis, J. Choi, B. Fort, B. Syrowik, R.L. Lian,

Y.T. Chen, H. Hsiao, J. Goeders, S. Brown, J.H. An-

derson, “Legup high-level synthesis,” chapter in

FPGAs for Software Engineers, Springer, 2016, 2016.

[23] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view

3d object detection network for autonomous driving,”

Computer Vision and Pattern Recognition (CVPR), 2017.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,

“Deep residual learning for image recognition,” IEEE con-

ference on computer vision and pattern recognition (CVPR),

2016.

[25] Fisher Yu and Vladlen Koltun, “Multi-scale context aggre-

gation by dilated convolutions,” International Conference on

Learning Representations (ICLR), 2016.

[26] Liang Xiao, Bin Dai, Daxue Liu, Tingbo Hu, and Tao

Wu, “Crf based road detection with multi-sensor fusion,”

Intelligent Vehicles Symposium (IV), 2015.

[27] Xiaofeng Han, Huan Wang, Jianfeng Lu, and Chunxia

Zhao, 2017.

[28] Liang Xiao, Ruili Wang, Bin Dai, Yuqiang Fang, Daxue

Liu, and Tao Wu, “Hybrid conditional random field based

camera-lidar fusion for road detection,” Information Sci-

ences., (XX):1–11, in press, 2015.

[29] Luca Caltagirone, Samuel Scheidegger, Lennart Svens-

son, and Mattias Wahde, “Fast lidar-based road detection

using fully convolutional neural networks,” Intelligent

Vehicles Symposium (IV), 2017.

