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ABSTRACT 
In this paper is presented a deep neural network architec- 

ture designed to run on a field-programmable gate array  

(FPGA) for detection vehicle on LIDAR point clouds. This 

works present a network based on VoxelNet adapted to run 

on an FPGA and to locate vehicles on point clouds from a 

32 and a 64 channel optical sensor. For training the pre- 

sented network the Kitti and Nuscenes dataset have been 

used. This work aims to motivate the usage of dedicated 

FPGA targets for training and validating neural network due 

to their accelerated computational capability compared to 

the well known GPUs. This platform also has some con-

straints that need to be assessed and taken care during de-

velopment (limited memory e.g.). This research presents an 

implementation to overcome such limitations and obtain as 

good results as if a GPU would be used. 

This paper makes use of a state-of-the-art dataset such us 

Nuscenes which is formed by several sensors and provides 

seven time more annotations than the KITTI dataset of the 6 

cameras, 5 radars and 1 Lidar it is formed by, all with full 

360 degree field of view. The presented work proves real- 

time performance and good detection accuracy when moving 

part of the CNN presented in the proposed architecture to    

a commercial FPGA. 

CCS Concepts 
• Computing methodologies → 3D imaging 

Keywords 
Deep learning; Vehicle detection; FPGA; Convolutional Neural 

Network 

1. INTRODUCTION 
The emergence of field-programmable gate arrays (FP- 

GAs) in image processing and deep learning is increasing 

nowadays due to the benefits of such hardware for con- 

ducting faster mathematical computations and processing 

operations, but mostly because of the appearance of new 

frameworks that allowed developers to port their work to an  

 

FPGA in a more straightforward way. Several studies like 

[4] proof the advantages of considering FPGAs as an option 

for image processing and deep learning applications. 

The goal of this research is to present a comparative of the 

performance of a 3D vehicle detection based on LIDAR [5] 

point clouds and a known network architecture such as 

VoxelNet when running such network on a GPU and on an 

FPGA. Furthermore, a state-of-the-art dataset like 

Nuscenes [3] has been used in the training and validation of 

the proposed method. The needed network adaptions to run 

on an FPGA platform and with the mentioned dataset are 

described within this paper. 

In order to overcome the challenge of extracting 3D infor-

mation from 2D data, several researchers have presented 

works and methodologies that have proven remarkable re- 

sults in human pose estimation or face expression recogni- 

tion, e.g. ([6] or [7]). 

In the field of vehicle pose estimation, other image-based 

approaches suggested a system with two cameras separated a 

known distance for feature matching, 2D detection followed 

by a 2D-3D matching phase for calculating the 3D position of 

the vehicles, such as in [8], or even a system in which the 

ground plane equation is known in advance together with   a 

2D vehicle detection network ([9] e.g.) to predict as last step 

the 3D bounding box around the detected vehicles in the 

image. 

To avoid these mentioned constrains, the usage of point clouds 

from optical sensor such us LIDARs is a good option because 

these provide already the required 3D information. However 

the accuracy of these sensors and the difficulty to manage 3D 

point clouds compared to 2D images have led to these sensors 

not being widely used in 3D pose estimation problems. 

LIDAR sensors in autonomous driving work normally by 

reflecting light beams from a light source in an internal mir- 

ror that outputs the beam outside the sensor toward the object 

to localize. These sensors rotate around themselves so that 

they provide depth information of a 360o surrounding area. 

The rotation frequency together with the number of light 

beams emitted each cycle are key to obtain accurate environ-

ment information to be used for training of a neural network. 

In addition, LIDAR is not subjected to environmental illumi-

nation. Normally these sensor were not used in commercial 

applications for autonomous driving due to their high price 

and difficulty for data synchronization. However, lately pre-

cise 32 or 64 channel LIDAR sensors have come out in the 

market with reasonable price and size that make it more rea-
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sonable to be integrated in a commercial vehicle. As stated 

in works such as [10], although graphics processing units 

(GPUs) are more suitable for parallel processing they do 

need a high power consumption, which could make them a 

bottle-neck for the integration of deep learning algorithms 

into vehicles, as they have limited power supply. In this 

scenario, FPGA are a low-power consumption option more 

suitable for embedded applications as they can be pro-

grammed as a customized integrated circuit that is able to 

perform massive parallel processing and data communica-

tions on-chip. We believe this is enough motivation for 

pursuing a breakthrough in the field of deep learning appli-

cations on FPGA, since the usage of this platform in com-

mercial vehicles is widely extended already (for image data- 

stream conversion e.g.) and the appearance of frameworks 

for porting networks to run on FPGA platforms is boosting 

up their usage in autonomous vehicles against GPUs. 

 

Figure 1: Example of the performance of the presented pipe-

line in this work for vehicle detection. Planar images are only 

used for visualization but not for testing. 

2. RELATED WORK 

2.1 Image based 3D Object Detection 
Over the last years, many image-based approaches for 3D 

object detection have been presented showing several ways 

of predicting 3D information from 2D images such us [11], 

[12], [13], [6] or [14]. 

Studies like [15] have showed very good results when calcu-

lating the 3D human pose from joint localization. This is 

achieved by passing the input image through several hour- 

glass phases (e.g) to generate heatmaps to capture features at 

various scales. The motivation of doing so is the need of 

spatial information for calculating the pose. An understand-

ing of the whole body is crutial to prediction the body 

pose. 

The architecture of hourglass architecture is formed by a 

Convolutional and max pooling layers used to process fea- 

tures down to a very low resolution. After reaching the  

lowest resolution, the network begins the upsampling to the 

original resolution and combination of features across scales. 

Hourglass networks are symmetric, so for every layer present 

on the way down there is a corresponding layer going up. 

After reaching the output resolution of the network, two 

consecutive rounds of 1x1 convolutions are applied to pro-

duce the final network predictions. The output of the net-

work will be the mentioned heatmaps where the human joint 

will be for each one predicted with pixel accuracy [15]. 

These approaches tend to use the texture information pro- 

vided by the input images to predict the 3D bounding boxes 

from 2D images. However, the accuracy of image-based 3D 

detection approaches are bounded by the accuracy of the 

depth estimation. One of the reasons that motivate the usage 

of LIDAR point clouds when solving the issue of the 3D 

bounding box calculation is this one, since these optical sen-

sors already provide depth measurement and no error is in-

cluded in the detection pipeline when predicting the depth. 

2.2 LIDAR Sensors 
There are several LIDAR point clouds disposition or pre- 

processing approaches for machine learning and deep learning 

applications used over the years. Studies like [16], [17] or 

[18] the LIDAR points were projected onto the image for later 

feature extraction. 

Other approaches like [19] created dense depth map from the 

LIDAR point cloud to afterwards use this as input for ma-

chine learning techniques and predict 3D shapes. 

On the other hand, more recent works such as [20] proposes a 

point cloud processing for transforming them to view and top-

view image and combine these with the input image. This 

research uses the sparse point clouds directly from the LI-

DAR sensor following a similar approach as the one proposed 

in [1] without treating this input data and avoiding the usage 

of planar images as training data. The VoxelNet approach 

then compensates the high disparity and variance of the input 

data by following these steps: 

- Voxel creation: 3D gridding is calculated through 

the input scene to divide it in different voxels of a 

variable size depending on the object to be located. 

The points belonging to each voxel will then have 

been grouped after this first step. 

- Random sampling: To avoid the different number 

of point that could be contained in the different 

voxels,   a random sampling of points inside each 

voxels with a number of points bigger than a prede-

fined threshold is conducted. 

- Stacked Voxel Feature Encoding: One key of the 

work of [1] is precisely this encoding step, in which 

the points inside a voxel are converted into concate-

nated feature with surface information and geomet-

rical information. 

- Sparse Tensor Representation: Once the voxel fea-

tures together with the voxel spatial information is 

obtained, a tensor with this information is created. 

This representation reduces the memory usage and 

computation cost during backpropagation. 

- Convolutional middle layers: The convolutional 

middle layers add more context to the shape de-

scription by passing the tensors through convolu-

tion, batch normalization and ReLu to add more 

context to the shape description inside the tensor. 

Region Proposal Network: A probability score map 

and a regression map are finally calculated by pass-

ing the feature maps from the previous CNN to 

three FC Layers for downsampling-upsampling for 

obtaining the high resolution feature map. 

• 

• 

• 

• 

• 

• 



As shown in Figure 3, a set of 3 convolutional layers, batch 

normalization (BN) and ReLu follow the data pre-processing 

of the 3D point clouds. For simplicity and analog to Voxel- 

Net implementation [1], after the last FCN layer before the 

CNN layers, a Sparse Tensor Representation by processing 

only the non-empty voxels has been followed in this work. 

As explained in [21], the obtained tensor representation after 

passing through several VFE layers leads to tensor contain-

ing descriptive information about the shape. The next con-

volutional layers provide context information to the shape 

detection already obtained from each Voxel or grid. 

One of the breakthroughs of this research is the implementa-

tion of the set of CNNs, BN and ReLu layers running on the 

FPGA. For that purpose, the leg-up 4.0 [22] framework has 

been used together with ModelSim HLS suite to convert the 

implemented layers into readable code by the FPGA. 

Making use of the mentioned leg-up [22] framework (ver-

sion 4.0) and the Modelsim HLS design Suite for Intel Arria 

10 FPGA the porting from the tensorflow source code of the 

convolutional, BN and ReLu layers to translated code read- 

able by the FPGA was performed. Nevertheless, for making 

the best use of the HW resources of the platform and due   to 

memory limitations, the hyper-parameters of the network 

running on the FPGA were optimized with the q-factor 

explained in Section 4.2. 

3. CHOSEN DATASET 
As mentioned before, the datasets chosen for this work are 

the known Kitti and Nuscenes [3], which was released in its 

last version in March 2019 and contains more than 7000 

samples of images and point clouds fully annotated. The 

reason of choosing this last state-of-the-art dataset is mainly 

because the high quality of its labelling and big availability 

of synchronized sensors. This dataset offers full autonomous 

vehicle sensor suite composed by 6 cameras, 5 radars and 1 

LIDAR. 23 classes and 8 attributes are labelled in each of 

the 1000 scenes of 20s long each. 

However, Nuscenes is based on a 32-channel Lidar when 

Kitti uses a 64-channel one.  This makes that point clouds  

in the case of the Kitti dataset are more dense and therefore 

the Voxelnet configuration varies in one case and the other. 

Another motivation for choosing this dataset for this work is 

the synchronization assurance between data from different 

sensors provided by Nuscenes. The data synchronization 

between sensors it crucial for any image processing method-

ology that takes samples from different sensors. Being able 

to match LIDAR point clouds with camera frames taken 

both at the exact same time, so that a direct matching be-

tween LIDAR measurement and object on the image is 

possible, is highly relevant. In the case of this work, since 

LIDAR data points were taken for the detection and corre-

spondent images for the visualization this synchronization 

between data was also an important point. The chosen da-

taset assures the synchronization of the data of recording 

time by triggering exposure of a camera when the top Li-

DAR sweeps across the center of the camera’s FOV, as 

explained in [3]. 

The fact that both mentioned datasets have different ac- 

curacy lead to the need of adapting the VoxelNet architec-

ture to be compatible with 32 channel Lidar sensor as de-

scribed in 4.1. 

4. PROPOSED METHOD 
In this section, the implementation of the presented pipe-

line in this work is described. As previously commented, 

the network architecture used in this paper is based on the 

promising VoxelNet due to its good results in object locali-

zation with point clouds. However, the CNNs that take 

place in this architecture were modified and adapted to the 

application presented since they are running on a FPGA 

Hardware. This platform has some promising improve-

ments in machine learning and deep learning like being 

able to speed up heavy computations, however it has some 

implications that need to be considered during implementa-

tion phase. 

One of the biggest differences when programming an appli-

cation that runs on a GPU or on a FPGA is the fact that 

available memory to handle the multiple meta-parameters 

and weights during CNNs training is more constrained in a 

FPGA than in a GPU or CPU. Therefore, one of the break-

throughs of this work is the implementation of a simulated 

quantization step needed to run the training and validation 

on an FPGA based on a similar approach as the one pre-

sented in [10]. As explained there, when using CPU or 

GPU floating-point operation are used, which create gradi-

ents during training. 

This approach for converting floating point data to fixed point 

shall be designed carefully since this conversion could lead to 

a considerable accuracy loss, due to the rounding of big vari-

ables with several decimals to less bit consuming integer 

variables. This step of the presented pipeline is defined in 4.2. 

4.1 Network Configuration 
In this approach, the Nuscenes dataset has been used due to 

the big amount of training samples available and because it is 

a state-of-the-art dataset. The election of mentioned Nuscenes 

dataset and after several tests, following voxel grid sizes has 

been elected, depending on the object  to be localized (For 

training the network with Kitti dataset, the configuration of 

the network was the one proposed in [1]): 

 

-Vehicle detection: The point cloud range consid-

ered  is [-4,2]x[-40,40]x[0,80] meters along Z, Y 

and X axis respectively. Therefore, the voxel size 

will be vD = 0.2, vH = 0.2 and vW = 0.2 meters  

 

which leads to D’= 30, H’  = 400 and W’  = 400.  For  this 

selection,  we took into consideration the point cloud density 

and distribution of the selected dataset and we followed the 

steps proposed by [1]. As maximum number of points inside a 

voxel T, we chose 50. A total of 3 middle convolutional layers 

was selected. 

- Pedestrian detection: The point cloud range con-

sidered in this case is [-4,2]x[-20,20]x[0,50] meters 

along Z, Y and X axis respectively. The voxel size 

will be also vD = 0.2, vH = 0.2 and vW = 0.2 meters 

and therefore D’ = 30, H’ = 200 and W’ = 1000. 

Since the detection of these classes will require a 

bigger number of LiDAR points in each voxel to 

have a better perception  of the shape, the maximum 

number of LIDAR points on each voxel in this case 

was set to 50. 

• 
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Figure 2: Implemented pipeline for 3D object detection inference and training. 

 

 

 
Figure 3: Sensor disposition of the used Nuscenes dataset [3] 

 

4.2 Data Quantization: Preparing the Data for 

FPGA 
As commented in 1, FPGAs have some constraints that 

shall be addressed during the implementation of the net- 

work. Taking these design constraints into consideration, 

one of the most important processing steps that was included 

in this work was the quantization of the data to port it from 

floating point to fixed-point so that it can be processed by 

the FPGA. Fixed-point variables, weights and operations 

are normally used in some platforms because they have no 

native libraries for floating-point usage and because these 

normally have less memory resources such as FPGA. 

Floating point operations require big amount of memory 

since every value requires normally between 32 and 64 bits 

each.  That is sometimes not an option on platform with no 

GPU and that is the main reason why these value are nor-

mally re-scaled to be stored in smaller data types and also 

for that reason is this scaling and the chosen precision 

very critical. Errors due to a bad porting from floating 

point to fixed point can be very critical and came make a 

re-projection step to project a point out of an image or an 

algorithm not converge (e.g). GPU platforms generally 

use floating-point operations that can generate continuous 

gradients in the training. 

Table 1: Table representing the F1 score (F1) and average 

precision (AP) for different configuration of q-factors for the 

data quantization step, Section 4.2 

Name   F1 (%) AP(%) 

no quantization   94.05 88.29 

quantization with 12 bits 88.25 79.24 

quantization with 16 bits 90.59 84.24 

quantization with 18 bits 90.81 86.01 

quantization with 24 bits 94.07 92.03 

quantization with 32 bits 94.66 88.5 

 

To solve the commented problem on FPGA platform this 

works proposes an implementation for a porting to fixed 

point from weights and gradients with the following ap-

proach. 

 

First the training and validation phase has to be set on the 

GPU platform. After this first step, a short software to go 

through all available variables and weights and analyze 

their data type and possible values during the execution 

was developed. Like this, we can predict the variables that 

will overflow if the fixed-point conversion is done and they 

have to be re-scaled. An adaptive calculation of some fac-

tors determining how many bits will be dedicated to integer 

part and how many for the fractional part has been devel-

oped for this purpose. For the candidate variables to suffer 

from overflow at some point of the training that we the 

outcome of the mentioned first analysis these factor will 

change at the moment that a bit overflow is predicted. 

 
 

Figure 4: Example of implementation of a parame -ter with 22 

bits for the decimal part, 9 bits for the integer a 1 bit for the 

sign (marked in orange). 

 

If a weight or variable is defined as a factor 10.21 e.g., 

meaning 10 bits for integer and 21 bits for fractional part, 

this bit arrangement can vary if during training one possi-

ble overflow is detected. This detection is done via some 

little memory reserved for internal diagnosis (some number 

of bits being utilized on execution time for integer and 

fractional part to be used by the localized sensible variables 

to suffer overflow). This for sure affected the available 

resources during training but enabled us the possibility of 

dynamically change these factors. 

For the utilized hardware the maximum number of weights and 

variables to be observed and analyzed during training for this 

purpose was 4000. 

To evaluate the proposed method for factorizing and optimiz-

ing the weights and variables, we performed the training of 

the network with the KITTI [2] dataset for several bit  

amounts, as shown in Table 3: 

Table 2: Table representing the F1 score (F1), average precision 

(AP) and complete runtime execution of the complete pipeline 

when doing inference on the test set of 2000 samples. 

Name F1 (%) AP(%) Runtime(ms) 

Chipnet [10] 94.05 88.29 17.59 

Fused CRF[26] 88.25 79.24 2000 

Mixed CRF[27] 90.59 84.24 6000 

Hybrid CRF [28] 90.81 86.01 1500 

LoDNN [29] 94.07 92.03 18 

Ours (Kitti) 94.66 88.5 18 

Ours (Nuscenes) 87.25 79.54 18 

 



Table 3: Table comparing the performance in 3D detection of the proposed method for 3 levels of occlusion, hard (until 60 % of the 

object is visible), moderate (80% visible) and easy (fully visible).These results proof that with the proposed method, similar results 

are obtained when using the Kitti dataset running on a FPGA as in the VoxelNet execution on GPU. 

Method 
 

Easy 
Car 

Moderate 
 

Hard 
 

Easy 
Pedestrian 
Moderate 

 

Hard 

VeloFCN [5] 15.20 13.66 15.98 N/A N/A N/A 

MV (BV+FV) [23] 71.19 56.60 55.30 N/A N/A N/A 

VoxelNet [1] 81.97 65.46 62.85 57.86 53.42 48.87 

Ours (Kitti) 81.82 65.11 61.96 56.89 53.01 47.75 

Ours (Nuscenes) 69.24 43.36 41.76 54.44 51.03 44.48 

 

4.3 Convolutional block: preparing data for 
FPGA 

In the method presented in this work a convolutional block 

similar than the one proposed by [10] has been implemented. 

One of the main issues of the deep neural network implemen-

tation is the so-called vanishing gradient, which means that 

the gradient of the error used in the back-propagation during 

training to update the weights gets smaller and smaller on 

each layer. That leads to the fact that, the deeper the network 

is, the smaller the gradient would get on each step and there-

fore the longer the weight update will take. By recirculating 

the input in the output, similar as proposed in the ResNet 

[24], the mentioned behavior could be avoided. In equation 

1 the formula for weight update is presented, in which η is 

the learning rate. 

 

𝑊𝑖+= 𝑊𝑖 + 𝜂 ∗
𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑊𝑖
       (1) 

 

To avoid such behavior a convolutional block based on the 

good results shown by the [10] proposal has been imple-

mented. As stated there in [10] this proposed convolutional 

block is based on three paths. One is a direct copy of the 

input, other with a 3x3 convolutional layer to encode local 

features and last one is a dilated 3x3 convolutional layer 

[25] to compute features in further positions, but takes less 

parameters. Adding these three paths a block equivalent to a 

5x5 convolutional is obtained but with fewer parameters, 

which is helpful to avoid the mentioned vanishing gradient 

effect. 

5. EVALUATION AND EXPERIMENTAL 

RESULTS 
In this section, the experimental results on different datasets 

are presented. As it can be seen in Table 2 and 3 the pre-

sented methodology achieves comparable results with 

other state-of-the-art approaches in terms of accuracy for 

vehicle detection with a lower runtime execution (3). 

Results with Nuscenes dataset seem to be a bit less accu-

rate than other methodologies, but still acceptable when 

considering that LiDAR sensor has 32-channels and there-

fore, point clouds have less point density for the classes to 

be detected. 

The visualization of the steps of the presented approach with 

Nuscenes and KITTI dataset respectively can be seen in 

Figure 3. In these visualizations the intermediate heatmaps 

obtained during training are presented together with a pro-

jection of the calculated 3D bounding boxes around the 

detected vehicles. These heatmaps calculated in the output 

of the FCN layer before the 3 CNN-BN-ReLu phases de-

scribed in Section 2.2 show the 2D position of the 3D candi-

dates to be a vehicle projected on a 2D space. 

The training of this pipeline was done using a training   set of 

6000 LIDAR sweeps from the Nuscenes dataset and around 

3700 samples of KITTI dataset.  The validation set is formed 

by 2000 LIDAR sweeps in Nuscenes and around 3500 in 

KITTI dataset. The hardware used for the training was 2 

NVIDIA GTX 1080 and the FPGA model used for the infer-

ence of the trained network is a Arria 10 Intel FPGA with the 

modelsim-altera software for FPGA development also from 

Intel. 

6. CONCLUSIONS 
Here it is presented a method for detecting vehicles from 3D 

point clouds based on state-of-the-art network architecture 

such us VoxelNet [1] but adjusted and re-trained on the new 

dataset Nuscenes, running on a FPGA. 

This work presents an implementation based on outstanding 

works like [10] to adapt the development to run on an FPGA. 

The results shown in table 3 and 2  demonstrate good compa-

rable results with other methodologies of the presented meth-

od running on the KITTI dataset with the particularity that 

this work is designed and implemented to run on an FPGA 

compared to the rest of methods presented which run on a 

GPU. 

This paper and the results presented in it motivate the us-

age of this hardware for deep learning purposes due to its 

low price (compared to some GPUs) and dedicated hardware 

architecture for intense computational load. 

7. ACKNOWLEDGMENT 
This work was supported by the Catalan Government inside the 

program ”Doctorats Industrials” and by the company  FICOSA  

ADAS  S.L.U.  J.  García  López  is  supported by the industrial 

doctorate of the AGAUR. 

Thanks specially to Christian Fernandez for his help and hard work. 

8. REFERENCES 
[1] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for 

point cloud based 3d object detection,” 2018 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 

pp. 4490–4499, 2018. 

[2] Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel 

Urtasun, “Vision meets robotics: The kitti dataset,” The In-

ternational Journal of Robotics Research (IJRR), 2013. 

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh 

Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu 

Pan, Giancarlo Baldan, Oscar Beijbom, “nuscenes: A 

multimodal dataset for autonomous driving,” 2019. 



[4] R. Anvari, “Fpga implementation of the lane detection 

and tracking algorithm,” 2010. 

[5] Bo Li, T. Zhang, T. Xia, “Vehicle detection from 3d lidar 

using fully convolutional network,” Robotics: Science and 

Systems, 2016. 

[6] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and 

R. Urtasun, “Monocular 3d object detection for au-

tonomous driving,” Computer Vision and Pattern 

Recognition (CVPR), 2016. 

[7] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: 

Unifying landmark localization with end to end object 

detection,” arXiv:1509.04874, 2015. 

[8] Florian Chabot , Mohamed Chaouch , Jaonary Rabarisoa , 

Celine Teuliere, Thierry Chateau, “Deep manta: A coarse-

to-fine many-task network for joint 2d and 3d vehicle,” 

Conference on Computer Vision and Pattern Recognition 

(CVPR), 2017. 

[9] L. Novák, “Vehicle Detection and Pose Estimation for 

Autonomous Driving,” 2017. 

[10] Yecheng Lyu, Lin Bai and Xinming Huang, “Chipnet: 

Real-time lidar processing for drivable region segmen-

tation on an fpga,” arXiv preprint arXiv:1808.03506, 

2019. 

[11] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. 

Fidler and R. Urtasun, “3d object proposals for accurate 

object class detection,” Advances in Neural Information 

Processing Systems (NIPS), 2015. 

[12] A. Bulat and G. Tzimiropoulos, “Human pose estima-

tion via convolutional part heatmap regression,” Euro-

pean Conference on Computer Vision (ECCV), pp. 4490–

4499, 2016. 

[13] S. M. Aiden Nibali, Zhen He and L. Prendergast, “3d 

human pose estimation with 2d marginal heatmaps,” 

IEEE’s winter conference on applications of computer vision 

(WACV), 2019. 

[14] M. Z. Zia, M. Stark and K. Schindler, “Towards scene 

understanding with detailed 3d object representations,” 

Int. J. of Comput. Vision, 2015. 

[15] A.Newell, K. ang and J. Deng, “Stacked hourglass 

networks for human pose estimation,” European Com-

puter Vision Conference (ECCV), 2016. 

[16] Xiaolong Liu and Zhidong Deng, “A graph-based nonpar-

ametric drivable road region segmentation approach for 

driverless car based on lidar data,” Proceedings of the 2015 

Chinese Intelligent Automation Conference, 2015. 

[17] Nicolas Soquet, Didier Aubert and Nicolas Hautiere, 

“Road segmentation supervised by an extended 

v-disparity algorithm for autonomous navigation,” Intel-

ligent Vehicles Symposium, 2007. 

[18] Patrick Y Shinzato, Diego Gomes, and Denis F Wolf, 

“Road estimation with sparse 3d points from stereo data.” 

Intelligent Transportation Systems (ITSC), 2014. 
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