Unsupervised Image-to-Video Clothing Transfer
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Figure 1: Example of visual clothing transferring. Left, original image of an iconic computer science clothing style. Right, the result
of transferring the cloths from the left image to other images containing one or several subjects in unconstrained poses and background.
This figure illustrates results in individual images, but the system is able generate space-time consistent novel views of clothing in videos.

Abstract

We present a system to photo-realistically transfer the cloth-
ing of a person in a reference image into another person in
an unconstrained image or video. Our architecture is based
on a GAN equipped with a physical memory that updates an
initially incomplete texture map of the clothes that is pro-
gressively completed with the new inferred occluded parts.
The system is trained in an unsupervised manner. The re-
sults are visually appealing and open the possibility to be
used in the future as a quick virtual try-on clothing system.

1 Introduction

Virtual dressing rooms are expected to have a major impact
in the fashion e-commerce industry. A major limitation of
existing systems is that they rely on expensive setups (e.g.
depth cameras) and/or require building sophisticated phys-
ical models of the clothing. We present a simple yet effec-
tive solution to the problem, which does not require mod-
eling the underlying physics of the clothes, while still pro-
ducing photo-realistic results. Fig. 1 illustrates the problem
that this paper addresses. Our model is able to synthesize
space-time consistent novel views of the source clothing,
while simultaneously fitting them to the target person body
shape and maintaining the original background. The pro-
posed method is learned in an unsupervised fashion, that is,
we do not require pairs of images of the same person with

same clothes in different positions.

To address all these challenges, we combined a cloth-
ing segmentation output with a temporally-consistent Gen-
erative Adversarial Network (GAN). Our main contribu-
tion consists in equipping a standard GAN architecture with
a memory module that progressively refines a source tex-
ture map and adapts it to the target person, by filling oc-
cluded regions and adapting to new lighting conditions and
body pose. This work is related to recently proposed deep-
learning approaches for transferring clothes [4, 10]; how-
ever, while these models provide visually compelling re-
sults, they typically rely on 3D human models, and their re-
sults are limited to non-cluttered backgrounds, mild lighting
conditions and require supervised training. Our approach
offers a simple but effective unsupervised image2Video
approach that is shown to be robust results across pose,
background, lighting and body variability without the need
of knowing the underlying geometry of the body nor the
physics ruling the cloth deformations.

2 Problem Formulation

Let I, € R7*Wx3 be an input RGB image of a dressed
person (source), and let x7 = (Xy,...,X7) be the target
video, where X; € RE*Wx3 and the subindex ¢ denotes
the video frame. The target video can be of the same per-
son in I, or a different one. Our goal is to learn a map-
ping M to transform x{ into an output video y7 where
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Figure 2: Overview of our approach for image-to-video cloth transfer. Our architecture consists of three main blocks: a
generator G to transfer cloth items; a memory T that stores textures across long video sequences; and a multiscale discrimi-
nator D to evaluate the photo-realism of the generated image and its consistency with the cloth segmentation labels.

target person is realistically dressed with the clothes of I..
That is, we aim to transfer cloth items from the source
image I. to the target video x7 by learning the mapping
M (xF1.) - y¥ = (Y1,...,Yr). One of our major
contributions is to learn M in an unsupervised manner, that
is, we do not require pairs of images of the same per-
son under different clothes or poses, or the same person
wearing the same clothes under varying body postures.
Instead, our training data consists merely of N input RGB
images {I7}_,.

The output video y7 is expected to be meet the follow-
ing criteria: (i) the transferred cloth items must be adjusted
to the pose and body shape of the target person; (ii) halluci-
nated views of the source clothes that are not visible in the
source image I, must be photo-realistic and consistent with
the visible parts; (iii) transferred cloth items must be con-
sistent with the illumination of the target video x7 ; (iv) tar-
get elements as body parts, background and non-transferred
cloth items must remain fixed; and (v) the texture across the
output frames of y7 must be consistent in space and time.
Dataset Pre-processing: In order to learn the cloth map-
ping transformation, we automatically enrich the input
dataset of RGB images with segmentation masks {IM" }V_,
computed for each input image I, where M € RH*WxS
are the segmentation masks for S cloth labels. We fur-
ther augment the dataset with random occlusions, rotations,
translations and color jitter. Specifically, occlusions are
randomly introduced over the cloth and body regions (ex-
cluding the face) to simulate non-visible parts of the source
clothing to be hallucinated. To help improving the blending
of the transferred cloth onto the image background we also
add occlusions on the cloth-background boundaries.

Cloth Segmentation: Segmentation labels will be used to
guide the cloth transfer process between people under po-
tentially different outfits. Therefore, we define a reduced

number of high-level categories that can be shared even un-
der different clothing styles. Concretely, the segmentation
labels we consider are: hair, skin, top-layerl, top-layer2,
bottom and shoes. For estimating such segmentation labels
we use a PSPNet architecture [11] with a Resnet50 back-
bone, initialized with pre-trained Imagenet weights.

3 Image-to-Video Cloth Transfer

We next describe the main components of our GAN to
photo-realistically transfer clothing (Fig. 2).

Texture Memory: It corresponds to the estimated texture
map of the target cloth. We use the same body partition
and UV parametrization as in DensePose [1]. Att = 0 the
memory is initialized with the cloth’s visible parts from the
source image I.. At each time step, the cloth regions not
seen in the target image are hallucinated by the generator
and cumulatively added to the state memory. An example of
how the memory evolves across a video sequence is shown
in the top of Figure 3.

Memory Query: The texture memory can be accessed
by both the discriminator an the generator. In the gen-
eration phase, the memory is queried using the mapping
® (X, Uy, M, T;—1) — X, which renders the source
cloth into the target frame X;. In order to perform this
mapping, we first extract dense 2D correspondences U, be-
tween the input the image X; and a 3D body model, which
implicitly provides the mapping onto the texture map. The
correspondences are obtained with the pretrained Dense-
Pose network [1]. This initial mapping is still incomplete,
and X contains several regions with missing information.

Cloth Segmentation: The segmentation mask M for
each video frame is inferred using the network we de-
scribed in Sect. 2. This network performs the mapping
Q: (Xk,Mk,ﬂ — M.
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Figure 3: Memory state and segmentation tracking. Top-Left: Input source image I.. Bottom-Left: First frame X; of

the target video in which we seek to transfer the clothes of I.. Top-row (columns 2-5): Visualization of the memory T},
initially containing only the parts visible in I.. Novel regions hallucinated for the frames X, are progressively added into the
texture map. Bottom-row (columns 2-5): Segmentation masks M (automatically estimated) and cloth transfer results Y.

Generator: The incomplete image X, and the input
segmentation masks are passed to the generator GG
(X3, M;) — Y. We force G to primarily focus on the
segmented regions of the body, by adapting the lighting in
the regions of X} which already have texture information,
and inpainting those which do not have.

Memory Update: The new regions in Y, the generator has
hallucinated are mapped back to the texture memory using
the inverse of the mapping we considered during the mem-
ory query phase, thatis, ® =% : (Y;, My, Uy) — Ty.
Multilevel Discriminator: The photo-realism of the gen-
erated image Y is evaluated with the network D(Y, M;).
Its structure is similar to the multilevel PatchGan [9], which
is made of two discriminators with identical architecture
that operate at different image resolutions, one having a
global view of the image to guide the generator to produce
cloth labels, and the other focused on fine texture details.

3.1 Learning the Model

We train our model with a loss made of three terms:

Image Adversarial Loss (L£;): We extend the standard
min-max strategy [3] to enforce the model not just to pro-
duce photo-realistic images but also to be consistent with
the cloth segmentation labels. Concretely, we add an ex-
tra term in the adversarial loss that aims to classify a mis-
matched image-mask pair as a negative sample. Formally,
let X be the input image with cloth segmentation labels M
IP,. the data distribution of the input images and IP, the dis-
tribution of the generated images X = G(X’,M); and M a
segmentation mask randomly chosen from the training set.
The extended adversarial loss Ly is defined as:

L1 = Ex.p, [log(D(X, M))] + M(Ex.p. [log(1 — D(X, M))]

+Eg_p, [log(1 — D(X,M))]), (1)

where A = 0.5 allows balancing the positive-negative rate.

Masked Perceptual Loss (Lp): In order to stabilize the
training, we added a perceptual loss [5] masked over the
clothing regions. This loss penalizes the L, distance be-
tween the original and inpainted images after being pro-
jected into a high dimensional feature space.

Feature Matching Loss (Lr): To further stabilize the
training process we penalize high level features on the dis-
criminators [9], by enforcing the generator to match statis-
tics of the original and inpainted images at multiple feature
levels of the two discriminators.

Total Loss: The final min-max problem is:

G* :argménmgx)qﬁl—&-)\pﬁp—i-)\pﬁp 2)

where Ay, A\p and A are the hyper-parameters that control
the relative importance of every loss term and G* draws
samples from the data distribution.

4 Experimental Evaluation

We next report quantitative and qualitative results for both
images and videos. Table 1 provides a quantitative compar-
ison with the state-of-the-art [7, 2, 4] using the Inception
Score (IS) [8]. Despite [10] is also a closely related work,
its code is not available, preventing its comparison. Our re-
sults are consistently better than the other approaches, and
very close to the real data IS.

Fig. 4-left depicts results on still images. In some of the
examples (e.g. woman with a large coat) there exist large
differences between the source and target clothes but the
results are still very photo-realistic. Fig. 4-right presents
results on image-to-video cloth transfer. In each sequence
the left-most column corresponds to two reference cloth im-
ages I. (source) to be transferred to the target images X;
displayed on the top row. For every video frame, we show
the cloth segmentation estimation M; and the output im-
ages Y, with the transferred clothes. Note that our model



Figure 4: Transferring clothes in images and videos. Left: Cloth transfer in still images, between a source I. and target Xj.
In each case we report the initial estimation X} and the final result Y. Missing areas after removing the original cloth and
warping the reference cloth are marked in yellow. Right: Image-to-video cloth transfer.

Method mean  std
Pose GAN [7] 246 0.80
Pose Variational U-NET [2] 2.79 0.36
VITON [4] 3.11 0.68
Ours X} (only Memory Query) 347 0.56
Ours Y¢ (Memory Query + Generator Completion) 3.94 0.89
Real Data (Upper Bound) 421 0.62

Table 1: Quantitative evaluation using the Inception
Score [8] metric (the highest the better).

shows remarkable temporally consistent results and robust-
ness to cluttered backgrounds and different body postures.
Furthermore, in contrast to previous methods [0, 4], we do
not require the person nor the reference cloth to be initial-
ized from a predefined position. This provides our system
with a high flexibility towards being applied on unrestricted
images from the Internet.
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