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Abstract This chapter explains a precise SLAM technique, PL-SLAM, that allows
to simultaneously process points and lines and tackle situations where point-only
based methods are prone to fail, like poorly textured scenes or motion blurred images
where feature points are vanished out. The method is remarkably robust against
image noise, and that it outperforms state-of-the-art methods for point based contour
alignment. The method can run in real-time and in a low cost hardware.

1 Introduction

The precise localization of an aerial robot is crucial for manipulation. In this section,
we tackle the task of precise localization relative to a close up workspace for robot
inspection and manipulation. The method requires robustness to poorly textured sur-
faces and, when the tracker is lost, relocalize the robot when passing over an already
seen area. SLAM methods have proven effective to accurately estimate trajectories
while keeping record of previously seen areas.
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Since the groundbreaking Parallel Tracking And Mapping (PTAM) [1] algorithm
was introduced by Klein and Murray in 2007, many other real-time visual SLAM
approaches have been proposed, including the feature point-based ORB-SLAM [2],
and the direct-based methods LSD-SLAM [3] and RGBD-SLAM [4] that optimize
directly over image pixels. Among them, the ORB-SLAM seems to be the cur-
rent state-of-the-art, yielding better accuracy than the direct methods counterparts.
However, it is prone to fail when dealing with poorly textured frames or when feature
points are temporary vanished out due to, e.g., motion blur. This kind of situations are
often encountered in man-made workspaces. However, despite the lack of reliable
feature points, these environments may still contain a number of lines that can be
used in a similar way.

Building upon theORB-SLAMframework,we present PL-SLAM(Point andLine
SLAM) [5], a solution that can simultaneously leverage points and lines information.
Lines are parameterized by their endpoints, whose exact location in the image plane is
estimated following a two-step optimization process. This representation is robust to
occlusions and mis-detections and enables integrating the line representation within
the SLAM machinery. The resulting approach is very accurate in poorly textured
environments, and also, improves the performance of ORB-SLAM in highly textured
sequences.

2 PL-SLAMMethod

PL-SLAM pipeline highly resembles that of ORB-SLAM, in which we have inte-
grated the information provided by line features (see Fig. 1). We next briefly review
the main building blocks in which line operations are performed. For a description
of the operations involving point features, the reader is referred to [2]. First, point
and line features are detected using [6] an LSD [7], respectively. Then, after having
obtained an initial set of map-to-image point and line feature pairs, all features of
the local map are projected onto the image to find further correspondences. If the
image contains sufficient new information about the environment, it is flagged as a
keyframe and its corresponding points and lines are triangulated and added to the
map. To discard possible outliers, features seen from less than three viewpoints or in
less than 25% of the frames from which they were expected to be seen are discarded
too (culling). Point and line features position in the map are optimized with a local
BA. Note in Fig. 1 that we do not use lines for loop closing. Matching lines across
the whole map is too computationally expensive. Hence, only point features are used
for loop detection.

We next describe the line parameterization and error function as well as their
integration within the main building blocks of the SLAM pipeline, namely bundle
adjustment and global re-localization (Table1).

In order to extend the ORB-SLAM [2] to lines, we need a proper definition of
the reprojection error and line parameterization. Following [8], let P,Q ∈ R3 be
the 3D endpoints of a line, pd,qd ∈ R2 their 2D detections in the image plane, and
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Fig. 1 PL-SLAM pipeline, an extension of the ORB-SLAM [2] pipeline. The system is composed
by three main threads: Tracking, Local Mapping and Loop Closing. The Tracking thread estimates
the camera position and decides when to add new keyframes. Then, Local Mapping adds the new
keyframe information into the map and optimizes it with BA. The Loop Closing thread is constantly
checking for loops and correcting them

phd,q
h
d ∈ R3 theirs corresponding homogeneous coordinates. From the latter we can

obtain the normalized line coefficients as:

l = phd × qh
d∣∣phd × qh
d

∣∣ . (1)

The line reprojection errorEline is thendefined as the sumofpoint-to-line distances
Epl between the projected line segment endpoints, and the detected line in the image
plane (see Fig. 2-right). That is:

Eline(P,Q, l, θ ,K) = E2
pl(P, l, θ ,K)+ E2

pl(Q, l, θ ,K), (2)

with:
Epl(P, l, θ ,K) = l⊤π(P, θ ,K), (3)
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Table 1 Symbols used in the development of the PL-SLAM method
Definition Symbol

2D detections of lines endpoints
[
P Q

]
pd ,qd ∈ R2

Homogeneous 2D coordinates of endpoints detections pd ,qd ∈ R2 phd,q
h
d ∈ R3

Detected line coefficients l
Line reprojection error Eline

Camera calibration matrix (internal parameters) K
ith camera parameters, θ i = Ri , ti θ i

Projection of P into the image plane of camera (θ ,K) π(P, θ,K)

Detected line reprojection error Eline,d

Detected point to line error Epl,d

Projection of the jth point X j ∈ R3 into the ith keyframe x̃i, j
Estimation error for X j in ith keyframe ei,j
Cost function to minimize during bundle adjustment C

Hubert robust cost function ρ

Covariance matrices for the detection scales Ω i, j , Ω ′
i, j , Ω

′′
i, j

Fig. 2 Left: Notation. Let P,Q ∈ R3 be the 3D endpoints of a 3D line, p̃, q̃ ∈ R2 their projected
2D endpoints to the image plane and l̃ the projected line coefficients. pd,qd ∈ R2 the 2D endpoints
of a detected line, Pd,Qd ∈ R3 their real 3D endpoints, and l the detected line coefficients. X ∈ R3

is a 3D point and x̃ ∈ R2 its corresponding 2D projection. Right: Line-based reprojection error.
d1 and d2 represent the line reprojection error, and d ′

1 and d ′
2 the detected line reprojection error

between a detected 2D line (blue solid) and the corresponding projected 3D line (pink dashed)

where l are the detected line coefficients, π(P, θ ,K) represents the projection of
the endpoint P onto the image plane, given the internal camera calibration matrix
K, and the camera parameters θ = {R, t} that includes the rotation and translation
parameters, respectively.

Note that in practice, due to real conditions such as line occlusions or mis-
detections, the image detected endpoints pd and qd will not match the projections
of the endpoints P and Q (see Fig. 2-left). Therefore, we define the detected line
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reprojection error as:

Eline,d(pd,qd, l) = E2
pl,d(pd, l)+ E2

pl,d(qd, l), (4)

where l is the projected 3D line coefficients and the detected point-to-line error is
Epl,d(pd, l) = l⊤pd.

Based on the methodology proposed in [8], a recursion over the detected
reprojection line error will be applied in order to optimize the pose parameters θ
while approximating Eline,d to the line error Eline defined on Eq. (2).

The camera pose parameters θ = {R, t} are optimized at each framewith aBundle
Adjustment with Points and Lines strategy that constrains θ to lie in the SE(3) group.
For doing this, we build upon the framework of the ORB-SLAM [2] but besides
feature point observations, we include the lines as defined in the previous subsection.
We next define the specific cost function we propose to be optimized by the BA that
combines the two types of geometric entities.

Let X j ∈ R3 be the generic j th point of the map. For the i th keyframe, this point
can be projected onto the image plane as:

x̃i, j = π(X j , θ i ,K), (5)

where θ i = {Ri , ti } denotes the specific pose of the i th keyframe. Given an observa-
tion xi, j of this point, we define following 3D error:

ei, j = xi, j − x̃i, j . (6)

Similarly, let us denote by P j and Q j the endpoints of the j th map line segment.
The corresponding image projections (expressed in homogeneous coordinates) onto
the same keyframe can be written as:

p̃hi, j = π(P j , θ i ,K), (7)

q̃h
i, j = π(Q j , θ i ,K) . (8)

Then, given the image observations pi, j and qi, j of the j th line endpoints, we use
Eq. (1) to estimate the coefficients of the observed line l̃i, j . We define the following
error vectors for the line:

e′
i, j = (̃li, j )⊤(K−1phi, j ), (9)

e′′
i, j = (̃li, j )⊤(K−1qh

i, j ). (10)

The errors (9, 10) are in fact instances of the point-to-line error (3). As explained in
[8] they are not constant w.r.t. shift of the endpoints P j ,Q j along the corresponding
3D line,which serves as implicit regularization allowing us to use such a non-minimal
line parametrization in the BA.
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Observe that representing lines using their endpoints we obtain comparable error
representations for points and lines. We can therefore build a unified cost function
that integrates each of the error terms as:

C =
∑

i, j

ρ
(
e⊤
i, jΩ

−1
i, j ei, j + e

′
i, j

⊤
Ω ′

i, j
−1e′

i, j + e
′′
i, j

⊤
Ω ′′

i, j
−1e′′

i, j

)
(11)

where ρ is the Huber robust cost function and Ω i, j , Ω ′
i, j , Ω ′′

i, j are the covariance
matrices associated to the scale at which the keypoints and line endpoints were
detected, respectively.

An important component of any SLAM method is the Global Relocalization, an
approach to relocalize the camera when the tracker is lost. This is typically achieved
by means of a PnP algorithm, that estimates the pose of the current (lost) frame given
correspondences with 3Dmap points appearing in previous keyframes. On top of the
PnP method, a RANSAC strategy is used to reject outliers correspondences.

In the ORB-SLAM, the specific PnP method that is used is the EPnP [9], which
however, only accepts point correspondences as inputs. In order tomake the approach
appropriate to handle lines for relocalization, we replace the EPnP by the recently
published EPnPL [8], whichminimizes the detected line reprojection error of Eq. (4).

Furthermore, EPnPL is robust to partial line occlusion and mis-detections. This is
achieved by means of a two-step procedure in which first minimizes the reprojection
error of the detected lines and estimates the line endpoints pd,qd. These points, are
then shifted along the line in order to match the projections pd,qd of the 3D model
endpoints P,Q (see Fig. 2). Once these matches are established, the camera pose can
be reliably estimated.

3 Experiments for Validation of the Method

To validate the method, Table2 presents the the localization accuracy of
PL-SLAM [5] against other state-of-the-art Visual SLAM methods, including
ORB-SLAM [2], PTAM [1], LSD-SLAM [3] and RGBD-SLAM [4] using the
TUM RGB-D benchmark [10]. The metric used for the comparison is the Absolute
Trajectory Error (ATE), provided by the evaluation script of the benchmark. Before
computing the error, all trajectories are aligned using a similarity warp except for the
RGBD-SLAM [4] which is aligned by a rigid body transformation. All experiments
were carried out with an Intel Core i7-4790 (4 cores @3.6 GHz), 8Gb RAM and
ROS Hydro [11]. Due to the randomness of the some stages of the pipeline, e.g.,
initialization, position optimization or global relocalization, all experiments were
run five times and we report the median of all executions.

Note that PL-SLAMconsistently improves the trajectory accuracyofORB-SLAM
in all sequences (see Fig. 3 for a comparison example). Indeed, it yields the best
result in all but two sequences, for which PTAM performs slightly better. Neverthe-



Relative Localization for Aerial Manipulation with PL-SLAM 245

Ta
bl
e
2

L
oc
al
iz
at
io
n
ac
cu
ra
cy

in
th
e
T
U
M

R
G
B
-D

B
en
ch
m
ar
k
[1
0]

A
bs
ol
ut
e
ke
yf
ra
m
e
tr
aj
ec
to
ry

R
M
SE

[c
m
]

T
U
M

R
G
B
-D

Se
qu
en
ce

PL
-S
L
A
M

C
la
ss
ic
In
it

PL
-S
L
A
M

L
in
e
In
it

O
R
B
-S
L
A
M

PT
A
M

†
L
SD

-S
L
A
M

†
R
G
B
D
-S
L
A
M

†

f1
_x
yz

1.
21

1.
46

1.
38

1.
15

9.
00

1.
34

f2
_x
yz

0.
43

1.
49

0.
54

0.
2

2.
15

2.
61

f1
_fl

oo
r

7.
59

9.
42

8.
71

–
38
.0
7

3.
51

f2
_3
60
_k
id
na
p

3.
92

60
.1
1

4.
99

2.
63

–
39
3.
3

f3
_l
on
g_
of
fic
e

1.
97

5.
33

4.
05

–
38
.5
3

–

f3
_n
st
r_
te
x_
fa
r

am
bi
gu

ity
de
te
ct
ed

37
.6
0

am
bi
gu

ity
de
te
ct
ed

34
.7
4

18
.3
1

–

f3
_n
st
r_
te
x_
ne
ar

2.
06

1.
58

2.
88

2.
74

7.
54

–

f3
_s
tr
_t
ex
_f
ar

0.
89

1.
25

0.
98

0.
93

7.
95

–

f3
_s
tr
_t
ex
_n
ea
r

1.
25

7.
47

1.
54
51

1.
04

–
–

f2
_d
es
k_
pe
rs
on

1.
99

6.
34

5.
95

–
31
.7
3

6.
97

f3
_s
it_

xy
z

0.
06
6

9.
03

0.
08

0.
83

7.
73

–

f3
_s
it_

ha
lf
sp
h

1.
31

9.
05

1.
48

–
5.
87

–

f3
_w

al
k_
xy
z

1.
54

am
bi
gu

ity
de
te
ct
ed

1.
64

–
12
.4
4

–

f3
_w

al
k_
ha
lf
sp
h

1.
60

am
bi
gu

ity
de
te
ct
ed

2.
09

–
–

–



246 A. Pumarola et al.

Fig. 3 ORB-SLAM[2] vsPL-SLAM[5].Comparisonof the trajectories obtainedusing the state-of-
the-art point-based method ORB-SLAM and the proposed PL-SLAM, in a TUMRGB-D sequence.
The black dotted line shows the ground truth, the blue dashed line is the trajectory obtained with
ORB-SLAM, and the green solid line is the trajectory obtained with PL-SLAM. Note how the use
of lines consistently improves the accuracy of the estimated trajectory

less, PTAM turned not to be so reliable, as in 5 out of all 12 sequences it lost track.
LSD-SLAM and RGBD-SLAM also lost track in 3 and 7 sequences, respectively.
PL-SLAM builds upon the architecture of the state-of-the-art ORB-SLAM andmod-
ifies its original pipeline to operate with line features without significantly compro-
mising its efficiency.

Real-life experiments where done in the Karting experimental site where most
of the methods where tested in real-life conditions in the AEROARMS project.
The method was implemented using a monochromatic camera located at the bottom
of the aerial robot. Figure4 shows the points and lines detected using the PL-SLAM,
and the trajectory followed by the aerial robot before (BSC) and after (ASC) scale
convergence. The scale is computed in the beginning of the fly to obtain the real scale
and once the estimated map scale has converged, we compare the estimated distance
of the robot from the ground against the real one. To obtain the real height, a laser
pointer was installed in the bottom of the robot pointing to the ground and corrected
with the relative angles of the robot.

The Karting presents a challenging scenario as it contains: (1) visual features at
a long distance and (2) apparent lines. Long distant features are prone to error as
small movements of the robot correspond to large displacements of the observed
point. Small errors in the estimation of this points would cause large penalties in
optimization of the 3D map. To overcome these penalties, long distant points were
removed by the points culling filter. Similarly, the apparent lines (not real lines) of
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Fig. 4 Real-life experiments in the Karting experimental site. The figure shows the pipe in the
Karting experimental site and the trajectory obtained after (blue) and before (red) scale convergence.
The figure also shows the points and line detected with the method

the scene, e.g. the pipe contours, were also filtered with the same mechanism to
prevent the Bundle Adjustment from trying to fit non-real scene landmarks in the 3D
map. The experiment concluded that the method can robustly operate on challenging
scenarios with noisy landmarks.

4 Conclusions

In this chapter we have presented PL-SLAM [5], an approach to visual SLAM that
allows to simultaneously process points and lines and tackle situations where point-
only based methods are prone to fail, like poorly textured scenes or motion blurred
images where feature points are vanished out. We have also developed a novel line-
based map initialization approach, which estimates camera pose and 3D map from
5 line correspondences in three consecutive images. This approach holds on the
assumption of constant and small inter-frame rotation in these three images. We
have shown that this indeed is a good approximation for many situations and showed
consistent improvement w.r.t. current competing methods results when evaluating
the full pipeline on the TUM RGB-D benchmark. To the best of our knowledge, the
continuous contours based relative localization approach has not been studied before,
even though it provides a very natural measure of alignment error without the need of
correspondences. The experiments concluded that the method is remarkably robust
against image noise, and that it outperforms state-of-the-art methods for point-based
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contour alignment. The method was also tested in the Karting experimental site were
most of the AEROARMSmethods were tested. The method can run in real-time and
in a low cost hardware.
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