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Abstract We present an efficient, online, and interactive ap-
proach for computing a classifier, called Wild Lady Ferns
(WiLFs), for face learning and detection using small human
supervision. More precisely, on the one hand, WiLFs com-
bine online boosting and extremely randomized trees (Ran-
dom Ferns) to compute progressively an efficient and dis-
criminative classifier. On the other hand, WiLFs use an inter-
active human-machine approach that combines two comple-
mentary learning strategies to reduce considerably the de-
gree of human supervision during learning. While the first
strategy corresponds to query-by-boosting active learning,
that requests human assistance over difficult samples in func-
tion of the classifier confidence, the second strategy refers
to a memory-based learning which uses κ Exemplar-based
Nearest Neighbors (κENN) to assist automatically the clas-
sifier. A pre-trained Convolutional Neural Network (CNN)
is used to perform κENN with high-level feature descrip-
tors. The proposed approach is therefore fast (WilFs run in
1 FPS using a code not fully optimized), accurate (we obtain
detection rates over 82% in complex datasets), and labor-
saving (human assistance percentages of less than 20%).

As a byproduct, we demonstrate that WiLFs also per-
form semi-automatic annotation during learning, as while
the classifier is being computed, WiLFs are discovering faces
instances in input images which are used subsequently for
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training online the classifier. The advantages of our approach
are demonstrated in synthetic and publicly available databases,
showing comparable detection rates as offline approaches
that require larger amounts of handmade training data.

1 Introduction

In recent years we have witnessed the impressive growth of
the amount of visual data available on Internet and special-
ized databases such as images and videos. However, most of
this data is either raw data lacking of any kind of annotation
or data partially labeled.

Computer vision, and particularly object recognition, is
one of the research fields that has benefited greatly from
this abundance of visual data. Nowadays, there exist rel-
atively large datasets containing diverse objects in images
and videos which are used to compute and evaluate object
recognition methods, and as benchmarks among different
approaches [9,20,43]. Nevertheless, the computation of these
databases becomes a tedious and time-consuming task since
they require trained humans to annotate a large number of
object instances in images. Recently, crowdsourcing initia-
tives have emerged to mitigate these demanding tasks1.

A wide variety of statistical methods have been proposed
for object recognition using these databases in the last years.
Machine learning techniques like Support Vector Machines
[8,10,35], Boosting [3,31,49,50,56], Random Forests [7,
13,39], and more recently Deep Learning [19,27,40] are
commonly used to build classifiers robust to large intra-class
variations and other artifacts such as loss of image resolu-
tion, rotations, deformations or lighting changes.

Despite the outstanding results achieved by these clas-
sifiers, most of these methods are not suitable to compute
object classifiers from dynamic data streams currently avail-
able (e.g, images acquired from Internet or image sharing
websites2) because they are usually built offline after pro-
cessing all training data and taking whatever amount of time.
As a result, these methods can not be applied to situations in
which either the training data is obtained continuously, or
the object appearance changes over time.

In such cases, we need to resort to online learning tech-
niques to simultaneously compute and update the classifier
as new data becomes available. Indeed, this has been al-
ready explored in several works [4,14,15,18,23,25,44,58].
Yet, most of these approaches are focused on detecting or
tracking single object instances and exploiting temporal co-
herence. The classifiers built this way become too special-
ized, and generally are constrained to situations where the
object appearance just changes smoothly between consecu-
tive frames. Otherwise, these classifiers tend to suffer from

1 https://www.mturk.com/mturk/welcome
2 https://www.flickr.com/
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Fig. 1 Wild Lady Ferns (WiLFs) for online learning and detection of faces in images. The proposed method discovers new face instances (green
boxes) while computing a discriminative classifier with small human supervision. Red boxes make reference to false positives whereas black ones
are the ground truth. The online classifier is trained with samples annotated by the human (indicated by the letter H at the top left of images) or by
the machine (letter M ) using κ Exemplar-based Nearest Neighbors (κENN). Exemplar samples are denoted in images by the letter X.

drifting3 because they are built via self-learning. To address
this problem, some methods have resorted to human inter-
vention to disambiguate the class labels of difficult train-
ing samples [11,52,54,57]. However, these methods usually
present moderate levels of human assistance.

In contrast to previous methods, we introduce an ap-
proach to incrementally compute a category-level classifier
from continuous but not temporally coherent images. In this
paper, we focus on the problem of simultaneously perform-
ing online face learning and detection, see Fig.1. We refer
to our approach as Wild Lady Ferns (WiLFs), in analogy
to a variety of ferns that is very resistant to different envi-
ronments and requires little human assistance4. Particularly,
WiLFs are an online version of the Boosted Random Ferns
(BRFs) classifier [50,51], based on Random Ferns [39] com-
puted over Histograms of Oriented Gradients (HOG) [8].

In order to achieve online performance, we extend the
original BRFs with three main components: 1) a bootstrap-
ping strategy to retrain the classifier at run time; 2) an effi-
cient version of the online boosting proposed in [15,51] that
allows for a near real time implementation with unoptimized
code; and 3) an interactive human-machine method that in-
tegrates κ Exemplar-based Nearest Neighbors (κENN) [33]
and query-by-boosting active learning [2] to reduce signif-
icantly the degree of human supervision, while maintains
remarkable recognition rates, since the computation of the
classifier is done with training samples annotated both by
the human and the machine (κENN).

While previous online techniques were mainly focused
to tracking specific object instances, WiLFs are suitable for
a much wider range of applications. In the results section we

3 The term drifting refers to the deterioration of the classifier over
time because it is updated with noisy and misclassified samples.

4 http://www.hardyferns.org/

will use standard benchmarks to demonstrate that our clas-
sifier is as discriminative as its offline counterparts. We will
also show that WiLFs are effective for automatic labeling
of large datasets in an interactive manner, where the user
just needs to annotate a small fraction of all samples (i.e,
those samples with a high class uncertainty) and the clas-
sifier discovers automatically most object instances present
in the dataset images. We believe that building such robust
classifiers with so little effort opens a wide range of applica-
tions, for modeling unknown or unexplored areas in a matter
of seconds.

2 Related Work and Contributions

There is a vast literature on the computation of classifiers
for object and face detection. We next highlight only those
works related in type and scope to the proposed method, and
divide them according to what we think are the three most
outstanding contributions of this work.

Efficient categorization. Nowadays, there are many works
focused on learning and detecting complete object categories
instead of recognizing object instances. Yet, as the time to
train is not critical for most of these works, they tend to
use offline learning approaches, multiple cues and complex
features which are costly to compute, and very large train-
ing sets to come up with highly discriminative and robust
category-level classifiers [8,10,13,19,27,29,31,35,38,56].
Consequently, these methods are not suitable for online and
real-time tasks because training the classifiers can take hours
or even weeks in modern PCs or GPUs. In addition, these
offline classifiers can not be adapted to new object appear-
ances unless they are retrained from scratch.

Some methods that are able to achieve good recognition
rates with moderate intra-class variability and at low com-
putational cost are based on the use of Random Forest and

http://www.hardyferns.org/
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Fig. 2 General scheme of the proposed online detection method based on WiLFs. Given an input image (a), the method performs sliding window
over this image (b). Each window sample x is fed to the online classifier that returns a class estimate y (c,d). If the classifier is uncertain about
this estimate (the sample falls inside an uncertainty classification region δ), the method performs active learning in order to label this sample using
human interplay (f,k,l), and to update the classifier with this sample (e). Yet, κ exemplar-based nearest neighbors (κENN) are used in advance to
reduce the degree of human assistance over time (j).κENN predict the sample class from the similarity between the input sample and the exemplar
sample set (i). Finally, non-maximum suppression is used to remove multiple hypotheses (g), resulting in the final detection output (h).

Ferns [7,13,23,28,39,41,48]. In particular, the closest work
with the presented method is the BRFs classifier which uses
boosting to compute an efficient and reliable object classi-
fier from the selection of the most discriminative ferns over
HOG [34,50,51].

Contrary to previous works, we propose an efficient and
online classifier for object class detection, named as Wild
Lady Ferns (WiLFs), that simultaneously learns and detects
faces (our target in this paper) in images in 1 FPS using CPU
only. This allows to exploit large and dynamic data streams
without the need to retrain the classifier from scratch.

Online learning. In order to perform object recognition on
the fly, approaches based on online classifiers have been ex-
tensively proposed in the past [4,14,15,23,55]. However,
such approaches have been designed mainly for the devel-
opment of robust and adaptive trackers for particular objects
that exploit temporal consistency and that only accept small
changes in their appearance. As a consequence, these meth-
ods fail for category-level detection with large intra-class
variability. Typically, these online classifiers are computed
via self-learning using their own detection predictions to up-
date and refine the classifiers [14,15,55]. Although this sort
of learning allows to compute object models incrementally
without using human annotations about the object location,
self-learning is prone to drifting3 and thus it deteriorates the
performance of the classifier. To cope with this problem,
methods commonly use object model priors [17], temporal
consistency [15,23], and human assistance to disambiguate
those difficult cases where the classifier is uncertain [54,57].

In this paper, WiLFs use an online version of the BRFs
classifier [51] but adding human interplay to reduce the risk
of drifting. This differs from [51] where this online classi-
fier was computed via supervised learning. Additionally, this
work provides an extended description and evaluation of the

online BRFs classifier for interactive learning tasks. Fig. 2
shows an overview of the proposed method. More specifi-
cally, we use an efficient version of online boosting [15] to
select iteratively from a shared pool of ferns the most rel-
evant ones to build the classifier (Fig. 2-d). This contrasts
with other works based on ferns where they remain fixed
throughout the training [39,52,54]. As a result, WiLFs are
improved progressively with new available data given that
the classifier is adapted at each time instance to new and
unknown faces images and imaging conditions.

Slight human supervision. Active learning techniques are
widely used in computer vision to reduce the number of
training samples that need to be annotated when computing
a classifier [46]. Approaches such as uncertainty-based sam-
pling [30] and query-by-committee [47] close the learning
loop using human assistance. In these works, the human user
acts as an oracle that annotates/labels those samples that the
classifier is undecided about their class prediction.

Most existing active methods use pool-based sampling
where the learning algorithm iterates repeatedly over a fixed
database [30,47]. However, this is impractical for real-world
tasks such as crowdsourcing where the unlabeled samples
arrive sequentially in the form of continuous rapid streams.
Moreover, performing exhaustive search in a data pool is
time-consuming, and thus unsuitable for supporting on-the-
fly interactive learning [6]. As a result, we opt for a stream-
based interactive learning approach where human and ma-
chine assistances are used jointly to compute robust object
classifiers with scant human supervision over continuous but
not temporal coherent streams of images5. The proposed ap-

5 In this learning methodology, the training samples are individually
fed to the classifier without seeing them again.
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Fig. 3 HOG-based ferns. (a) Image window x with a subwindow su (centered at u ) where the fern f(x;u,θ) is computed. (b) Computation of
the local HOG from oriented gradients within su. (c) HOG-based fern computation with M = 2 binary features. (d) Shared features parameters.

proach integrates active learning with memory-based lear-
ning (see Fig. 2).

For active learning, we utilize query-by-boosting [2] in
order to compute the classifier with difficult samples located
nearby the decision boundaries, and to use human assistance
to label these samples (see Fig. 2-f,k,l). This results in a
more discriminative classifier and in a significant reduction
of human annotations. Moreover, we add an adaptive uncer-
tainty threshold δ for active learning so as to reduce grad-
ually the number of human interventions in function of the
classifier performance. This differs from other works where
the uncertainty threshold is kept fixed during training [52].

For large data sets, though, levels of human intervention
can be relatively high. Consequently, we resort to a memory-
based method to assist the classifier before humans do, ob-
serve Fig. 2-j. We use κ Exemplar-based Nearest Neighbors
(κENN) [33] to label automatically new difficult samples
using a small subset of exemplar samples learned during le-
arning (Fig. 2-i). That way the amount of human supervision
is further decreased but maintaining high recognition rates.
Although similar ideas have been applied with success for
face detection in the last years [31,29], they were used for
offline methods keeping fixed the set of exemplar samples
in run time.

In order to perform κENN with difficult image samples
nearby the decision boundary, we make use of a deep neu-
ral network6 trained on the Imagenet database [9] to encode
these samples with high-level feature descriptors (e.g feature
embedding). Despite WiLFs use a deep Convolutional Neu-
ral Network (CNN) to disambiguate hard samples, WiLFs
are still efficient since the network was computed before (i.e
pre-trained network) and because it runs in CPU with low
computational cost. Moreover, the network is only used for
a few image windows (difficult samples), whereas the ran-
dom ferns classifier is tested densely over the entire image
via sliding window to perform face detection.

3 Wild Lady Ferns: WiLFs

We next describe the main ingredients for the computation
of WiLFs: 1) HOG-based ferns; 2) an online boosting algo-

6 http://www.vlfeat.org/matconvnet/pretrained/

rithm for optimal feature selection, made efficient by means
of a feature sharing scheme; and 3) a human-machine in-
teractive learning approach to compute the online classifier
with limited annotation cost.

3.1 HOG-based Ferns

Like in BRFs [50], we build the ferns computing binary fea-
tures in the HOG domain. This has the benefits of bring-
ing both invariance to lighting changes and intra-class vari-
ations, while they can be computed very efficiently. More
precisely, each fern f consists of a set of M local binary
features f ,

f(x;ui,θi) = [f(x;ui, θ1), . . . , f(x;ui, θM )] (1)

where x ∈ IRH,W is an image window (see Fig. 3-a), and ui
and θi are the parameters of the fern. The parameter ui ∈
IR2 refers to the 2D location in x where the fern is evaluated,
and θi = {θ1, . . . , θM} corresponds to the set of features
parameters.

The output of the fern is an M-dimensional binary ar-
ray, which is in practice represented by an integer value
z ∈ [0, . . . , 2M − 1]. Similarly, the output of each feature
f(x;ui, θj) on the sample x is a binary value that captures
the difference between the values of two HOG bins chosen
randomly. This can be expressed as:

f(x;ui, θj) = I(HOG(sui , b) > HOG(sui , b
′)) (2)

where θj = {b, b′} are the HOG bin indices, I(e) is the in-
dicator function7, and su is a S × S subwindow inside the
image window x where the local HOG is computed (cen-
tered at the pixel position u), see Fig. 3-a. HOG(su, b) is
the value at the b-th bin of the HOG computed in su.

By way of illustration, Fig 3-b,c shows an example of
how a HOG-based fern is computed on a subwindow su. In
this case, M = 2 binary comparisons of HOG cells are con-
sidered, with individual outputs 0,1. The overall output of
this fern is z = (01)2 = 1. The HOG computation is carried
out by calculating gradients within su and casting votes for
a particular spatial partition and orientation bin. Votes are

7 The indicator function I(e) = 1 if e is true, and 0 otherwise.

http://www.vlfeat.org/matconvnet/pretrained/
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Fig. 4 Computation of the online classifier. (a) Input window x.
(b) Shared set of fern-features parameters Ω. (c) Shared set of weak
classifiers Ψ using recursively Ω. (d) Concept of selectors used to pick
up the best weak classifiers. (e) Assembling of final classifier H(x).

weighted according to the gradient magnitude. For this ex-
ample, a 2× 2 spatial grid and 4 orientation bins are consid-
ered. The resulting HOG-descriptor is then a concatenation
of local and adjacent distributions of oriented gradients.

3.2 The Online Classifier

3.2.1 Shared Features Parameters

Before describing in detail the computation of the online
classifier, we introduce a feature sharing scheme in order
to reduce substantially the computational cost of the classi-
fier, an essential issue for real-time applications. To this end,
we compute a small set of R fern-features parameters, Ω =

{θ1, . . . ,θR}, that allows to compute multiple ferns at dif-
ferent locations but sharing the same random pairs of his-
togram bin indices [51]. Fig. 3-d shows a clarifying example
where two random ferns with the same fern-features param-
eters θ = {θ1, θ2} are computed at different image positions
u and v.

This scheme prevents computing a large number of ferns
with specific parameters, which results in an increased com-
putational cost. The set Ω is computed at random and keeps
fixed during learning, see Fig. 4-b.

3.2.2 Online Boosting

We compute the WiLFs classifier using the online boosting
algorithm proposed in [15,16]. Using the same terminology
as in this work, we define a selector hsel(x) to pick the weak
classifier h(x), from a shared pool of weak classifiers Ψ =

{h1, . . . , hK}, that best discriminates the target class C from
the background one B. Fig. 4 shows an illustrative schematic
of the online boosting algorithm. These weak selectors are
combined linearly to compute the two-class classifierH(x):

H(x) =

{
+1 if conf(x) > β

−1 otherwise,
(3)

conf(x) =
1

T

T∑
t=1

hselt (x), (4)

where conf(x) is the confidence of the classifier on predict-
ing that x belongs to the class C, T is the number of se-
lectors, 1

T is a normalization factor, and β is a confidence
threshold whose default value is 0.5. Thus, if the output of
the classifier for a sample x is H(x) = +1, the sample is
assigned to the target or positive class. Otherwise, it is as-
signed to the background or negative class. This online clas-
sifier is computed initially at random, but it is progressively
enhanced by updating the selectors as new samples become
available.

In this work, we build the pool Ψ of K weak classi-
fiers by computing ferns densely over the window x, but us-
ing recursively the shared set of fern-features parameters Ω
(observe Fig. 4-c). That is, we define each weak classifier
hk ∈ Ψ by the probability that the sample x belongs to the
target class using a fern f(x;uk,θk) evaluated at position
uk ∈ {u1, . . . ,uL} and with features parameters θk ∈ Ω.
This can be expressed as

hk(x) = p(y = +1|f(x;uk,θk) = z), (5)

where y = {+1,−1} is the class label, z is the fern out-
put, and {u1, . . . ,uL} are all possible locations in the im-
age window x. Since these probabilities follow a Bernoulli
distribution p(y|f(x;uk,θk) = z) ∼ Ber(y|Θk,z), we can
write that

p(y = +1|f(x;uk,θk) = z) ∼ Θk,z, (6)

whereΘk,z is the distribution parameter indicating the prob-
ability that a sample x in the fern f(x;uk,θk) with output z
belongs to the positive class. These parameters are computed
online during learning through a Maximum Likelihood Es-
timate (MLE) over the labeled set of samples we have pre-
viously observed,

Θk,z =
η+1
k,z

η+1
k,z + η−1k,z

, (7)

where η+1
k,z and η−1k,z are the accumulated numbers of positive

and negative samples for each weak classifier hk with fern
output z. These numbers are initialized equally, but with new
evidence they are progressively re-calculated according to
the input samples 〈x, y〉.

Next, and similarly to [15], each selector hselt (x) chooses
the weak classifier hk(x) ∈ Ψ that minimizes the misclassi-
fication error et,k,

et,k =
λwrongt,k

λwrongt,k + λcorrt,k

, (8)

where λcorrt,k and λwrongt,k are the weights of correctly and
wrongly classified samples by hk(x) at the selector t. These
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Algorithm 1: Online Classifier
Input: Previous online classifier H(x)
Input: Input sample 〈x, y〉, with y = {+1,−1}
Input: Classification weights λcorrt,k , λwrong

t,k

Output: Updated online classifier H(x)
1 Initialize the importance weight λ = 1
2 for r = 1, . . . , R do
3 for l = 1, . . . , L do
4 Test the fern f(x;ul,θr) for every location ul of the

sample x to compute the fern outputs z. (Eq. 1 and 2)

5 for k = 1, . . . ,K do
6 Update the estimate Θk,z of the weak classifier hk ∈ Ψ

using the fern output z from previous computed outputs z.
(Eq. 7)

7 if y = +1 then
8 η+1

k,z = η+1
k,z + 1

9 else
10 η−1

k,z = η−1
k,z + 1

11 for t = 1, . . . , T do
12 for k = 1, . . . ,K do
13 Update the correct and misclassified sample weights.
14 if sign(hk(x)− β) = y then
15 λcorrt,k = λcorrt,k + λ

16 else
17 λwrong

t,k = λwrong
t,k + λ

18 Update the misclassification error et,k. (Eq. 8)

19 Select the weak classifier hselt (x) = hk(x) such that
hk(x) minimizes the misclassification error et,k.

20 Update the importance weight λ,
21 if sign(hselt (x)− β) = y then
22 λ = λ · 1

2·(1−et)

23 else
24 λ = λ · 1

2·et

25 Assemble the final strong classifier

H(x) = sign
(

1
T

∑T
t=1 h

sel
t (x)− β

)
. (Eq. 3 and 4)

classification weights are estimated and updated incremen-
tally using the importance sample weight λ. Once the se-
lector hselt (x) has selected a weak classifier, the importance
weight λ is updated and given to the next selector t+ 1 (see
Fig. 4-d).

Algorithm 1 summarizes the computation of the online
classifier. We refer the reader to lines 2 to 10 to observe the
initial steps for testing and updating the set of weak classi-
fiers Ψ . These steps are done efficiently since the small set
of R fern-features parameters Ω is used to compute all K
weak classifiers (R << K). Hence, the ferns can be com-
puted on the sample x (lines 2 to 4) in advance to updating
the weak classifiers (lines 5 to 10) and the selectors (lines 11
to 24). This reduces significantly the cost of the classifier.

3.3 Efficient Interactive Learning Approach

The proposed interactive learning approach is shown in Fig. 2.
For each input image I and each window sample x (using a

sliding window at multiple scales) the classifier H(x) is ini-
tially tested on x to estimate its class label y = {+1,−1}
(Eq. 3 and Fig. 2-d). This results in performing face detec-
tion or automatic labeling8. Yet, in those situations where
the classifier is ambivalent about its predictions (Fig. 2-f),
the system uses the interactive human-machine learning to
relabel the sample and update the classifier (Fig. 2-e).

In the following, we describe the proposed interactive
learning approach to compute the classifier on the fly using
minimal human supervision. Specifically, this approach is a
pipeline consisting of three main stages: 1) an uncertainty-
based active learning strategy to compute the classifier with
highly informative samples (hard samples), that leads to a
more discriminative classifier and a considerable reduction
of human annotations; 2) an adaptive threshold to adjust the
uncertainty region in function of the classifier performance,
allowing to reduce the percentage of human assistance over
time; and 3) a memory-based learning module that uses ex-
emplar samples seen before to determine the class labels of
difficult samples in advance to human intervention.

3.3.1 Active Learning

In this work, we resort to uncertainty-based active learning
[30,46] to avoid drifting3 problems, frequent in non- and
semi-supervised learning approaches [15], and to decrease
the degree of human interplay because the classifier is learned
only with difficult samples falling within an uncertainty re-
gion, and which are labeled by the human user (like an or-
acle). In Fig. 5-a is shown a demo example that includes
two samples classes. Positive samples are shown by circles
while negative samples are indicated by squares. The un-
certainty region (dashed lines) is defined by a threshold δ
around the decision boundary (solid line) that, in turn, is de-
fined by conf(x) = β (refer to Eq. 3). Note that only a small
portion of samples (cyan and red samples) are labeled by
humans and used to compute the online classifier. The re-
maining samples (gray samples) are unused9 because they
are redundant and do not provide any benefit to the classi-
fier performance (shown in the experiments section). As a
result, the overall number of human annotations decreases
considerably.

As active learning algorithm, we opt for query-by-boosting
[2] because it uses the confidence conf(x) of the online boosted
classifier H(x) to determine whether an input sample x re-
quires human annotation (see Fig. 2-f). This request Qa can
be written as:

Qa(x) = I(β + δ/2 > conf(x) > β − δ/2), (9)

where δ is the uncertainty threshold. If Qa(x) is true the
system asks for human assistance to get the sample class

8 We use these terms interchangeably to express that the system dis-
covers new face instances on images.

9 Albeit the classifier is able to predict their class labels.
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Fig. 5 Interactive learning approach. (a) Uncertainty-based active learning. (b) Adaptive uncertainty threshold δ. (c) Exemplar samples for pre-
dicting the class label of the test sample. (d) Memory-based learning using κENN. The test sample is assigned to the positive class (y = +1).

label (y) with which to update the classifier. On the other
hand, if Qa(x) is false the sample is discarded to compute
the classifier. Note that in Fig. 5-a, Qa(x) is true for all col-
ored samples in the uncertainty region, whereas Qa(x) is
false for the rest.

3.3.2 Adaptive Uncertainty Threshold

In order to adapt the human assistance according to the per-
formance of the classifier, as well as to diminish the degree
of human supervision along the learning, we define an adap-
tive threshold that depends on the incremental classification
rate over the requested samples. That can be formulated as,

δ = 1− ξφ, (10)

where ξ is a sensitivity parameter assigned by the user, and
φ measures the performance of the classifier. In turn, this
performance rate can be computed by

φ = N c/Nq (11)

being Nq and N c the numbers of requested samples and
correctly classified samples, respectively. A sample is said to
be correctly classified when the class label yc coming from
the classifier agrees with the true class label given by the
human user (yc = yh).

Fig. 5-b shows the adaptation of the uncertainty thresh-
old δ. We see that the uncertainty region is narrowed result-
ing in a smaller number of human annotations (colored sam-
ples). This plays a similar role to stopping techniques [46].

3.3.3 κ Exemplar-based Nearest Neighbors

In order to reduce even more the level of human assistance,
we propose to use in advance a memory-based classification
method, that together with active learning, allows labeling
new hard samples using a set of exemplar samples. Fig. 5-c
shows some of them (yellow samples), which correspond to
difficult samples observed before during learning.

In particular, we use κ Exemplar-based Nearest Neigh-
bors (κENN) [33] that, in contrast to more conventional
κNN techniques [37], the classification is done efficiently

by comparing the test sample x against a small group of ex-
emplar samples E = {xe1, . . . ,xeE}. This classification can
be written by

y = argmax
c

p(y = c|x, E ,κ), c = {+1,−1} (12)

where p(y = c|x, E ,κ) denotes the posterior probability of
the sample x given the κ nearest samples in E . Similarly,
this posterior is calculated as

p(y = c|x, E ,κ) =
∑

i∈N (x,κ,E)

ωi I(y(xei ) = c) (13)

whereN (x,κ, E) are the indices of the nearest exemplar
samples, and ωi = 1

d(x,xe
i )

is the weight associated to the
distance between samples x and xei . This distance is, in turn,
defined as d(x,xei ) = ||D(x) − D(xei )||, being D(xj) the
feature descriptor for the sample xj .

Since κENN is done with uncertain image samples in-
side the uncertainty region, we resort to a pre-trained Convo-
lutional Neural Network (CNN) to compute high-level rep-
resentations of these samples with which to perform near-
est neighbors. For this goal, we use the VGG-16 network
trained previously on the Imagenet database6. Specifically,
each sample x is passed through the network to obtain a dis-
criminative feature descriptorD(x). In this work, we use the
third from last layer as feature encoding.

As can be seen in Fig. 5-c, not all samples falling in the
uncertainty area are considered exemplar samples. In order
to control the size of the exemplar set E and thereby main-
tain efficiency, we introduce a scatter measure to select only
those samples which are distant from other ones as exem-
plars. Then, a sample x is considered exemplar if it satis-
fies d(x,xei ) > ζ for all exemplars in E , being ζ a distance
threshold.

Fig. 5-d shows that the test sample is assigned correctly
to the positive class (y = +1) using the class estimate ym
provided by the machine (κENN). This proves that diffi-
cult samples can be labeled automatically using past sam-
ples without human intervention.
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Algorithm 2: Interactive Learning
Input: Online classifier H(x)
Input: Input sample x

Input: Sensitivity parameter ξ
Input: Numbers of learning samples Nc and Nq

Input: Uncertainty classification threshold δ
Output: Updated classifier H(x)
Output: Updated numbers of learning samples Nc and Nq

Output: Updated uncertainty classification threshold δ
1 Test the classifier H(x) in x to obtain the confidence conf(x)

and the class sample estimate y = yc, being yc = H(x). (Eq. 3
and 4)

2 Assess if x falls in the uncertainty region defined by δ. (Eq. 9)
3 if Qa(x) = 1 then
4 Request machine assistance to predict the class sample

label y = ym, being ym the output of κENN. (Eq. 12)
5 Assess if x requires human assistance. (Eq. 14)
6 if Qh(x) = 1 then
7 Request human assistance to provide the true class

label y = yh, being yh the human annotation.
8 Update the number of requested samples

Nq = Nq + 1
9 Update the number of correctly classified samples

Nc = Nc + I(yh = yc)
10 Update the classifier performance φ = Nc/Nq .

(Eq. 11)
11 Update the uncertainty threshold δ = 1− ξφ. (Eq. 10)
12 Add the sample x in the exemplar set E if x is distant

from other exemplar samples (d(x,xe
i=1:E) > ζ).

13 Update the classifier H(x) using the tuple 〈x, y〉. (Alg. 1)

However, there are cases where κENN is not completely
sure about its decision ym, and the system ultimately re-
quires the human assistance to label this sample (y = yh).
Similarly to Eq. 9, we define a second requestQh for human
intervention as:

Qh(x) = I (H(p(y|x, E ,κ)) > ρ) (14)

where H is the Shannon entropy (used to measure to the
confidence of κENN), and ρ = 0.9 is the default threshold
for human assistance. If Qh(x) is true the class sample la-
bel is given by the user (Fig. 2-k). Otherwise, the sample is
annotated by κENN (Fig. 2-j).

Algorithm 2 shows the proposed interactive learning ap-
proach to compute the online classifier. Note that the human
assistance is the last stage in the proposed pipeline, comput-
ing hence the classifier with small human supervision.

4 2D Classification Problem

In this section, we conduct a variety of synthetic experi-
ments in order to observe and analyze in depth the main
contributions of the proposed approach (see Fig. 6). For this
purpose, we resort to 2D classification problems which have
been widely used in the literature to validate and examine
different methods [7,24], since they allow showing more
clearly the effect of diverse parameters over the classifica-
tion results and efficiency.

The first part of this section is devoted specifically to
evaluate and compare WiLFs against other standard and re-
lated methods via supervised learning. By contrast, the sec-
ond part focuses on evaluating the interactive human-machine
learning approach, and compare it with other conventional
learning strategies including supervised and active learning.

Since 2D classification is a simpler problem than face
detection, instead of the proposed CNN-based descriptor, we
opt for a binary feature descriptor and the Hamming distance
to carry out κENN. This descriptor is computed as the out-
put of a set of random binary features (2D decision stumps).
For this work, the descriptor has 500 binary features.

4.1 Classifier Performance Evaluation

The performance evaluation of the presented classifier is car-
ried out over two complex classification scenarios, observe
Fig. 6, where each scenario consists of two sets of 2D sam-
ples belonging to either a positive or a negative class under a
special distribution. Positive samples are indicated in the fig-
ure by cyan crosses while negative samples are shown by red
circles. Both classes have 1000 random samples drawn from
the class distributions. In the first scenario, the samples are
distributed in different clusters with the goal of considering
classification problems with multiple modalities, whereas
the second scenario is a two-arm spiral used to represent
complex and nonlinearly separable distributions.

The performance of WiLFs is evaluated and compared
with other standard classifiers, namely Online Random Ferns
(ORFs) [39], Random Forests (RForest) [7], GentleBoost
classifier (GBoost) [12], and its offline counterpart BRFs [50].
The evaluation is done in terms of the most relevant param-
eters concerned with the computation the WiLFs classifier,
such as the number of selectors (weak classifiers) T and
the depth of ferns, which corresponds with the quantity of
binary features per fern M . Importantly, all classifiers are
computed via fully-supervised learning. The impact of other
learning approaches are addressed in the next section.

For 2D classification scenarios, the classifiers are built
using axis-aligned split functions (2D decision stumps) as
binary features. Each decision stump f maps a given sample
x ∈ [0, 1] × [0, 1] to a Boolean label, f(x) = I(xj > τ),
where xj is to a specific (horizontal or vertical) coordinate
of x, and τ is a random threshold in the interval [0, 1].

To build the fern-based classifiers, we use a large pool
of 500 ferns (sets of decision stumps) computed at random.
Every approach then uses a specific strategy to select and
ensemble ferns into a set of weak classifiers and obtain the
final classification rule H(x). WilFs use an online boost-
ing, BRFs make use of Real AdaBoost and ORFs simply
choose the ferns randomly. Contrary, RForest picks features
that maximize information gain at node-level to build the
binary decision trees, and GBoost ensembles multiple one-
dimensional decision stumps using GentleBoost.
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Fig. 6 2D classification results of WiLFs vs. ORFs [39], BRFs [50], Random Forest [7] and the GentleBoost classifier [12]. Results rows: classifi-
cation results on 1000 positive and negative testing samples. Correctly classified samples are shown in cyan (positive samples) and red (negative
samples). Misclassified samples are shown in black. Confidence rows: confidence maps provided by the classifiers over the entire 2D feature
space. Uncertainty rows: uncertainty maps given by the classifier where brighter regions denote uncertain classification values. Red contours
indicate uncertainty of 90%. Distance rows: score distributions distances between the positive and negative classes.

All methods were tested on samples drawn from the same
distributions as those used in the training sets, and each ex-
periment was repeated 10 times to account for randomness
in feature selection. We base our analysis on two metrics:
the Break-Even Point (BEP) on the precision-recall curve10;
and the Hellinger distance11 that measures the degree of sep-
arability between the positive and negative distributions, ob-

10 BEP is the point in the curve where precision=recall.
11 The squared Hellinger distance for two distributions P and Q is

defined as: H2(P,Q) = 1−
√
k1/k2 exp(−0.25k3/k2), with k1 =

2σP σQ, k2 = σ2
P + σ2

Q, and k3 = (µP − µQ)2.

serve Table 1. We also report the performance with regard
to the training and testing (run) times for various numbers
of weak classifiers T and tree depth values D, that in the
case of WiLFs, BRFs and ORFs corresponds to the num-
ber of binary features M . For the GBoost, we directly use
an implementation publicly available12. Since no trees are
considered, depth D = 1.

A visual comparison of the classification performance
of all presented methods is shown in Fig. 6, for both classi-

12
http:/people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html

http:/people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html
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Classification Scenario 1
Break-Even Point [%] Hellinger Distance [%] Training Time [sec.] Run Times [msec.] D

58.5 63.5 69.1 70.3 7.1 9.2 11.2 16.2 0.03 0.03 0.04 0.05 0.02 0.02 0.02 0.02 1
65.4 71.8 75.9 78.8 15.2 20.0 22.0 27.2 0.03 0.04 0.04 0.05 0.02 0.02 0.02 0.02 2
81.2 85.8 89.9 91.7 30.8 43.4 56.0 61.1 0.04 0.04 0.05 0.06 0.02 0.02 0.03 0.03 5ORFs

91.1 92.7 94.2 95.3 61.6 66.8 76.3 81.0 0.04 0.04 0.06 0.08 0.02 0.02 0.03 0.05 8
73.6 73.2 74.5 76.0 17.5 20.0 23.0 21.5 0.15 0.27 0.60 1.17 0.02 0.02 0.02 0.02 1
92.1 95.4 96.9 97.4 43.6 68.2 77.8 81.9 0.17 0.28 0.62 1.18 0.02 0.02 0.02 0.02 2
95.9 97.1 96.9 97.6 81.3 87.0 89.1 92.5 0.27 0.38 0.73 1.29 0.02 0.02 0.03 0.03 5BRFs

97.0 97.3 97.1 97.5 89.0 92.4 93.8 95.5 0.39 0.51 0.88 1.49 0.02 0.02 0.03 0.05 8
76.1 71.1 75.8 72.1 16.4 18.8 13.2 17.9 1.03 1.57 3.23 6.00 0.02 0.02 0.02 0.02 1
75.5 80.1 84.6 83.9 24.3 30.0 26.7 31.9 1.04 1.61 3.29 6.08 0.02 0.02 0.02 0.02 2
93.5 95.0 95.6 96.6 65.0 76.5 73.9 78.7 1.16 1.74 3.44 6.24 0.02 0.02 0.03 0.03 5WiLFs

95.0 96.0 96.8 96.8 75.9 84.3 85.8 89.1 1.31 1.92 3.65 6.49 0.02 0.02 0.03 0.05 8
74.7 76.3 74.2 74.7 33.2 38.2 43.9 38.8 0.08 0.14 0.34 0.70 0.13 0.23 0.54 1.06 1
68.1 68.5 75.7 74.9 25.7 29.0 30.3 29.0 0.19 0.38 0.94 1.87 0.18 0.33 0.79 1.55 2
91.9 95.1 95.7 95.9 66.4 74.4 80.1 82.4 0.78 1.58 3.95 7.88 0.30 0.57 1.40 2.74 5RForest

96.8 97.0 97.0 97.2 97.4 97.6 98.0 98.5 1.56 3.20 7.77 15.65 0.35 0.69 1.73 3.34 8
GBoost 73.4 73.1 73.7 76.0 18.7 21.6 23.5 22.3 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.02 1

Classification Scenario 2
72.8 75.9 75.0 73.4 26.2 30.2 29.4 30.2 0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.02 1
76.5 76.4 76.9 75.7 30.4 33.0 34.3 34.9 0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.02 2
82.4 82.6 82.9 82.2 45.4 46.8 52.2 52.0 0.04 0.04 0.05 0.06 0.02 0.02 0.03 0.03 5ORFs

88.5 88.7 90.3 89.7 62.5 66.6 73.1 73.3 0.04 0.04 0.06 0.08 0.02 0.02 0.03 0.05 8
90.8 94.9 94.9 94.3 51.4 56.2 60.6 61.3 0.16 0.27 0.61 1.15 0.02 0.02 0.02 0.02 1
94.4 98.2 98.9 99.6 67.7 80.9 88.2 86.4 0.17 0.28 0.62 1.17 0.02 0.02 0.02 0.02 2
98.4 99.6 99.7 99.8 93.2 97.4 98.2 98.3 0.27 0.39 0.72 1.28 0.02 0.02 0.03 0.03 5BRFs

99.1 99.5 99.8 99.8 98.9 99.8 100 100 0.40 0.52 0.88 1.48 0.02 0.02 0.03 0.05 8
84.7 86.8 87.8 85.4 37.9 41.1 43.0 42.6 1.03 1.52 3.14 5.61 0.02 0.02 0.02 0.02 1
87.6 88.9 90.0 90.4 41.9 42.1 44.0 41.6 1.02 1.55 3.08 5.62 0.02 0.02 0.02 0.02 2
90.3 94.4 95.0 95.1 60.6 66.9 69.4 67.9 1.14 1.70 3.19 5.77 0.02 0.02 0.03 0.03 5WiLFs

97.7 97.6 98.1 98.4 88.0 87.6 90.6 92.6 1.30 1.86 3.44 6.05 0.02 0.02 0.03 0.05 8
78.6 79.3 77.5 74.8 36.5 35.1 36.1 36.0 0.08 0.14 0.40 0.69 0.14 0.26 0.58 1.06 1
79.8 78.2 78.4 77.2 33.6 32.9 33.0 33.7 0.20 0.39 0.93 1.84 0.19 0.35 0.76 1.49 2
92.8 94.7 94.7 94.7 83.5 90.1 87.7 90.7 0.69 1.51 3.29 6.97 0.28 0.53 1.19 2.35 5RForest

98.1 98.2 98.6 98.8 99.8 99.5 100 100 1.33 2.50 5.96 11.53 0.33 0.61 1.41 2.71 8
GBoost 88.7 90.8 93.8 94.4 47.0 56.0 59.6 61.4 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.02 1

T 5 10 25 50 5 10 25 50 5 10 25 50 5 10 25 50

Table 1 Classification performance of RFs, BRFs, WiLFs, RForest and GBoost in the scenario of Fig. 6 for different values of weak classifiers
T and tree depth D. First column: mean values of Break-Even Points (BEP) on the precision-recall curve. Second column: Hellinger distances
between classes. Third and fourth columns: computational times for training and testing the classifiers.

fication scenarios and for a case with T = 50 and D = 8

(D = 1 for GBoost). Observe that BRFs and RForest ob-
tain the best classification performance, followed closely by
the WiLFs classifier. These methods attain higher classifica-
tion rates (BEP) and larger separability between classes than
the RFs and GBoost classifiers. Note also that WiLFs, BRFs
and RForest clearly define decision boundaries in the confi-
dence and uncertainty maps whereas RFs and GBoost yield
washed-out maps, indicating larger risk of misclassification.

BRFs obtain better classification results than WiLFs be-
cause BRFs are trained with all the samples in every itera-
tion of the algorithm. This yields a better decision hypothe-
sis. Conversely, WiLFs are updated with one input sample at
time, what results in a less discriminative classifier since the
weak classifiers are adjusted mainly with this single sample
and past evidence.

Table 1 shows an exhaustive quantitative analysis of the
performance and efficiency of the above methods accord-
ing to different classifier configurations, such as the number
of weak classifiers. Once again, BRFs and RForest achieve
the best performance rates (BEP and Hellinger distances).
WiLFs obtain also competitive results with the benefit of be-
ing computed online and available anytime. The ORFs clas-
sifier also obtains remarkable classification rates but using

a more stringent configuration (large values of weak learn-
ers and fern depth). By contrast, GBoost yields a moderate
performance since this classifier just combines individually
decision stumps. Thus, this classifier cannot cope with com-
plex and nonlinearly separable distributions.

Training and run times13 for the diverse methods are also
shown in Table 1. We see that the fern-based methods and
the GBoost classifier are fast in run times. Conversely, RFor-
est presents a much higher computational cost when the val-
ues of T and D get larger. The same behavior occurs for
training times where RForest is the most computationally
expensive method. This is because the size of the trees grow
exponentially with the depth D, requiring thus to compute
much more features with an iterative process based on in-
formation gain. On the other hand, GBoost and ORFs are
the fastest classifiers since GBoost uses single features and
ORFs select the ferns randomly and keep them fixed dur-
ing training (fern probabilities are updated only). The BRFs
classifier shows a remarkable efficiency while attains the
best classification rates. This classifier iterates over the pool

13 Training times refer to the times spent on computing the classifier
using all training samples, whereas run times are the times spent on
testing the classifier on a test sample.
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Fig. 7 Classification performance of the WiLFs classifier using four different learning strategies: supervised, semi-supervised, active and the
proposed method. First column: Incremental learning curves of WiLFs using the F-measure. Second column: Areas under the learning curve
(ALC). Third column: Distribution distances between the positive and negative classes along the learning step. Fourth column: Amounts of human
annotations (human labels) used to compute the classifier for each learning scheme.

of ferns to choose the most discriminative ones. This pro-
cedure is also done in WiLFs but for every training sample
because of this classifier is learned and updated incremen-
tally. This slows down the training step significantly but al-
lows having an online classifier that can be adapted to new
and unexpected conditions, contrary to BRFs. Nevertheless,
once the WiLFs classifier is computed, evaluating this clas-
sifier is fast because it does not involve any updating pro-
cess. This is shown in the run times reported in Table 1
where WiLFs give identical times that ORFs and BRFs.

4.2 Classifier Learning Evaluation

Through this section we evaluate intensively the performance
of WiLFs with the proposed interactive learning approach,
and compare it against other conventional learning strate-
gies. Specifically, we analyze the impact of each of the con-
stituents of the proposed method on the classification rates
and the amount of human assistance during the learning step.

Unlike the previous section where two separated sample
sets were used to compute and test the classifiers (training
and testing steps), so as to compare online and offline meth-
ods, this section evaluates the classification performance of
WiLFs incrementally where the classifier is computed and
tested at the same time. This proceeds as follows: given an
input sample x, the classifierH(x) is first tested on this sam-
ple in order to estimate its class label y. Then, this class
estimate is compared with the true sample label y to com-
pute the incremental performance of the classifier14. Subse-

14 We assume knowing the true class labels of all samples (ground
truth labels) for evaluation purposes.

quently, the classifier is updated with the input sample ac-
cording to the given learning approach. This procedure is
done repeatedly for all input samples.

4.2.1 Learning Approaches Comparison

The classification results of WiLFs for both classification
scenarios (including 2000 positive and negative samples)
and four different learning approaches are shown in Fig. 7.
These learning approaches are:

Supervised: The WiLFs classifier is computed with allN =

4000 samples and using human labels15. That is, for each
sample x the human user provides the corresponding class
label y.

Semi-supervised: The first n samples are labeled by the hu-
man (human labels), whereas the remaining ones are labeled
using the classifier confidence (machine labels). The latter is
computed for a sample x according to y = H(x), see Eq. 3.
In this work we use a value of n = 500.

Active: The classifier is only computed with samples with
high uncertainty about their class predictions. The human
resolves the ambiguity by providing the sample label. Here,
we use a fixed uncertainty threshold of δ = 0.2 and the as-
sistance criterion defined in Eq. 9.

Proposed: The classifier uses active learning in combination
with an adaptive uncertainty threshold δ (Eq. 10). Moreover,
in cases of high uncertainty, the approach resorts first to the
memory-based classification method (Eq. 12) to estimate the

15 For these 2D experiments, we assume that the human labels corre-
spond to the ground truth labels of the class distributions.
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Fig. 8 Incremental performance of the proposed learning approach for the classification scenario 2. First column: Positive and negative class
distributions for diffirent learning instances. Brighter colors denote the last learning instances. Second column: Amounts and overall percentages
of human and machine labels used to compute the WiLFs. Third column: Numbers and final percentage of used exemplar samples. Fourth column:
Adaptive behavior of the uncertainty threshold along the learning process.

sample label. If this method still presents ambiguity in its de-
cision, the approach finally resorts to the human assistance.

The incremental classification rates of WiLFs for the
four learning approach are plotted in Fig. 7-a. We measure
the classification performance using the F-score. Note that
all learning approaches have the same tendency initially, they
begin with very low values of classification and then start to
improve substantially as more samples are available. The su-
pervised, active and proposed learning methods achieve the
highest classification scores, contrary to the semi-supervised
approach. This is also seen in Fig. 7-b where the areas under
these learning curves (ALC) are displayed. Once more, the
active and the proposed approaches perform best, followed
closely by the supervised learning. The semi-supervised le-
arning, conversely, deteriorates the classifier performance.
This is because the self-learning that is applied to this method
suffers from drifting, making the classifier to be constantly
updated with erroneously labeled samples. Specifically, this
classifier deteriorates after n = 500 samples, which is the
number of human labels in these experiments.

Fig. 7-c shows the two-class distribution distances through
the learning step. Again, observe that all curves are mono-
tonic increasing functions, except the semi-supervised method
that decreases over time. The active and the proposed ap-
proach obtain the largest separability between classes, re-
ducing hence the risk of misclassification. Interestingly, the
supervised method produces much lower distances, despite
using the full set of samples, than the active and the pro-
posed learning methods. This occurs because these latter
methods compute the classifier with difficult samples only,
and because they use human-made labels to remove the drift-
ing problem. This focuses the classifier mainly on the deci-
sion boundaries and makes it more discriminative that using
all training samples (supervised method).

With respect to the degree of human supervision, Fig. 7-
d shows the total numbers and percentages of samples la-
beled by the human to train the classifier. Notice that the
supervised approach uses all samples with their correspond-
ing human labels, while in the semi-supervised approach,

the human just annotates the first 500 samples. The other
samples are labeled by the classifier (machine labels). This
reduces considerably the annotation cost but at the expense
of reducing the classification rates, see Fig. 7-a,b. On the
other hand, the active method achieves remarkable classifi-
cation rates but with a much higher cost of labeling. By con-
trast, the proposed approach reduces significantly the num-
ber of human annotations by using a second classification
stage based on exemplar samples, and using an adaptive un-
certainty threshold that depends on the classifier confidence.
On average, we reduce by 96% the human annotations in
relation to the supervised method and 44% on the active
method. This shows that the proposed approach obtains high
classification rates with limited human-labeling cost.

4.2.2 Proposed Learning Performance

The progressive performance of the proposed method on the
two-arm classification scenario is also shown in Fig. 8. For
instance, the evolution of the positive and negative class dis-
tributions during the learning is illustrated in Fig. 8-a, where
it is seen that the distributions are increasingly further apart
because the classifier is more discriminative as more sam-
ples are used. In Fig. 8-b, we plot the incremental num-
bers and general percentages of samples used to compute the
classifier according to whether they were labeled by either
the human (human labels) or the same classifier (machine
labels). As can be seen, the number of human-labeled sam-
ples is much smaller than the machine-labeled samples and
represents only a very small portion of the total set of sam-
ples (2.7%), showing again that WiLFs can be trained with
little human effort16.

Furthermore, we see that over time the classifier is built
mostly with machine labels that with human labels. This is
due to the system already has a sufficient number of exem-
plar samples that allow determining the class of incoming

16 Note that although the classifier is computed with both kinds of
samples, the annotation cost uniquely corresponds to human labels,
since machine labels are automatically processed.
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samples with enough accuracy. This is observed in Fig. 8-
c, where the number of exemplar samples is given. Initially,
this number grows quickly because the system lacks of ex-
emplar samples and it uses thus human labels, but once the
system has achieved a sufficient quantity of these samples,
the number of new exemplar samples is greatly reduced,
showing a saturation tendency. Note also that the percent-
age of exemplar samples (1.8%) is less than the percent-
age of human-labeled samples, indicating that the quantity
of exemplar samples does not necessarily correspond with
the degree of human interventions.

The behavior of the uncertainty threshold δ along the le-
arning is illustrated in Fig. 8-d. Since the threshold is adapted
in accordance to the classifier performance φ, this threshold
is decreased progressively over time because the classifier is
gradually more discriminative.

5 Experiments

WiLFs are validated in this section in three datasets for face
detection in the wild. They are the FDDB [21], GENKI [1],
and AFW [59] datasets. FDDB contains 2845 images with
5171 faces collected from Yahoo news website, AFW con-
tains 468 faces in 205 images, and GENKI has 3500 images
with a wide range of faces collected from Internet. These
datasets include faces under very difficult conditions such
as blurring, out-of-plane rotations, large intra-class appear-
ance and occlusions.

In the next experiments, unless otherwise stated, the clas-
sifier is computed with T = 750 weak classifiers, R = 12

random ferns, and M = 8 binary features. For the interac-
tive learning, we use κ = 11 exemplar samples, a human as-
sistance threshold of ρ = 0.7, and a learning rate of ξ = 1.0.
The histogram of oriented gradients is built using four gra-
dient channels and a cell size of 3 × 3 pixels. The size of
input images are normalized by height to 640 pixels.

All experiments are conducted in Matlab using a CPU
Intel i7 (2.20 GHz). To speed up some time-consuming pro-
cesses, some functions were implemented using mex-files
and OpenCV.

5.1 Feature Descriptor

Before evaluating WiLFs as a whole, we first test the per-
formance of the feature descriptor to perform κENN. Par-
ticularly, we compare the proposed CNN-based descriptor17

against other more conventional descriptors consisting of
vectors of HOG, RGB, and gray-scale pixel values in the
image samples. Table 2 shows these feature descriptors and
their classification rates to perform nearest neighbors with
a set of face and background samples (1000 image patches
from FDDB) selected nearby the classification boundary (β=0.5).
For these descriptors, the Euclidean metric is applied to mea-
sure the distance between two samples.

17 http://www.vlfeat.org/matconvnet/pretrained/

Descriptor Evaluation
Descriptor Recall Precision F-Score

Euclidean Distance
HOG 70.6 81.1 75.5
RGB 90.8 81.4 85.8
Gray 81.6 84.1 82.8
CNN 98.6 89.1 93.6

Hamming Distance
BinHOG 99.8 62.4 76.8
BinRGB 96.2 80.3 87.5
BinGray 95.4 84.7 89.7

Table 2 Classification rates (%) according to different descriptors.

Classification and Annotation Rates
Human Assistance threshold (ρ)

0.4 0.6 0.8 0.9 1.0

Gray-Binary Descriptor (BinGray)
F-Score 98.5 97.7 96.0 95.1 89.7
Annotation 56.5 35.3 23.0 17.1 0.0

Convolutional Neural Network (CNN)
F-Score 99.4 98.4 97.3 97.1 93.6
Annotation 35.4 21.4 13.1 12.4 0.0

Table 3 Classification rates according to the assistance threshold ρ.

In addition, we compute binary descriptors on HOG,
RGB, and Gray vectors to obtain more compact and faster
descriptors using the Hamming distance [5,42]. In detail,
these binary descriptors compute a set Boolean comparisons
between different feature values. For example, the BinRGB
descriptor compares pixel intensities for different color chan-
nels. In this experiment, 1000 binary features are chosen at
random.

Looking at Table 2, the CNN-based descriptor attains the
best classification scores followed by the BinGray descrip-
tor. This result shows that the deep neural network can be
used as feature encoder to obtain a discriminative and reli-
able representation to perform κENN. Despite the good re-
sults, we also see that the method is not perfect (F-Score of
93.6%) and that the precision rate is not so high (89.1%), in-
dicating that false positives may appear during the learning
and produce the drifting of the classifier. However, this is not
a big issue since the most difficult samples are assigned for
human assistance. For this experiment, the human interven-
tion was discarded by setting the assistance threshold ρ = 1.

The classification rates for the BinGray and CNN-based
descriptors in terms of the human assistance are given in
Table 3. Notice that the classification score increases as the
threshold ρ gets smaller. This is because as the assistance
threshold is reduced, more hard samples are labeled by hu-
mans and less by κENN. However, this is at the expense
of an increase in the annotation cost. Besides, observe that
the CNN-based descriptor outperforms again to the BinGray
descriptor, both in classification and annotation cost.

http://www.vlfeat.org/matconvnet/pretrained/
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Fig. 9 Incremental detection rates of the proposed method for different learning approaches on the FDDB dataset.

5.2 Learning Approaches Comparison

Similarly to the 2D classification problem, WiLFs are evalu-
ated in the FDDB dataset for different learning approaches.
Each one with a particular degree of human supervision.
They are: supervised, semi-supervised, active, and the pro-
posed interactive learning using κENN. Fig. 9 shows the
incremental learning and detection performance of WiLFs
using these learning approaches.

In Fig. 9-a,b we see that all learning approaches produce
pretty similar detection rates (ALC and F-Score), except the
semi-supervised approach which deteriorates once the su-
pervision step has finished (500 samples). This behavior is
also seen in Fig. 9-c where the Hellinger distance for each
approach is plotted.

Although all approaches provide similar classification
scores, the great benefit of the proposed method is that the
cost of human annotation during learning is significantly re-
duced. This is depicted in Fig. 9-d where the percentages
of human and machine annotations are indicated. Here, it is
worth mentioning that the human annotation is requested if
any of the test windows in the input image is uncertain and
falls within the uncertainty region (see Fig. 2 and Fig. 5).
Then, it is very likely that most images are assisted because
of the large number of windows inside them (about mil-
lions). This explains, in part, why the human annotation cost
is relatively high in comparison with the 2D classification
problem. The other reason is clearly that the face detection
problem is much more complex than classifying samples in
a two-dimensional space.

5.3 Online Face Detection

Some face detection results of WiLFs through the learning
are shown in Fig. 1. The output of WiLFs is represented by
colored rectangles. Green rectangles correspond to true po-
sitive detections, whereas red ones are false positives. Black
boxes indicate the ground truth [21]. The letter H stands for
human annotation, M for machine annotation, and X for
exemplar samples. Hence, if an image contains any of these
letters, this means that this image has been used for updat-
ing the classifier with human/machine annotations or used
for extracting exemplar samples.

Fig. 10 Positive and negative exemplar samples extracted during the
training of the WiLFs classifier. These samples are used to perform
κ-Exemplear Nearest Neighbors (κENN).

Proposed Learning Approach
Method ALC Hellinger Human

Distance Annotation
ACT 79.7 79.1 2494 [87.6%]
ACT+AUT 80.1 79.4 2112 [74.2%]
ACT+AUT+κENN 79.7 81.2 646 [22.7%]

Table 4 Classification results of WiLFs according to the main con-
stituents of the proposed interactive learning approach: active learning
(ACT), uncertainty threshold (AUT), and the κ Exemplar-based Near-
est Neighbor (κENN).

Observe that the method is able to detect most faces us-
ing small human supervision. In early steps of learning, the
human assistance is needed much often, but as the classifier
gets more confident the human interplay decreases gradually
giving way to machine annotation (κENN). Note also that
some images are unused to compute the classifier because
the faces in these images are relatively easy to classify and
they do not fall in the uncertainty region. Moreover, we see
that the exemplar samples are computed with human annota-
tions so as to prevent false positives to be added as exemplar
samples.

We show in Fig. 10 some positive and negative exemplar
samples extracted during learning. They correspond to im-
age windows with certain degree of difficulty. For example,
the positive samples (first two rows) are faces having out-
the-plane rotations and occlusions. On the other hand, neg-
ative samples correspond to background regions with some
patterns resembling to facial components such as eyes.
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Fig. 11 Detection performance and annotation cost of WiLFs according to the sensitivity parameter ξ and the human assistance threshold ρ.

5.4 Interactive Learning Approach

The impact of each constituent of the proposed interactive
learning approach is indicated in Table 4. Keep in mind that
this approach consists of three main components: active le-
arning (ACT), an adaptive uncertainty threshold (AUT), and
a memory-based module based on κENN. Note that with
each component the annotation cost is substantially decreased
while the Hellinger distance and ALC present similar val-
ues. The full method obtains similar classification scores
to other learning approaches using a quarter of face anno-
tations. This is particularly significant in comparison with
conventional supervised approaches which need all anno-
tations to compute classifiers. The proposed approach can
even further reduce the cost of human-made annotations by
adjusting the sensitivity ξ and the assistance threshold ρ pa-
rameters. This will be evidenced in following sections.

5.5 Interactive Object Annotation

Another contribution of this work is that WiLFs can be used
for interactively annotating face instances over a stream of
images. This is a by-product of the proposed method that au-
tomatically discovers new instances as the classifier is com-
puted and tested online. Particularly, WiLFs achieve a F-
Score of 82.5% over the entire dataset, representing a recall
of 71.6% and a precision of 97.2%, with an human anno-
tation cost of 22.7%. This means that WiLFs annotate au-
tomatically 48.9% of faces, what is twice the quantity of
annotations made by humans. In detail, this corresponds to
2528 faces given that the dataset includes 5171 faces.

5.6 Learning Parameters

In this section we see the effect of the learning parameters ξ
and ρ over the detection performance and the amount of hu-
man labeling. Fig. 11 shows the detection score and human
annotation cost for different parameters values.

We observe in Fig. 11-a,b the performance of WiLFs for
varying values of the sensitivity parameter ξ. As this param-
eter gets larger, both the human and machine annotations are
gradually reduced to the point that the classification score
drops and the machine annotations disappear. This is visible
for the case ξ = 1.05. For the other values the incremental
detection plots present similar scores.

The choice of this parameter is, therefore, a trade off be-
tween the cost of labeling and the detection performance.
With small values of ξ WiLFs use more training samples to
compute the classifier and attain good detection rates. Con-
versely, high values of ξ reduce the uncertainty threshold δ
to a greater extent, limiting the human interplay and training
the classifier with insufficient number of samples. We sug-
gest that a value of ξ = 1 is a good compromise. Neverthe-
less, we note that for a value of ξ = 1.02 the annotation cost
is reduced by half whereas the F-Score remains the same.

With respect to the human assistance threshold ρ, the in-
cremental detection performance of WiLFs is visualized in
Fig. 11-c. For all the addressed values of ρ the proposed
method shows very similar scores. This is because in all
cases the classifier is computed approximately with the same
quantity of training samples (around 60%). The only differ-
ence lies in whether the samples are labeled by humans or
by κENN. This can be seen in Fig. 11-d where the number
of human annotations is lessened a long with the increase of
ρ, while the number of machine annotations is augmented.
This behavior occurs because the parameter ρ controls the
confidence of κENN to annotate automatically input sam-
ples. Therefore, if the value of ρ is small the learning sys-
tem has less confidence on κENN and it requires then more
human intervention.

We have found that for the CNN-based descriptor a value
of ρ around 0.7 is a good trade off between remarkable de-
tection rates and low annotation cost. With larger values the
method uses more often the κENN system, increasing the
risk of adding false positives. Keep in mind that κENN is
not perfect as it was shown in previous sections. On the other
hand, using small values of ρ imply more human assistance.

5.7 Number of Weak Classifiers

Table 5 shows the detection results of WiLFs in function of
the number of weak classifiers (T ) used to compute the on-
line classifier. The table shows that increasing the number
of weak classifiers leads to a more discriminative classifier
which obtains better detection rates. Yet, we found that be-
yond 750 weak classifiers the method does not improve sig-
nificantly the rates. It is interesting to observe that the cost of
human annotation augments with the number of weak clas-
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Fig. 12 Detection plots provided by WiLFs and other methods on the FDDB dataset. Left: ROC curves. Right: Zoomed curves.

Weak Classifiers
# Weak Classifiers 250 500 750

Learning and Detection Rates (%)
ALC 73.1 79.5 79.7
F-score 78.8 81.9 82.5
Hellinger Distance 80.9 80.4 81.2
Human Annotation 16.5 17.2 22.7

Computation Times [in seconds]
Detection 0.31 0.31 0.30
Updating 0.28 0.40 0.62
Total 0.45 0.49 0.68

Table 5 Learning and detection rates and computation times of WiLFs
in terms of the number of weak classifiers T on the FDDB dataset.

sifiers. This is presumably because of the larger number of
weak hypotheses supporting the final classification.

Table 5 also indicates the average computational times,
per image, of testing and updating the classifier during the
online learning. The detection time remains constant despite
having more weak classifiers. This is due to the feature shar-
ing scheme and the use of an efficient classifier based on
random ferns (Sec. 3.2). We would like to remark that this
detection time is short given that the detection is done using
a sliding window at all image locations and multiple scales.

On the other hand, we see that the time spent to update
the classifier increases with the number of weak classifiers.
This occurs because the online boosting algorithm iterates
on T selectors in order to choose the most discriminative
weak classifiers, observe Alg. 1. Although updating the clas-
sifier is the most computationally expensive process, this is
done fewer times and only for those images requiring hu-
man assistance. In short, WiLFs run about 1 FPS to simulta-
neously learn and detect faces in images.

5.8 Comparison with the state of the art

In this section we evaluate and compare WiLFs against other
face detection approaches on the FDDB [21], GENKI [1],
and AFW [59] databases. Since the list of approaches is ex-
tensive, we only mention some of them in this work.

FDDB Dataset. Unlike the previous experiments, where WiLFs
are sequentially learned and tested at the same time through

the entire dataset, here we follow the evaluation procedure
proposed in [21] using 10-fold cross-validation. This allows
to compare our online method against other offline meth-
ods using separated sets of training and test images. Indeed,
our method does not need this kind of validation since the
classifier is tested and evaluated in advance to the updating
step, measuring thus the generalization capability in an on-
line way.

We show in Fig. 12 the detection plots for two versions
of WiLFs. The first one corresponds to the standard WiLFs
proposed and tested in previous experiments. The second
one (WiLFs +κENN) is WiLFs tested at a larger image reso-
lution (i.e height normalization of 1020 pixels instead of 640
pixels) in order to detect very small faces in images. This
version also adds a verification step during detection using
κENN. That is, once the classifier has generated a set of po-
tential detections, κENN is used to filter out false detections
in the uncertainty region. This differs from past experiments.
Remember that the memory-based method (κENN) is used
only to assist and update the online classifier but not for de-
tection. Here, however, we see that combining OBRFs and
κENN improves the detection rates at the expense of an in-
crease of the computational cost.

Looking at WiLFs together other works in the state of
the art, we notice that our detection results are good (es-
pecially for an online algorithm) but distant from other re-
cent methods, see for instance Hu et al. [19] and Najibi et
al. [38]. We refer mainly to deep convolutional networks that
are trained for long periods of time. In our case WiLFs are
a more straightforward method based on extremely random-
ized trees and boosting in order to have an online and ef-
ficient classifier. Nevertheless, we consider that introducing
deep-learning ideas can increment significantly the perfor-
mance of classical methods. That is our case where WiLFs
make use of a deep network trained in advance to compute
feature descriptors. Moreover, unlike deep networks that are
computed offline using a fully supervised learning, WiLFs
are trained incrementally using small human supervision.
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Fig. 13 Output of WiLFs on the GENKI dataset. Green rectangles are correct face detections, while red ones are false positives. The ground truth
is indicated by black boxes. Letters H and M stand for human and machine annotations. Letter X denotes that the sample is an exemplar.
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Fig. 14 Learning and detection performance of WiLFs on the GENKI
face dataset according to their main components (ACT, AUT, and
KENN). Left: Incremental detection performance. Right: Number of
human and machine annotations.

Despite the excellent rates provided by deep learning,
the works Li et al. [31] and Kumar et al. [29] obtain remark-
able detection rates using a set of discriminative exemplar
samples. These methods are related with the proposed ap-
proach but are computed offline, while WiLFs are continu-
ously adding exemplar samples as new images are available.

Fig. 1 displays the response of the proposed method on
the FDDB dataset. WiLFs are able to detect most faces in
spite of hard conditions. However, the method has difficulty
for detecting faces under occlusions and with large out-of-
plane rotations. We assume that if multiple classifiers are
trained by separated for each view, the detection performance
would increase substantially. This idea was already addressed
in [53] for multi-view object detection.

GENKI Dataset. The proposed method is also validated in
the GENKI face dataset. WiLFs are computed and tested
simultaneously across 3500 face images spanning a wide
range of subjects, facial appearance, illumination, imaging
conditions, and camera models [1]. Fig. 13 shows some ex-
ample images. In this database, most images contain only
one person and faces are mainly seen from a frontal view.

Similarly to Table 4, Fig. 14-left shows the learning and
detection performance of the method in terms of its main
components (ACT, AUT and κENN). We observe that all
configurations present a similar behavior: the incremental
detection rate (F-score) improves along with the number of

Face Detection Rates on GENKI Dataset
Detector Recall Precision F-score Training IoU
SSH 98.7 93.7 96.2 Offline 0.4
SSH 89.6 85.1 87.3 Offline 0.5
WiLFs 90.2 95.6 92.8 Online 0.5

Table 6 Detection rates (%) of WiLFs and SSH detectors.

Fig. 15 Face detection results provided by [38].

samples used to compute WiLFs. Nevertheless, Fig. 14-right
shows again that using κENN and the adaptive threshold
(AUT), the amount of human intervention is drastically re-
duced. This becomes more evident in κENN where the per-
centage of human annotation drops from 44% (1540 images)
to 6.03% (211 images).

To compare our approach in this dataset, we have tested
a recent and state-of-the-art face detector based on deep le-
arning. Particularly, we use the SSH detector18 proposed by
Najibi et al. [38] which provides outstanding detection rates
on the FDDB dataset, refer to Fig. 12. This detector was
tested over the 3500 dataset images using default settings.

Table 6 reports the face detection rates provided by SSH
and WiLFs. Note that SSH is tested using two different Inter-
section over Union (IoU) thresholds during evaluation since
the box predictions given by SSH differ substantially in size
from the ground truth. Please look at Fig. 15 to see some ex-
amples. To avoid penalizing this detector, apart from the de-
fault threshold (0.5) we also considered a looser value (0.4)
that results in very high detection rates. In particular, SSH
obtains 98.7 of recall but a lower precision score (93.7). This
is caused by a problem in the dataset annotation: only one
face is annotated per image. Hence, other faces detected by
SSH are considered as false positives, reducing thus the pre-
cision. In Fig. 15 we see that SSH detects multiple faces

18 https://github.com/mahyarnajibi/SSH

https://github.com/mahyarnajibi/SSH
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Fig. 16 Detection results provided by WiLFs in the AFW face dataset.

and its robustness to out-of-plane rotations. This excellent
performance is, however, at expense of a rigorous and of-
fline training using a fully and manually annotated dataset,
as well as the use of GPU cards.

Our method, on the other hand, achieves remarkable de-
tection rates: 90.2 and 95.6 of recall and precision respec-
tively. The gap in performance between the rates attained in
FDDB and GENKI datasets lies in that latter is comprised
mainly of frontal faces, showing again that WiLFs perform
better for frontal views. In spite of that, the proposed method
achieves good detection rates for a classifier that is trained
incrementally (one sample at time) and efficiently using a
CPU card, as well as requiring much less human supervi-
sion. Fig. 13 shows some examples with the response of
WiLFs during the online face learning and detection.

AFW Dataset. WiLFs are also tested in the AFW face dataset
[59]. It is a small dataset with 205 images containing faces
under challenging conditions which is used for face detec-
tion, pose estimation, and landmark localization in the wild.
Fig. 16 shows some examples of the output of WiLFs for
face detection. Similar to the FDDB and GENKI datasets,
the method is able to detect the most frontal faces but it ex-
hibits certain difficulty for rotated faces. As suggested be-
fore this can be dealt using a multi-view approach.

The number of human annotations and the detection rates
of WiLFs during training are visualized in Fig. 17. We see
that the incremental detection values are relatively low be-
cause the database is small and the online classifier needs
a substantial number of training samples to obtain good re-
sults. Note, for instance, that in Fig. 9-a WiLFs attain re-
markable results after 500 image samples. The same occurs
to the accumulative numbers of human and machine anno-
tations, shown in Fig. 17-b, where the degree of human in-
tervention decreases slightly since the dataset is small. How-
ever, we see that the number of machine annotations is grow-
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Fig. 17 Learning and detection performance of WiLFs on the AFW
dataset.

ing steadily. Specifically, the final numbers of human and
machine annotations are 147 samples (71.7%) and 58 sam-
ples (28.3%) respectively.

Since the AFW database is very small, the performance
of WiLFs is quite inferior to other approaches in the state
of the art. For comparison we have computed the Average
Precision (AP) score which measure the face detection per-
formance in terms of recall and precision for varying thresh-
olds. Our method obtains an Average Precision (AP) score
of 71.4 while other works attain very high scores. This is
the case of Li et al. [32] and Mathias et al. [36] which ob-
tain 96.7 and 97.1 respectively. However, these approaches
were computed offline with larger datasets (e.g above 10k
images). Contrary, we learn and test our classifier on the fly
with AFW data only.

6 Conclusions

We have presented Wild Lady Ferns (WiLFs), an online and
interactive detection approach that in contrast with other of-
fline and time-consuming methods is capable of detecting
faces using small human supervision. Despite the results ob-
tained by WiLFs are distant from recent methods based on
deep learning, the proposed approach allows to simultane-
ously learn and detect faces on the fly in about 1 frames
per second without using temporal information or tracking
ideas. In addition, WiLFs reduce gradually the amount of
human intervention whereas conventional approaches and
deep networks are mostly fully supervised, requiring of thou-
sands or millions of human-made image annotations. As fu-
ture work, we will study integrating further deep-learning
techniques into WiLFs to increase the detection performance
but keeping the efficiency and online computation of WiLFs.
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