
Integrating Human Body MoCaps into Blender using RGB Images

Jordi Sanchez-Riera Francesc Moreno-Noguer
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Figure 1. The proposed mocap system is composed of three modules. Given a RGB image the first module detect the body 2D joint positions, then these
locations are passed to the second module that infers the 3D joint locations in world coordinates and finally the third module is responsible to communicate

with Blender application and convert the 3D joint locations into rotation angles for our 3D human model.

Abstract—Reducing the complexity and cost of a motion capture
(mocap) system has been of great interest in recent years. Unlike
other systems that use depth range cameras, we present an
algorithm that is capable of work as a mocap system with a single
RGB camera and it is completely integrated in an off-the-shelf
rendering software. This makes our system easily deployable in
outdoor and unconstrained scenarios. Our approach builds upon
three main modules. First, given solely one input RGB image
we estimate 2D body pose; the second module estimates the 3D
human pose from the previously calculated 2D coordinates and
the last module calculates the necessary rotations of the joints
given the goal 3D point coordinates and the 3D virtual human
model. We quantitaviely evaluate the first two modules using
synthetic images, and provide qualitative results of the overall
system with real images recorded from a webcam.

Keywords–MoCap; 2D, 3D human pose estimation; Synthetic
human model; Action mimic.

I. INTRODUCTION

Motion capture (mocap) systems are used in industry and
research to record real motions. The applications of such
systems span from animating virtual characters or facial ex-
pressions, navigate into virtual reality (VR) environments, to
modeling human-human/robot/object interactions. Professional
mocap systems are expensive, complex to use and need of
some dedicated space to record the motions, usually with
multiple cameras. More modern systems, just require to wear
a suit which has reflective markers or motion sensors [1], [2].
These systems store the motions into files with a standard
format that can be shared with other applications. However,
due to the complexity of recording and processing the data
from such systems, and that not everyone can afford to acquire
a mocap suite, it is not easy to find motion files processed by
third parties. Or even in the case we can find public repositories

with motion files as in [3] or [4], the motions we can find may
not be those we need.

In order to make the mocap recordings more affordable,
there have been several attempts to find alternatives to reduce
the complexity and time to process the recorded data. A
good example can be found in [5], where they only need
two calibrated cameras to infer 3D points given by a set
of reflective markers on the human body. To eliminate the
burden of having to wear body/cloth markers, authors in [6]
propose a new system that uses depth images, therefore 3D
locations come directly from the camera sensor device. This
method, however, still needs a camera calibration process,
which is a tedious task. More recently, [7] eliminated the
need of camera calibration proposing a system able to infer
3D joint locations from a single RGB camera. At the same
time, the irruption of Kinect camera has encouraged homebrew
developers to program algorithms using the API device library
to achieve an inexpensive mocap system for body [8] or faces
[9]. Unfortunately, the official API library is only available on
Windows platforms and some of the free alternative libraries
are obsolete.

Similar to [7], we propose an algorithm that is able to
infer 3D body joint locations from a single RGB camera, and
at the same time we integrate it to a Blender 3D modeling
software [10] that allows us to generate realistic renders using
Makehuman [11] 3D human model. This allows easy saving
and exporting captured motions into an industry standard mo-
tion file, which could be used by other software applications.
Moreover, eliminating the need of a depth sensor device, as
opposite to [6], [8], we can use our system both indoors and
outdoors. As illustrated in Figure 1, our algorithm is composed
by three modules. The first module takes the images from



the camera and estimates the 2D joint articulations of the
body. We then estimate the 3D human pose locations from
the 2D detected joints, and finally the third module calculates
the rotation of each joint to map from the virtual 3D human
body joints to the 3D pose locations estimated by the second
module.

The rest of the paper is organized as follows. In the next
section is discussed the related work for the first and second
implemented modules, in section III is described the developed
algorithm as well as its integration to Blender, then in section
IV are presented the synthetic and real performed experiments,
and finally in section V are drawn the conclusions.

II. RELATED WORK

One of the key parts for a mocap system is to have a
reliable human pose detector. Exists many literature on human
pose estimators, and in this section we will review the most
significant algorithms in 2D human pose detection and 3D
human pose estimation.

2D human pose detection. When estimating 2D human pose
from a single RGB image, there are two possible different
approaches. One, known as bottom-up approach, consist into
find some body joint locations and then, try reason about the
best configuration to match the body structure. The other one,
known as top-down approach, starts from localizing the whole
body region to later detect body parts. A very popular bottom-
up algorithm was introduced by [12], and improved later in
[13] adding optical flow information of the body parts. Both
algorithms can run in several platforms, e.g. PC, phone, tablet,
at very high frame rates. Top-bottom approaches, also can
detect 2D poses of multiple persons at high frame rates. Most
of them run first a human detector [14] to define the region
where to find the body features, which make these algorithm
more prone to have problems when two persons overlap to
each other. Most popular top-bottom algorithms are [15],
[16], and their respective faster and improved versions [17],
[18]. Finally, another very popular approach [19], combines
multiple bottom-up top-down layers together, named hourglass,
to detect the pose at multiple resolutions. For our system, we
decide to use the AlphaPose [16] method because outperforms
the other above mentioned algorithms, can also run in real
time, and the skeleton that retrieves is more similar to our 3D
human skeleton model used in Blender, see Figure 2 a, b.

3D human pose estimation. Estimating 3D human pose from
a single RGB image is an important challenge. Some of the
first approaches, use previously detected 2D joint locations to
train a network capable of inferring the 3D joint coordinates
[20], [21], [22]. 2D and 3D detections can then be combined
to make 3D pose estimation more robust [23]. However, one
of the problems that arises when training the networks for
these methods is the lack of labeled data. It is not easy to
find ground truth for 3D human poses, for this reason, [24]
proposes a method to combine labeled images with images on
the wild to train a network that estimates 2D joint locations and
their depth. Authors in [25], go one step further and estimate
directly 3D human pose from a single image using a synthetic
dataset of 5M labeled images. These kind of networks are quite
complex [26], and using extra information such as temporal
correlations can help to improve their performance [27]. Most
recent algorithms, not only can find a 3D human pose estimate

Figure 2. Different skeletons configurations. a) Left, skeleton given by CPM
[12] method; b) Middle, Alpha Pose skeleton used to compute angle

rotations; c) Right, skeleton used for Makehuman model to which captured
motion is transferred.

but, also can recover the whole body mesh [28] or even the
shape parameters [29]. We decide to use the method described
in [20] due to its simplicity for training. The network described
is relatively simple, and can be trained with thousands of
samples instead of millions. Moreover, network inference is
very fast.

III. METHOD

The proposed mocap system is divided into three intercon-
nected modules. These modules will process the RGB images
coming from a webcam, and finally control a 3D human model
inside Blender software. We first explain the first two modules
responsible to infer 3D body position from a single image.
Then, we describe how these 3D joints are transformed into
rotations for our 3D human model and how these rotations are
passed to Blender to render the virtual model.

A. Estimate body 3D joints

Find 2D joint locations from an image. We follow Alpha
Pose [16] to obtain 2D human pose estimations from a single
RGB image. The method is fast, outperforms other state-of-
the-art algorithms and the returned body pose is similar to
the Makehuman 3D human model skeleton that we use in
Blender. The method starts from some human region proposals,
then these region proposals are passed through two different
components. The first one is the symmetric spatial transfer
network, that generates a set of pose proposals and then, a
parametric pose non-maximum-suppression module selects the
most plausible pose estimations. A third component, the pose-
guided proposals generator, is used to augment the training
data and improve the network performance.

Infer 3D joint coordinates from 2D body locations. Given a
set of 2D points x ∈ R2 obtained in the previous module, we
want to find a regression function that estimates the 3D points
y ∈ R3 and minimizes the error over a set of 3D body poses.
The regression function will be modeled by a neural network
defined in [20]. This network is composed by two consecutive
blocks that contain a linear layer with batch normalization, and
a Rectified Linear Unit followed by a dropout layer. We use
default parameters to train this network.



B. Animate a 3D model
Converting 3D coordinates to joint rotations. Our 3D human
model is controlled by a hierarchical structure called skeleton.
This skeleton can be seen as a directed graph, where there
is a root node and non or several children for each node.
Each node is a segment with its start position defines the
rotation pivot point and the end position is the start of the
child node. For each node (also named bone or joint), a bind
matrix Mbj encodes the joint position and rotation of the
skeleton at rest pose. Also, a pose matrix Mpj encodes the
amount of rotation of each joint respect the rest skeleton pose.
Thus, a skeleton pose P (θ) will be defined by a set of rotation
parameters θ ∈ R3K for each one of the K joints that have
direct correspondence with the 3D virtual model, Figure 2 c.

We want to calculate the rotation for each joint of our
skeleton that matches a set of estimated 3D joint locations.
The 3D joint locations, Figure 2 b, and our model skeleton,
Figure 2 c, can have a different structure. Therefore, we can
only find rotations for the skeleton joints that are equivalent
in both structures. In order to calculate the rotations of each
joint, we will define a source vector vs starting at the parent
of the joint to beginning of the child of the joint, and a target
vector vt defined by the 3D point coordinates. If v = vs × vt,
s = ||v || and c = vs · vt, the rotation matrix to match the two
vectors vs, vt is defined by:

R = I + [v]x + [v]2x
1− c
s2

, (1)

where [v]x is the skew-symmetric cross product matrix of v.
Before we can calculate the rotation matrix is necessary

to have the two sets of 3D points in the same coordinate
system. Therefore, the skeleton 3D joint locations need to
be transformed from local XL

j coordinates to world XW
j

coordinates. In the case that the skeleton joint has no father,
we will use Equation 2, otherwise we will use Equation 3,
where MTf is the MT matrix already calculated for the father
of the current bone.

XW
j =Mbj ·Mpj ·XL

j =MT ·XL
j (2)

XW
j =MTf ·M−1

bf ·Mbj ·Mpj ·XL
j (3)

Finally, to obtain the skeleton joint coordinates in Blender
coordinates, we need to use the defined world matrix Mw.

XG
j =Mw ·XW

j (4)

Transfer rotations to Blender. The final goal is to be able
to transfer detected motion human poses from a videos or
a webcam to a 3D human model in Blender, thus, apply
this motion to other applications by storing it into mocap
files or just simply use it as it is. To this end, we design
a communication protocol with [30] library between Blender
and the image stream. From one side, we will have a process
that will take the images from the stream and calculate the
3D joint coordinates of the body. On the other side, we will
have a python script that will take the 3D joint locations from
the stream, the rest 3D joint locations of the 3D human model
and calculate the body joint rotations. Therefore, we will use
a server-client structure where the server will provide 3D joint
locations at desired frame rate, while the client will be limited
to listen the data from the server.

IV. EXPERIMENTS

We perform two different kind of experiments. First we
generate two sets of synthetic data, to train and evaluate the
3D human pose estimation, and then, we record several real
sequences with a webcam to evaluate the whole algorithm
performance.

A. Generate synthetic data
For training and evaluation purposes we generate two

different kind of datasets with Blender [10] and Makehuman
[11]. The first dataset is used to train the 3D pose estimation
module, while the second dataset is used to evaluate the overall
performance of the proposed mocap system. Note that for the
2D joint estimation module, a dataset is not needed since we
use the weights trained from [16].

The first dataset consists of 6 human models (3 men and 3
women) with different shapes and sizes, performing a total of
54 motions obtained from [3] website. Therefore, we have a
total of 324 sequences of approximately 100 frames each. For
each sequence, the ground truth for 3D joint locations as well
as their 2D projections on a camera image are stored. We set
the camera resolution to be of 640× 480 for both datasets.

For the second dataset, we use 4 human models (2 men
and 2 women) different from the ones used in the first dataset.
We also use 10 motion sequences that were not included in
the first dataset. In this case, the information gathered includes
also the renderized RGB images of the sequences apart from
the 3D and 2D ground truth locations. To make the images
more close to the real world, in each generated sequence a
random image is added as a background.

We also generate several real sequences each one about
30 seconds long, to evaluate qualitatively the proposed mocap
system. In concrete, we record five sequences with a webcam
at 640 × 480 image resolution with an actor performing
different movements in the center of the image. The recorded
images have more than one person in the scene, therefore other
person detections are removed from the image with a simple
post-processing that consist into keep the person with biggest
bounding box in the center of the image.

B. Evaluation
The images generated in the second dataset are passed to

the Alpha Pose [16] detector network. This network returns
the estimated 2D locations of 16 body joints, see 2. The
estimated locations are compared with ground truth locations
using the PCKh@0.5 [31] measure. This measure calculates
the percentage of correct keypoints when the threshold is 50%
of the head bone link. The curves for the values of each action
can be seen in Figure4. We can observe that most of the actions
have similar performance except for two actions: ”teeter” and
”picking up”. In the case of ”teeter” action, the motions of
arms and legs are small but fast, making it seem like the
person is shaking and this provokes several misdetections. In
the case of ”picking up” action, the model bends the upper
part of the body occluding the other bottom half, making the
2D estimation module fail. However, the overall performance
among all the actions, is quite accurate.

Unlike the 2D joint detection module, the 3D pose estima-
tion module is trained from the scratch. The reason for that,
is that we want to have 3D joint estimations referenced with



(a) 2D joint detections

(b) 3D pose estimation

(c) Renderized 3D human model

Figure 3. This figure shows the process for the motion capture from the acquisition of the images with a single RGB camera to the motion transfer to a 3D
human model. In a) is show the 2D joint detections. In b) is show the ground truth 3D joint positions (in green) and the correspondent estimations by the 3D
joint detection module (in blue). In c) is show the renderized images of the 3D human model. The input images are synthetized with Blender software. Ground

truth is available.

boxing goalie throw jumping jacks looking around picking up talking teeter walking walking 2 zombie kicking average

error(m) 0.0961 0.0989 0.1299 0.1585 0.1399 0.0952 0.1416 0.1621 0.1535 0.1288 0.1304

TABLE I. This table shows the mean per joint position error (MPJPE) for each one of the sequence motions in the second dataset. The values are expressed in
meters. We can observe that the sequence with less error is boxing while the sequence with the biggest error is walking.

Figure 4. This figure shows the percentage of correct keypoints at 50% of
the head bone link for the different actions generated in the second dataset.
Most of the actions perform very similar, being ”teeter” and ”picking up”

the ones with worst performance.

the the Blender coordinate system for a simpler calculation of
rotations. Therefore, the ground truth 2D and 3D joint locations
are normalized according the new generated training dataset.
This means that all sequences are reoriented taking the ”hips”
joints as reference, and values for all joints are rescaled to
values from 0 to 1. Once the 3D joint estimation network
is trained and weights are obtained, we proceed to evaluate
the same 10 sequences as before. In this case, to evaluate the
performance of the network we use the mean per joint posi-
tion error (MPJPE) given in meters [32]. For evaluation, the
ground truth 2D joint locations are replaced by the estimations
obtained in the 2D joint estimation module. The results can be
observed in TableI. The first thing to notice is that even in the
previous model the actions ”teeter” and ”picking up” are the
ones with worst performance, in the current module the worst
performance actions are ”walking” and ”walking 2”. Therefore,
the error from the previous module is not propagated as we
could expect. The action with less error correspond to ”boxing”
which is the action where the model has less joints moving.
The mean performance of all the actions is very low with an
error of 0.13 meters.

In Figure 3, we show the results for 5 frames of the



(a) 2D joint detections

(b) 3D pose estimation

(c) Renderized 3D human model

Figure 5. This figure shows the process for the motion capture from the acquisition of the images with a single RGB camera to the motion transfer to a 3D
human model. In a) is show the 2D joint detections. In b) is show the ground truth 3D joint positions (in green) and the correspondent estimations by the 3D

joint detection module (in blue). In c) is show the renderized images of the 3D human model. We use images recorded by a webcam. Ground truth is not
available.

sequence ”goalie throw” for a woman actor. In each row are
presented the results for each one of the proposed modules.
The top row shows the results of the Alpha Pose algorithm.
In the middle row we show the ground truth 3D coordinates
(in green) and the 3D estimated joint values (in blue). Finally
in the bottom row we show a renderized model in Blender.
We can observe that the original motion is very close to the
renderized motion.

In Figures 5,6, we show the results for two real sequences
when the actor is performing some random movements in the
center of the scene. We can observe in the first row, that in
the recorded images our 2D human pose detection module is
able to find two different persons in the scene. Since for our
proposed mocap we want only to focus on one person, we
apply a simple image processing consisting into keep biggest
bounding box near to the center of the image. In the second
row we show the inferred 3D human position for the only
person that we want to detect. In the third row is shown our
virtual 3D model once calculated rotations are applied.

V. CONCLUSION

We presented a system capable to perform as a mocap
system with only a single RGB camera and free source
software that can run in several platforms. The system is
based in three components that calculates 2D human body
joint locations, then from these locations infer the 3D joint
world coordinates and finally, the 3D joints are transformed to
joint body rotations for our virtual human model. The first

two components are evaluated quantitatively with synthetic
data, where the third component is evaluated qualitatively. The
overall system is also evaluated in real video images with
several sequences performed by a person. We show that we
can mimic the movements of a person with the potential to
run the whole system in real time. In the future, we could use
this mocap system to perform dedicated actions for any kind
of topic and extract several ground truth data like in [33].
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