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Abstract—Designing optimal and light weight networks to
fit in resource-limited platforms like mobiles, DSPs or GPUs
is a challenging problem with a wide range of interesting
applications, e.g. in embedded systems for autonomous driving.
While most approaches are based on manual hyperparameter
tuning, there exist a new line of research, the so-called NAS
(Neural Architecture Search) methods, that aim to optimize
several metrics during the design process, including memory
requirements of the network, number of FLOPs, number of
MACs (Multiply-ACcumulate operations) or inference latency.
However, while NAS methods have shown very promising results,
they are still significantly time and cost consuming.

In this work we introduce E-DNAS, a differentiable archi-
tecture search method, which improves the efficiency of NAS
methods in designing light-weight networks for the task of image
classification. Concretely, E-DNAS computes, in a differentiable
manner, the optimal size of a number of meta-kernels that
capture patterns of the input data at different resolutions. We
also leverage on the additive property of convolution operations
to merge several kernels with different compatible sizes into a
single one, reducing thus the number of operations and the time
required to estimate the optimal configuration. We evaluate our
approach on several datasets to perform classification. We report
results in terms of the SoC (System on Chips) metric, typically
used in the Texas Instruments TDA2x families for autonomous
driving applications. The results show that our approach allows
designing low latency architectures significantly faster than state-
of-the-art.

Index Terms—Deep Learning, Neural Architecture Search,
convolutional meta kernels.

I. INTRODUCTION

Designing light Deep Neural Networks (DNNs) and doing
it in an efficient manner, are two of the main challenges faced
in industries like the automotive, which typically need to deal
with resource-constrained platforms. This has been addressed
in recent works, like SqueezeNet [1] or MNet [2], focused
on optimizing the design of neural networks to alleviate their
computational cost without losing performance. Most these
studies, however, are based on the optimization of "indirect
metrics", such as the number of Multiply-ACcumulate opera-
tions (MACs) or the number of architecture parameters, which
might not be good approximations to the "direct metrics" like
energy consumption or latency. As discussed in [3], [4] or
[5], the relationship between these direct and indirect metrics
can be highly non-linear and platform-dependent. Another
drawback of [1] and [2] is that they require from manual

approaches that require expert knowledge, limiting thus their
applicability and design efficiency.

The design method has been automatized by the so-called
Neural Architecture Search (NAS) [6, 7, 8] approaches. These
techniques aim to automatically design light and accurate
DNNs by optimizing over a search space defined by all
possible operations of the target architecture. This optimization
is carried on using either reinforcement learning [6, 7] or
evolutionary computing [8].

While NAS-based approaches provide state-of-the-art re-
sults in classification tasks for small datasets like CIFAR, they
are very computationally and time demanding. There have
been attempts to speed up the search process using weight
prediction techniques [9] or weight sharing across multiple
architectures [10]. Unfortunately, the improvement is still far
from providing solutions that can scale to large datasets like
ImageNet due to the prohibitive time and resources required.

In this paper we introduce E-DNAS, a differentiable NAS
approach that optimizes the direct metrics of an embedded
platform, yielding accurate and low-latency DNNs that can
be deployed in memory-constrained platforms. The presented
research builds upon three main ideas. First, we apply a
depth-aware convolution over the input image to compute
high-resolution feature maps. Second, we propose a parallel
architecture search pipeline that operates on these feature
maps and learns the optimal size and parameters of the
convolution kernels. This optimization process is ruled by
a multi-objective differentiable loss function that combines
classification accuracy and minimal latency, a direct metric.
And third, we boost the architecture search velocity through
a novel block that connects the learned meta-kernels during
training. This block is shown in Figure 1 and aims to update
the learned meta-kernel (from feature map 1) on each iteration
with the result of the weighted sum of that kernel and a second
one being learned in parallel (the one from feature map 2). We
show that this training information exchange on each iteration
speeds up the search for the optimal kernels.

We demonstrate remarkable results in terms of search-time
and classification accuracy compared to other state-of-the-art
NAS methods and comparable to other recent breakthroughs
like [11] or [12], which are more oriented for mobile devices
rather than to be integrated into embedded systems.



FIG. 1: General overview of E-DNAS. Our approach has two main
building blocks: a depth-aware convolution with a high resolution
11 × 11 kernel followed by pairwise learning of meta-kernels with
loopy flow of information on each iteration between training paths.

II. RELATED WORK

Despite Deep Learning has changed the panorama of the
Artificial Intelligence field, it has some important constraints
or limitations that need to be overcome in order to exploit its
full potential. Some of these are the large amount of hardware
resources (memory, power consumption) needed to run some
deep learning applications and also the manual network and
parameter configuration traditionally done by experts to obtain
an optimal DNN for a particular application.

Along this direction, some works have focused on reduc-
ing the network size and optimizing its hyperparameters by
pruning weights, like [13] or [14]. Although these approaches
could be effective for some applications, manually selecting
the redundant weights and using unstructured sparse filters
in not so practical for real platforms. Based on a similar
idea, recent papers propose a methodology to design networks
that can evolve during the design process based on some
feedback in order to obtain the optimal number and type of
layers for a specific application. These are the so called NAS
(neural architecture search) approaches, which automate the
architecture design and have shown improved performance
compared to the hand-crafted models.

Some NAS approaches like [15], [7] or [6] employ re-
inforcement learning for finding the best neural architecture
[6, 7]. These approaches propose a framework with a recurrent
neural network (RNN) as a controller from which child
architectures are extracted and trained. Based on the accuracy
of these sub-architectures, a reward signal for the controller is
calculated and fed back, such that in the next iteration the con-
troller will give higher probabilities to generate architectures
with higher accuracies (the controller learns to improve its
search over time). Moreover, many of the presented methods
aim to search for light and easy-to-integrate DNNs attending
to indirect metrics such as MACs. As demonstrated in different

works such as [3] or [16], extracting indirect metrics like
MACs or number of weights might not be good proxies for the
resource consumption of a network and therefore in this paper
we attend to a direct metric such as the latency and minimize
it during the search process. Although this reward-based
approaches showed really good results in providing efficient
network architectures to be executed on mobile platforms, they
still had one big disadvantage, which is the extremely long
training time they require ([6] needs 2000 GPU days in the
ImageNet or CIFAR-10 dataset; or the approach proposed in
[8] takes 3150 GPU days).

More recently, a faster version of the NAS has been pro-
posed, which can provide an optimal network design quicker
by using gradient-based optimizations, like DARTS[11]. The
Differentiable Neural Architectural Search (DNAS) approach
proposes a relaxation method to transform the search space
into a continuous one, such that the architecture can be
optimized with respect to its validation set through gradient
descent. These techniques achieve a big efficiency improve-
ment reducing drastically the cost of architecture finding in
comparison to the non-differentiable approaches (NAS).

Nevertheless, although methods like DARTS have given
good results in terms of accuracy and searching time com-
pared to NAS, they still face some weak points, such as the
still relatively long time needed for the architecture finding.
Together with this, DNAS approaches such as DARTS [11]
have proven not to be practical to be used in large datasets.

[fr: No decimos nada de las direct metricas, cuando
le hemos dado peso en abstract e intro. Podemos decir
que uno de los inconvnientes de estos metodos es que no
optimizan diecamente sobre medidads directas? Y acabas
diciendo que el metodo que proponemos sí lo hace, lo que
le hace mas util a la practica] [jgl: He hecho referencia
a las direct metrics un poco más arriba en el párrafo,
hablando de que usamos latencia como medida directa en
vez de FLOPs (por ejemplo)]

[jgl: He cambiado cómo están puestos los autores en
el encabezado porque en el template pone que debe estar
cada autor por separado, con el instituto o empresa donde
trabajan en cursiva.]

III. METHOD

We propose a methodology for automatic neural architecture
design to be executed on embedded platforms. We demonstrate
state-of-the-art results on feature extraction and object classi-
fication tasks, as presented in Table I. We present a DNAS
approach that aims to find optimal neural architecture with
low latency to be executed on memory-constrained System on
Chips (SoCs), such as the one we use late in the experimental
section.

The pipeline we propose has two main steps:

• High resolution feature extraction through a depth-awarer
convolution using large dimension convolutional kernels.

• Pairwise neural architecture cross-search for the calcu-
lated feature maps on previous step.



FIG. 2: Additivity property of convolution: Convolutions with large
kernels can be estimated as a sum of convolutions of small size
kernes. In the example, the convolutional kernel (E), results from
summing 1x1 kernel (A), 3× 3 (B), 5× 5 (C) and 7× 7 kernel (D).

In this work we regard network latency as the proxy of the
computation consumption.

A. Formulation

1) Convolutional filters: As it was demonstrated in AlexNet
[17], each convolutional kernel is responsible to capture a
local image pattern. The larger the convolutional kernel is,
the higher resolution patterns it can detect, although at the
cost of more parameters and computations.

On this regard, there is an important idea proposed in
the MixConv work [18] that we exploited here and that
is, having multiple kernels with different sizes in a single
convolution operation can make that our network can capture
different types of features from the input images. Based on
this, we present a two-step pipeline in which: first, a large
convolutional kernel is applied on the input image to capture
high resolution patterns, and second, several kernels with
different sizes are applied on the calculated feature maps need
to be learned during the training process in order to find all
different types of patterns present on the input data.

In order to reduce the number of operations and the network
size there are two considerations in the above mentioned steps
that shall be taken into account:

• The 11 × 11 filters applied on the feature maps are a
sum of 3 × 3, 5 × 5 and 7 × 7 filters applied on the
input resource. This work exploits the additive property
of convolution: if several 2D kernels with compatible
sizes operate on the same input with the same stride to
produce outputs of the same resolution, and their outputs
are summed up, these kernels are finally added on the
corresponding position to obtain an equivalent larger filter
that will produce the same output, [19]. See Fig. 2

• The first step proposed in this paper suggests a separable
depth-aware convolution with a 11×11 kernel that leads
to a reduced parameter size and computational cost,
compared to the standard convolution operation, [18], [2],
[20], [21].

The main difference between the traditional convolution op-
eration and the mentioned separable depth-aware convolution
over an input image (or tensor) is the number of steps in which
this operation is applied.

In this context, the additivity property is applicable because
the sizes of the filter or kernels are compatible, which means,
smaller ones can be "contained" in bigger ones (with same
center). This property can be formally written as:

I ∗K1 + I ∗K2 = I ∗ (K1 ⊕K2), (1)

where I is the input feature map, K1 and K2 are two 2D
kernels with compatible sizes, and ⊕ is the element-wise
addition of the kernel or filter parameters on the corresponding
positions, [19], [12].

The application of the additivity property is also valid for
the following Batch Normalization (BN) so that each single
BN applied after each convolution from Eq. (1) produces the
same output as the summation of each single convolution and
BN with added bias, [19]:

O = I ∗ (
γ1
σ1

K3×3 ⊕
γ2
σ2

K3×1 ⊕
γ3
σ3

K1×3) + b, (2)

where O represents the output feature map, I is the input data
or feature map generated by the previous layer, σ is batch
standard deviation and γ and b are the BN parameters to be
learned. I may need to be appropriately padded depending on
the resolutions.

2) Feedback-block: One of the contributions of this paper is
the addition of one feedback-block into the training pipeline of
each feature map to update the learned convolutional kernels
on each iteration, see Figure 2. The implementation of this
feedback-block is based on a weighted sum of the learned
meta-kernels being trained in parallel:

K1
′ = K2

′ = β1 ∗K1 + β2 ∗K2, (3)

where K1
′ and K2

′ are the two meta-kernels candidates being
learned, K1 and K2 are the kernels before the update and β1
and β2 are the weights for these kernels. These weights are
computed according to the loss on each training "path":

β1 =
tanh 1

L1

tanh 1
L1

+ tanh 1
L2

β2 =
tanh 1

L2

tanh 1
L1

+ tanh 1
L2

with β1 + β2 = 1.

(4)

Following Eq. (4) we obtain the weights, which will be
closer to one if the calculated loss in the forward pass is
small. Through this implementation, on each iteration the
closer kernel to the "expected" one has more influence. In
Eq. (4) L1 and L2 represent the value of the loss function on
two parallel network candidates being searched (illustrated in
Fig. 1).

After training each image, all learned kernels are encoded
into one, following a similar approach as detailed in Eq. (4):

K =

j=N∑
j=1

Γj ∗Kj

with Γj =
βj∑
i βi

.

(5)



B. Search space

We define the search space of each output x(j) (feature map
in convolutional networks) as the combination of operations
o(i,j) applied on inputs x(i), assuming the inputs as the outputs
of the previous two layers, [11]:

x(j) =
∑
i<j

o(i,j)(x(i)). (6)

The gradient-based NAS methodologies [11, 22] relax the
categorical choice to a softmax to make it continuous. Let O
be a set of candidate operations (max pooling, convolutions)
where each operation represents some function o(−) to be ap-
plied on the input x(i), a particular operation can be represented
as:

o(i,j)(x) =
∑
o∈O

exp(αo
(i,j))∑

o′∈O exp(αo′ (i,j))
o(x). (7)

As demonstrated in [11], the task of architecture search
reduces to learning a set of continuous variables α = {α(i,j)}.

The relaxation of the categorical choice presented in (7) can
also be defined as follows, using the additivity property of
convolutions. Based on this, each operation can be calculated
as I ∗K, where I is the input of the operation and K(i) is
the kernel to be learned:

o(x) = I ∗K(i). (8)

o(i,j)(x) =
∑
o∈O

exp(αo
(i,j))∑

o′∈O exp(αo′ (i,j))
(I ∗K(i)). (9)

After relaxation of the search space, the proposed search
network algorithm aims to learn jointly the architecture α and
the weights w.

C. Multi-objective loss function

Based on Eq. 9, the goal of the presented DNAS approach
shall be to calculate the weights w that minimize the validation
loss:

min
α

= Lval(w(α), α). (10)

In order to let this method to generate models adaptatively
depending on the target embedded platform, we propose to
include one more term to the global loss function to be
minimized during training that attends to the latency of the
network candidate.

The proposed loss function has a term to observe the latency
of the proposed architecture. As demonstrated in different
works such as [3] or [16], extracting indirect metrics like
MACs or number of weights might not be good proxies for the
resource consumption of a network since networks with fewer
number of MACs can be slower when executed on embedded
targets. We define the latency loss as:

LLAT (α) =
∑
l

LAT (bl)
(α). (11)

where bl)
(α) denotes the block at layer-l from the network

architecture candidate α [16].

In the presented implementation, we use a latency look
up table model to estimate the global latency of the network
candidate based on the runtime of each operator, as proposed
in [16]. This latency lookup table has been created by checking
the runtime of multiple operators on the target platform.

D. The search algorithm

The formulation of the network search problem that is
solved through the proposed method can be expressed as
follows:

max
ai

Accuracy(ai)

s.t. LAT (ai) <= Budget, i = 1, ..., N.
(12)

where ai is the sampled network from the search space,
LAT (ai) is the latency on the platform of the sampled network
and Budget is the predefined latency budget.

The problem presented in equation (12) is solved iteratively
by the presented method by minimizing on each iteration the
following loss function:

L(a,wa) = CE(a,wa) + βLLAT (a), (13)

where CE(a,wa) is the cross-entropy loss of the network
candidate a with weights wa and LAT (a) is the measured
latency of network candidate a in microseconds, [16].

Typical NAS approaches like [6], [21] or [7] are based
on the iteratively training of sampled architectures candidates
from the search space on a small proxy dataset through some
epochs to be then transferred to the target dataset after training.
In the end, the objective of these NAS methodologies is finding
the network weights w and optimizing the network candidate
a ∈ A (being A the search space), similar as in the presented
work but the needed resources and time to train thousands
of network architectures before reaching the optimal solution
make them some times infeasible.

Motivated by this problem, DNAS approaches like [11],
[22], [16] or [12] have become more popular lately. In this
research we adopt a different paradigm of solving the same
problem as explained in Section (12) based on DNAS.

In the presented work we relax the categorical choice
of a particular filter or kernel in the target architecture by
formulating the sampling process in the search stage, similar
as proposed in [23] and [16].

P (K == Ki) = softmax(α(i)) =
exp(α(i))∑N

j=0 exp( α(i)))
. (14)

Following this we reformulate Eq. 9 and focus on making
Eq. 14 differentiable so that the loss function (13) can be
optimized through stochastic gradient descent (SGD) [24],
[25], [16].

The objective function (14) is already differentiable with
respect to the weights of the kernels but not with respect to
the architecture parameters α due to the sampling process. To
solve this, we follow a similar approach as in NAS related



Algorithm 1: The search architecture methodology
Result: Find weights wi and architecture probability

parameters α to optimize the global loss
function (13), given a defined search space
with a combination of operations o(i,j),
defined in Eq. (9), a latency budget and an
input dataset.

random initialization of α parameters
while not converge do

Similar to [12], we generate the kernel candidates.
Calculate Loss through Eq. (13).
Calculate ∂L/∂wa and ∂L/∂α .
Update weights and architecture probability
parameters α .

end
Extract more optimal architecture from learned α

parameters.

works [21], [26], [22], [23]. We adopt the Gumbel Softmax
function [27] to rewrite the equation (14):

P (K == Ki) =
exp((log(θi) + gi)/τ)∑N
j=0 exp((log(θi) + gi)/τ)

, (15)

where gi ∼ Gumbel(0,1) represents a white noise function
that follows the Gumbel distribution between zero and one, τ
represents the temperature parameter of the Gumbel Softmax
function, [27], which makes the discrete sampling probability
function (14) become continuous as τ approximates to one.
Lastly θi represents the class probabilities calculated in equa-
tion 14, [12].

Once the loss function is differentiable, the SGD method to
optimize function (13) is applied, so that on each iteration the
network architecture weights wi and probability parameters α
are updated based on the partial derivative of the loss function
with respect to w and α, respectively.

The search process is now equivalent to training the stochas-
tic network after generating all kernel candidates from the
11 × 11 meta kernel, similar to [12]. During training, the
value of the loss function L(a,wa) in Eq. (13) is calculated.
Together with it, ∂L/∂wa and ∂L/∂α are computed to up-
date weights and architecture probability parameters on each
iteration. Through this, we train each operator’s weight and
update the sampling probability for each operator, respectively,
so that when training finishes, we can obtain the optimal
network architectures with the best kernels from the learned
α parameters.

As it will be shown in the experimental section, the
proposed approach works faster than RL and typical NAS
methodologies and provides very competitive results for high
resolution input images.

IV. EXPERIMENTS

In this section we aim to demonstrate the performance
and efficiency of the proposed method comparing the results
obtained on different datasets.

We have conducted experiments on the commonly used Im-
ageNet benchmark [28], KITTI [29] and COCO [30] datasets.
We have also applied several important training tricks, which
we detail next.

A. Implementation details

We have trained the models using 8 GPU NVIDIA Tesla
V100. As proposed in [38] we have applied several imple-
mentation tricks to improve the training process, such as the
following:
• Randomly sample an image and decode it into 32-bit

floating point raw pixel values in [0,255].
• Random crop of a rectangular region.
• Horizontal flip with 0.5 probability.
• Normalize RGB channels.
• Scale hue, saturation and brightness coefficients.
Due to the importance of the learning rate in the training

process, in the conducted experiments we have applied a
learning rate warm up (use small learning rate at the beginning
and then switch back to the initial learning rate when training
process is stable) followed by decaying cosine learning rate
to improve the training process, as commented in [38] and
proposed by [39].

In contrast to the typical exponentially decaying learning
rate used lr = lr0 ∗ e−Kt in this work we have applied the
following formula:

lr =
1

2
(1 + cos

bπ

B
)lr0

w∗ = w + lr
∂L

∂w
,

(16)

where B is the total number of batches, b is the actual batch
during training, w∗ the updated weight, w the weight before
update and lr0 is the initial learning rate (in our case 0.65).

B. Target platform

The embedded platform targeted to check the effectiveness
of the proposed method is the TDA2 system on chip which
can accelerate deep neural network layers using the C66x DSP
cores together with the Texas Instruments Deep Learning suite
(TIDL) [40] to convert the trained network from floating point
to fixed point and to enable the inference of the network on the
embedded platform. The TDA2 hardware has ARM Cortex-
A15 cores running at up to 1.5 gigahertz, a dual-core DSP
C66x processors that are capable of running deep learning in-
ference, together with one embedded vision engine subsystem
(EVE). It can run 16 times 16-bit (enough resolution for deep
learning applications) MAC operations per cycle reaching up
to 20.8 GMACs/s [41].

To check the effectiveness of the proposed method we have
mainly attended to MAC and FLOPs in order to compare the
results with the theoretical performance of the target platform.
To calculate this, based on the hardware specifications men-
tioned above the SoC has two C66x DSP cores running at 1000
GHz frequency (2∗32GMACs), other one EVE core running
at 900 MHz (16∗900MMACs) and other 2 ARM Cortex A15



Model Search Method Search Space Search Dataset # Params(M) FLOPs(M) acc(%)
MNetV2 [31] manual - - 3.4 300 72.0
CondenseNet(G=C=8) [32] manual - - 4.8 529 73.8
EfficientNet-B0 [33] manual - - 5.3 390 76.3
NASNet-A [6] RL cell CIFAR-10 5.3 564 74.0
PNASNet [34] SMBO cell CIFAR-10 5.1 588 74.2
DARTS [11] gradient cell CIFAR-10 4.7 574 73.3
PDARTS [35] gradients cell CIFAR-10 4.9 557 75.6
GDAS [23] gradients cell CIFAR-10 4.4 497 72.5
MnasNet [21] RL stage-wise ImageNet 3.9 312 75.2
Single-Path NAS [36] gradients layer-wise ImageNet 4.3 365 75.0
ProxylessNAS-R [26] RL layer-wise ImageNet 4.1 320 74.6
ProxylessNAS-G [26] gradient layer-wise ImageNet - - 74.2
FBNet [16] gradients layer-wise ImageNet 5.5 375 74.9
MNetV3 Large [37] RL layer-wise ImageNet 5.4 219 75.2
MNetV3 Small [37] RL layer-wise ImageNet 2.9 66 67.4
MixNet [18] RL kernel-wise ImageNet 5.0 360 77.0
MetaKernels [12] gradient kernel-wise ImageNet 7.2 357 77.0
Ours RL parallel kernel-wise ImageNet 5.9 365 76.9

TABLE I: ImageNet classification performance compared with other state-of-the-art methods. The proposed approach in this paper
demonstrates a good Top-1 accuracy with less number of parameters and FLOPs. The number of parameters, FLOPs and Top-1 accuracy
metrics presented in this table for the rest of the methodologies have been directly extracted from their respective papers.

Model mAP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa
MNetV2 [31] 75.8 84.5 83.4 76.1 68.3 58.7 78.9 84.8 86.5 54.4 80.7 70.9 84.0 85.0 83.6 76.8 48.7 78.7 72.8
MNetV3-S [37] 69.3 77.4 76.9 67.0 62.0 43.7 76.3 79.1 82.1 47.2 75.4 65.2 78.4 81.0 79.7 72.5 39.4 68.7 67.1
MNetV3-L 76.7 84.1 84.1 77.0 69.9 75.9 84.8 85.1 88.1 56.3 84.8 64.8 84.3 87.9 84.7 77.9 46.3 80.5 73.9
metaKernel [12] 77.3 86.1 84.8 76.8 68.6 59.2 83.6 86.3 87.1 56.9 85.2 67.2 86.6 87.2 86.0 77.7 49.1 80.8 74.5
Ours 77.83 85.86 84.6 74.9 70.12 57.46 63.4 87.8 88.12 58.71 83.98 72.09 86.23 86.36 86.78 87.1 50.66 79.57 74.98
Ours-A (KITTI) 77.45 - 86.11 - - - 71.8 82.67 79.35* - 79.35* - 79.35* 79.35* 81.1 86.85 - - -
Ours-B (KITTI) 77.61 - 86.34 - - - 71.8 82.92 79.42* - 79.42* - 79.42* 79.42* 80.03 86.27 - - -

TABLE II: Comparison of the obtained results on the Pascal VOC2007 test set. In the last two rows are the detection results with KITTI
dataset [29] presented using two different configurations of the presented pipeline: in "A" we use a first convolutional kernel of 11× 11 (as
detailed in Section III) and in "B" we increase the size of the initial kernel to 17 × 17 to compensate the big resolution images from the
KITTI dataset (1382 × 512 px.). In both cases results are similar although number of operations and therefore cost search in case "B" is
bigger (stride had to be reduced in case B to avoid losing features on the first convolutional step). * For the detections in KITTI all types
of animals were clustered in a single "animal" class.

cores running at 1500 MHz (2∗8∗1500MMACs). This results
in 105 GMACs as theoretical performance, which means 210
GDLOPs, assuming DLOPs as 8-bit arithmetic or conditional
operation (Multiply/Add/Compare). It can be assumed than
1MAC = 2DLOPS.

For the experiments done on the mentioned TI and presented
in Table III, the trained networks using the proposed method
in this paper and ImageNet benchmark were converted from
floating-point to fixed point to be then executed on the DSP
dual core of the above mentioned hardware. In the floating-
point to fixed-point conversion an accuracy loss of around 3
% could be extracted from the results.

C. Results

The experimental results and comparison with other state-
of-the-art methods are summarized in Table I.It can be ween
that our method achieves a good Top-1 accuracy better than
several methods, despite we use a lower number of parameters
and FLOPs.

For the first variant of this method in which input data
passes first through a convolution with 11×11 kernel we find
that a better accuracy with a slight increment of the number of
FLOPs can be achieved by increasing the size of the first filter
to 13× 13 and up to 17× 17. Beyond that, the rate between
accuracy and number of parameters decreases.

The motivation behind the usage of the first convolution
with a 11 × 11 kernel is because a high resolution kernel
that would capture high resolution patterns on the image and
reduce its size and with compatible size with the following
meta-kernel sizes was needed. Together with this, after several
tests, like in Table II, we have empirically seen that the
mentioned 11×11 kernel size gives the best trade-off between
accuracy, number of operations and simplicity in the imple-
mentation. Larger kernel sizes increase the model size with
more parameters and also more operations and for this reason,
using bigger kernels in the initial step of the pipeline would
have led to a bigger network, not so suitable for embedded
targets.

With regard to the search process speed, the experiments
show that our proposal achieves an optimal architecture faster
than other DNAS works, as it can be seen in Figure 3.
Our experiment results are summarized in Table 3 where
we compare our method with state-of-the-art efficient models
both designed automatically and manually. In the case of the
MnasNet [21], this paper does not disclose the exact search
cost (in terms of GPU-hours or days) so in this paper we have
assumed the prediction made for the search cost in MnasNet
by [26] and [12].
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FIG. 3: Comparison of several NAS and DNAS methods in terms of
their search cost. The data for the search cost of these works has been
directly obtained from their papers. As also commented in [16], the
search cost for MnasNet is estimated according to the description in
[21]. The search cost of PNAS [34] is estimated based on the results
claimed on that work that their method is 8x faster than NAS [6].

Model # Params (M) MACs (M) Time (ms)
MNet [2] 4.2 569 75
NasNet-A [6] 5.3 564 183
Ours 5.9 535 38

TABLE III: Results on ImageNet Benchmark comparing extracted
multiply-accumulate operations from different methods and ours. The
estimated inference latency on the described TI platform based on the
calculated MACs is 38ms.

V. CONCLUSION

In this work we present a network search approach to
design light and optimal DNNs reducing the searching time.
We propose a two-step pipeline that learns different meta-
kernel sizes, able to treat different resolution patterns. We
propose a pairwise searching with circular feedback on each
iteration to speed up the process by updating the target weights
and network parameters iteratively with, not only the loss
calculated during its training, but also with the loss calculated
on the parallel kernel being learned.

We demonstrate that our method provides good results in
terms of accuracy and searching speed compared to other
methods like [21] or [11].
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