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ABSTRACT - This paper characterizes a family of serial robots whose inverse kinematics can be translated into
a system of distance constraints that can be solved using a sequence of constructive operations taking as fixed
reference either a triangle or a tetrahedron. The relevance of the obtained family of robots is established when it is
shown to contain the best-known commercial serial robots.
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INTRODUCTION
The Theory of Distance Geometry [1] allows coordinate-free formulations for most position analysis problems.
Using such formulations, the inverse kinematics of a serial robot can be performed by using adistance matrix,
one whose entries are squared distances between pairs of points selected on the axes of the robot. While some of
these distances are known (such as the distances between points on the same axis or between points on consecutive
axes), many others are unknown. Then, finding all solutions to an inverse kinematics problem boils down to
finding values for these unknown distances that permit completing the matrix into a “proper” Euclidean distance
matrix [6]. If, by any means, the unknown distances are obtained, one can then easily assign coordinates to the
selected points and trivially derive the possible configurations of the robot.
The determination of all values for the unknown distances is usually done via abound smoothing process: a large
range is initially assigned to the unknowns and their bounds are progressively reduced in an iterative manner,
by applying triangular inequalities and other necessary conditions [5]. Finding all possible solutions for a given
incomplete distance matrix can be extremely complex in general, as this problem is known to be NP-complete.
In this paper, we focus on a subclass of distance constraint solving problems where the values of all unknown
distances can be derived following a constructive process in which the distance matrix is progressively completed
by deducing the value of one unknown at a time. In order to identify all robots whose inverse kinematics can be
solved in this way, we first characterize the family of distance matrices that encode all serial robots with six degrees
of freedom (DoF). Then, we exhaustively search within this family for those matrices that can be completed in a
constructive manner taking as fixed reference either a triangle or a tetrahedron. The result is the identification of a
family of serial robots that includes the best-known industrial robots.
This paper is organized as follows. First, we describe how to translate an inverse kinematic problem into a distance
constraint satisfaction problem. Then, we show how some incomplete distance matrices can be completed by using
a sequence of two basic operations. Next, a comprehensive study of all serial robots whose associated distance
matrix can be completed using this technique is presented. All these ideas are then applied to the resolution of the
inverse kinematics of a Puma 560 manipulator. Finally, we summarize some points deserving further attention.

ROBOTS AND DISTANCE CONSTRAINTS
The position analysis of a mechanism can usually be translated into a set of distance constraints fixing the relative
positions betweenn pointsp1, . . . ,pn, selected on its links. Such constraints are usually represented by means of
a distance matrixS, whose(i, j) entry issi,j = ‖pi − pj‖2, i.e., the square of the distance betweenpi andpj .
Some matrix entries are a priori known, and the goal is to solve for the remaining unknowns.
We next show how one can perform this translation for any serial manipulator, and how one can compute the
coordinates of the selected points, with reference to an absolute frame, onceall distances inS have been solved
for.
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Figure 1: Modelling a link as a set of points with some fixed distances between them.

A serial robot is simply an open chain of seven rigid bodies (the links), pairwise articulated through prismatic or
revolute joints. The inverse kinematics problem is to find all valid configurations of this chain that are compatible
with a specified pose for the last link, relative to the first. Since the first and last links ar mutually fixed, the
problem is equivalent to that of finding the valid configurations of a closed loop of six pairwise articulated links.
The translation of each link into distance constraints depends on the type of joints it connects, either prismatic or
revolute, and on whether the axes of these joints are skew or concurrent.
A link connecting two skew revolute axes can be modelled by taking two points on each of these axes, and by
connecting them all with rigid bars to form a tetrahedron (Fig. 1-a). In this way, for example, a 6R linkage can be
modelled as a ring of six pairwise-articulated tetrahedra, as indicated in Fig. 3.
If the two axes of the link are not skew but intersecting, we can economize points and simply model the link as a
triangle of fixed distances (Fig. 1-b). Note that the case of parallel revolute axes can be seen as a specialization of
the previous one, where the point of intersection is an improper point at infinity in the direction of the axes, instead
of a common proper point (Fig. 1-c). This will cause no trouble in the analysis below, as a point at infinity can
always be approximated by a proper point, sufficiently far away in some direction.
Similar transformations are applied to a link with one or two prismatic joints: since a translation along direction
v can always be seen as a rotation about the line at infinity of any planeπ orthogonal tov, we can model a
prismatic joint as a revolute joint infinitely far away on this plane. Computationally, we will represent such joint
by designating two points onπ, placed sufficiently far away along different directions (pointsp2 andp4 in Fig. 1-
d).
The procedure detailed above can be used to define an incomplete distance matrix from a serial robot. If, by any
means we can completeS, then we will need to assign coordinates to the selected points in order to obtain the
actual configurations of the robot. The standard way to do so is by first computing the Gram matrixG associated
with S, whose entries are defined bygij = 1

2 (s2
i,n + s2

j,n − s2
i,j). The Cholesky factorization ofG into G = XXt

yields the matrixX, whose rows yield unique coordinates forp1, . . . ,pn, up to congruences and mirror trans-
formations. For further details see [6]. Next, we need to obtain all angles between neighboring links from these
coordinates.

COMPLETING DISTANCE MATRICES
First of all, let us define

D(i1, . . . , in; j1, . . . , jn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 . . . 1
1 si1,j1 . . . si1,jn

...
...

. ..
...

1 sin,j1 . . . sin,jn

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (1)

with si,j = ‖pi − pj‖2. This determinant is known as theCayley-Menger bi-determinant of the point sequences
pi1 , . . . ,pin

, andpj1 , . . . ,pjn
. When the two point sequences are the same, it will be convenient to abbreviate

D(i1, . . . , in; i1, . . . , in) by D(i1, . . . , in), which is simply called theCayley-Menger determinant of the involved
points. The square volumeV 2(p0, . . . ,pk) of a k−dimensional simplex defined by thek + 1 pointsp0, . . . ,pk
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can be expressed entirely in terms of distances as follows:

V 2(p0, . . . ,pk) =
(−1)k+1

2k(k!)2
D(0, . . . , k).

Next, we show how Cayley-Menger determinants play a central role in expressing unknown distances in terms of
known ones.
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Figure 2: The computation of the distance betweenp4 andp5 from their distances top1, p2, andp3 leads to two
possible solutions that depend on the relative location ofp4 andp5 with respect to the plane defined by pointsp1,
p2, andp3.

Let us consider five points,p0, . . . ,p4, in R
3, so that only the squared distance betweenp3 andp4, i.e. s34, is

unknown. This configuration of points can be seen as two pyramids sharing the same triangular base so that the
distance between their apexes is unknown. Clearly, there are two solutions to this problem (Fig. 2). These five
points define a simplex inR4 but, since it is embedded inR3, its volume is null. Hence,D(0, 1, 2, 3, 4) = 0. This
defines a quadratic equation ins34 that can be simplified by applying Jacobi’s theorem to the following partition
of D(0, 1, 2, 3, 4)
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concluding thatD(0, 1, 2, 3, 4) = 0 yields

D(0, 1, 2, 3)D(0, 1, 2, 4) − D2(0, 1, 2, 3; 0, 1, 2, 4)
D(0, 1, 2)

= 0.

Assuming that the triangular base defined byp0, p1, andp3 is not degenerate, then

D(0, 1, 2, 3; 0, 1, 2, 4) = ±
√

D(0, 1, 2, 3)D(0, 1, 2, 4). (2)

Since the left hand side of this equation is linear ins34 = ‖p4 − p3‖2, there exist two possible solutions fors34

that correspond to the two possible signs for the square root in the right hand side.
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Now, let us consider six points,p0, . . . ,p5, so that only the distance betweenp5 andp4 is unknown. This config-
uration is similar to the one in Fig. 2 where the role of the triangle has been substituted by a tetrahedron. These
six points define a simplex inR5 but, since it is embedded inR3, its volume is null. Hence,D(0, 1, 2, 3, 4, 5) = 0.
Again, this defines a quadratic equation ins45. Nevertheless, proceeding as above, this equation can be simplified
by applying Jacobi’s theorem to the following partition of D(0, 1, 2, 3, 4, 5)
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,

concluding thatD(0, 1, 2, 3, 4, 5) = 0 yields

D(0, 1, 2, 3, 4)D(0, 1, 2, 3, 5)D2(0, 1, 2, 3, 4; 0, 1, 2, 3, 5)
D(0, 1, 2, 3)

= 0.

Now, note thatD(0, 1, 2, 3, 4) = 0 andD(0, 1, 2, 3, 5) = 0 because they correspond to the volumes of simplices
in R

4. Thus, assuming that the tetrahedron defined byp0, p1, p2 andp3 is not degenerate,

D(0, 1, 2, 3, 4; 0, 1, 2, 3, 5) = 0, (3)

which is linear ins45. As a consequence, there is only one solution fors45 compatible with all other distances.
In what follows, we will say that a distance matrix can be completed if its unknown distances can be determined
by iteratively finding reference tetrahedra and triangles and using equations (2) and (3), respectively, to obtain the
unknown distances. To reduce the number of possible matrix completions to a minimum, one should look for ref-
erence triangles only when no reference tetrahedra are available, because reference triangles lead to two possible
solutions.

APPLICATION TO SPATIAL SERIAL ROBOTS
A 6 DoF serial robot whose end effector is fixed relative to its base can be seen as a closed chain of six rigid bodies
pairwise articulated, that is, as a 6R closed mechanism (Fig. 3-a). Since translations can be seen as rotations
centered at infinity, this representation is general enough for our purposes. By taking two points on each axis, this
6R mechanism can be translated into a set of distance constrains between 12 points, as explained above, which
correspond to the edge lengths of six pairwise articulated tetrahedra (Fig. 3-b). If two consecutive axes meet at a
point (possibly at infinity if they are parallel), the tetrahedron can be substituted by a triangle. However, note that
no more than three axes can meet at a point if we want the corresponding serial robot to have 6 DoF.
In Fig. 3-b, we have two cycles of points,{p1, . . . ,p6} and{q1, . . . ,q6}, where the couples(pi,qi) define the
rotation axes. Since we allow that two or more consecutive axes meet at a point, consecutive points in these cycles
can actually coincide and, thus, in general, the two cycles will be{p1, . . . ,pm} and{q1, . . . ,qn} with m,n ≤ 6.
Then, the adjacency matrixS representing all interconnections has the form:

S =
(

Cm A
AT Cn

)

, (4)

whereCm andCn are the adjacency matrices for the points in the cycles{p1, . . . ,pn} and{q1, . . . ,qm}, re-
spectively (i.e., they are cyclic tridiagonal matrices), andA is the matrix encoding the connections between points
lying in different cycles. Now, all candidates for matrixA can be readily enumerated by realizing that the con-
nections they encode should only correspond to a sequence of tetrahedra and triangles. The number of options
can be further reduced taking into account that at least one tetrahedron must be included in the sequence because
the robot end-effector can be placed arbitrarily with respect to its base. The result of this enumeration leads to
243 candidates. Discarding those that have more than three co-punctual axes and those that cannot be completed
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Figure 3: A general 6R mechanism (a), and its representation in terms of distance constraints (b).

as described in the previous section, we finally obtain 8 non-isomorphic configurations that correspond to the 8
serial robots shown in Fig. 4. Each robot is represented here as a bipartite graph made out of two vertex sets, each
corresponding to one of the vertex cycles{p1, . . . ,pm} and{q1, . . . ,qn}. Edges between the vertices represent
the robot’s joint axes.

S9-A (Stanford)

S8-A S8-B (Elbow) S8-C (Puma) S8-D

S7-A S7-B S7-C (Nokia)

Figure 4: Schematic representation of all serial robots whose associated distance matrix can be completed using
the two operations presented in this paper.

A close look to this family of serial robots reveals that all of its members have three consecutive co-punctual
axes. Thus, all serial robots that can be solved using the presented technique are decoupled, that is, their inverse
kinematics can be decomposed into rotational and translational components.
We note that the just characterized family of serial robots, although small, includes most popular 6 DoF serial
manipulators such as the Stanford, Cincinnati Milacron, Puma and Nokia manipulators, as shown in Fig. 5.

AN EXAMPLE
The presented methodology has been implemented in MATLAB. As an example, we here follow in detail how it
can be used to solve the inverse kinematics of a PUMA 560 manipulator.
First, each link of the robot must be modelled as a set of distance constraints between a set of points. Fig. 5-b
shows this robot in its home position, and the points that should be selected to derive such constraints. Coordinates
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Figure 5: (a) Elbow manipulator or Cincinnati Milacron (S8-B). (b) Puma manipulator (S8-C). (c) Nokia manipu-
lator (S7-C). (d) Stanford manipulator (S9-A). In (a), (b), and (c), parallelism between axes is exploited to simplify
its analysis, but note that, even if this artifact is not introduced, the distance matrices associated with (a) and (b)
can still be completed. Robot (d) includes a translational degree of freedom that, according to our formalism, is
represented by a rotation axis at infinity. (Figure partially adapted from [3].)
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i αi (deg.) ai (m) θi (deg.) di (m)
1 90 0 θ1 0
2 0 0.4318 θ2 0
3 −90 0.0203 θ3 0.15005
4 90 0 θ4 0.4318
5 −90 0 θ5 0
6 0 0 θ6 0

Table 1: Denavit-Hartenberg parameters of the PUMA 560 robot.

for all points can be easily obtained in terms of the Denavit-Hartenberg parameters of this robot, shown in Table 1.
According to the process explained above, link 1 can be modelled by the fixed distances between three points, 1,
6, and 2, as it connects two intersecting axes. Similarly, link 2 is modelled by the fixed distances between points
6, 2, and 7, but point 2 must be placed at infinity, as the axes of this link are parallel. Link 3 has two skew axes
and, thus, it is modelled by the fixed distances of the tetrahedron defined by 7, 2, 3, and 8. Links 4 and 5 connect
concurrent axes and are thus represented by the triangles (3, 8, 4), and (4, 8, 5), respectively. These distances yield
the non-bold numeric entries in the following distance matrix:

S =















0 101.05 s1,3 s1,4 1.314 1 s1,7 1.877
101.05 0 97.077 s2,4 s2,5 100.05 100.05 97.264
s1,3 97.077 0 1.186 s3,5 s3,6 0.023 0.186
s1,4 s2,4 1.186 0 2 s4,6 s4,7 1

1.314 s2,5 s3,5 2 0 0.596 s5,7 1
1 100.05 s3,6 s4,6 0.596 0 0.186 0.318

s1,7 100.05 0.023 s4,7 s5,7 0.186 0 0.209
1.877 97.264 0.186 1 1 0.318 0.209 0















.

The usual formulation of the inverse kinematics further considers a 0th and a 6th link, respectively modelling the
‘world’ and the ‘hand’, and a homogeneous transformation positioning the hand with respect to the world. Note
that, in doing so, these two elements become mutually rigid, and it is thus possible to consider them as asingle
link constraining the relative position between the first and last revolute axes. In our setting, this is equivalent to
fixing the distances of the tetrahedron (1, 6, 5, 8). Note that these distances, while fixed, depend on the specific
pose of the end effector relative to the world, or, in other words, on the specific inverse kinematics problem to be
solved. They correspond to the numeric bold entries inS, computed in this example for a pose of the hand given
by the joint angles(θ1, θ2, θ3, θ4, θ5, θ6) = (229.25◦, 339.86◦, 14.68◦, 102.84◦, 243.81◦, 211.03◦).
Now, by taking the sequence of tetrahedra and triangles shown in the first column of the following table as refer-
ences, the distances in the second column can be obtained thus completingS.

tetrahedron/triangle squared distance

(2, 6, 8) → s1,7

(1, 6, 8) → s2,5

(2, 7, 8) → s3,6

(1, 2, 6, 8) → s5,7

(2, 6, 7, 8) → s1,3

(1, 2, 6, 7) → s3,5

(3, 5, 8) → s4,6

(3, 5, 6, 8) → s4,7

(3, 5, 6, 7) → s1,4

(1, 3, 5, 6) → s2,4

Since there are 4 steps in this sequence in which a triangle is involved, a total of24 = 16 possible completions
exist for S. Them all correspond to consistent Euclidean matrices; that is, their associated Gram matrices are
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positive semidefinite of rank 3. Each such matrix yields two specular coordinatizations of the points1, . . . , 8. If
among these coordinatizations we discard those where the orientations of tetrahedra(1, 6, 5, 8) and(2, 3, 7, 8) are
different from that in the actual robot, we finally obtain the following 8 solutions for the joint anglesθ1, . . . , θ6.

sol. # θ1 θ2 θ3 θ4 θ5 θ6

1 11.75 200.37 171.57 133.73 124.20 28.30
2 11.75 200.37 171.57 313.73 235.80 208.30
3 228.62 339.63 14.67 283.19 115.57 30.58
4 228.62 339.63 14.67 103.19 244.43 210.58
5 11.75 97.66 14.67 221.40 239.70 77.82
6 11.75 97.66 14.67 41.40 120.30 257.83
7 228.62 82.34 171.57 58.262 264.26 106.19
8 228.62 82.34 171.57 238.26 95.74 286.19

The reader can check that the fourth such solution is very close to the pose of the hand specified above, the small
error being due to the fact that point 2 is not sufficiently far away from the robot (here it is placed at a distance
d∞ = 10m from the line defined by points 6 and 7). The following table shows how, by solving the same problem
at increasing values ofd∞, this solution tends to the exact one.

d∞ θ1 θ2 θ3 θ4 θ5 θ6

1 222.76 337.40 14.88 106.64 250.01 206.41
10 228.62 339.63 14.67 103.19 244.43 210.58

100 229.18 339.84 14.68 102.88 243.87 210.98
1000 229.24 339.86 14.68 102.84 243.82 211.02

10000 229.25 339.86 14.68 102.84 243.81 211.03
∞ (exact) 229.25 339.86 14.68 102.84 243.81 211.03

CONCLUSIONS
We have presented an explicit enumeration of all six DoF serial robots whose inverse kinematics can be solved
by completing a distance matrix. This completion is performed by applying a sequence of two simple operations.
The method has been implemented in MATLAB, and the resolution of the inverse kinematics of a PUMA 560
robot has been reported as an example. This method, if implemented in a symbolic algebra package, would yield
closed-form formulas. This is a point that deserves further efforts as it would permit to analyze the computational
efficiency of the resulting formulas, and their numerical stability, in front of other well-known formulations ob-
tained for particular architectures.
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