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Abstract: This paper shows how the information required to solve arbi-
trary single loop inverse kinematics problems can be reduced to a single
scalar equation using simple algebraic considerations. Then, a set of vari-
able substitutions allows us to express this fundamental equation into a
second-order multinomial. A recurrent expression has been obtained for
the control points of this multinomial when expressed in Bernstein basis.
This is the key result that allows us to devise a new subdivision tech-
nique for solving inverse kinematics problems. To this end, we have actually
adopted concepts and algorithms developed —and widely tested— in the
context of Computer Graphics applications. Contrary to other approaches,
the one presented here is clearly less involved, it does not require any al-
gebraic symbolic manipulation to elaborate the input data, and its exten-
sion to multiple-loop kinematic chains is really straightforward. Moreover,
although it can be classified within the same category as interval-based
techniques, it does not require any interval arithmetic computation.

1. Introduction

Sets of equations derived from inverse kinematics problems have been widely
used as examples for testing algorithms designed to compute all the solu-
tions to systems of nonlinear algebraic equations. Solving such systems of
equations is a ubiquitous need in many applications and many techniques
have been designed to solve them.

It has been argued that the particularities of the inverse kinematics
problem should be exploited by these general techniques to increase ef-
ficiency. Unfortunately, inverse kinematics problems, as a class, have no
special particularities to be exploited. Actually, it is always possible to syn-
thesize a mechanism whose inverse kinematics solution directly corresponds
to the solution of a given arbitrary system of algebraic equations. In other
words, we can only exploit the particularities of specific instances of the
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problem. In this context, our main goal has been to achieve a numerical
algorithm able to solve the problem directly from the Denavit-Hartenberg
parameters of the single or multiple loop mechanism in the most efficient
way. In other words, it has been an important goal for us to avoid any
symbolic algebraic manipulation of the data.

Three main techniques have been designed for finding all the roots of
systems of algebraic equations: algebraic geometry techniques, homotopy,
and subdivision. For details on how the first two have been applied to solve
inverse kinematics problems, the reader is addressed to (Nielsen and Roth
1997). It is worth to mention here that algebraic geometry techniques (in-
cluding those based on elimination and Grobner bases) suffer, in general,
from numerical instabilities and they are inefficient in memory and pro-
cessing time. On the other hand, algorithms based on homotopy techniques
must be implemented in exact rational arithmetic to avoid numerical insta-
bilities, leading to important memory requirements because large systems of
complex initial value problems have to be solved. Nevertheless, both tech-
niques, when adapted to particular instances, may lead to very efficient
algorithms.

The algorithm presented in this paper belongs to the third class: subdivi-
sion-based techniques. Thanks to the subdivison and convex-hull properties
of the Bernstein polynomials, it exhibits a remarkable geometric character
that makes it more attractive and easy to implement than our previous
algorithm based on interval arithmetic techniques (Castellet and Thomas
1998). Contrary to the techniques in the other two categories, which they
all give complex solutions, it only gives either the real or the complex roots
inside a given n-dimensional box.

This paper is organized as follows. In section 2, the matrix equation
associated with a kinematic loop is reduced to a single multinomial and a
recursion for the control points of its solution space is obtained. This result
is used by a subdivision-minimization strategy —sometimes called Bézier
clipping in the context of Computer Graphics applications— to locate all
roots, as explained in Section 3. We conclude in Section 4.

2. The control points of a scalar fundamental equation

Any kinematic loop equation can be expressed, using the Denavit-Hartenberg
parameters, as:

H Tranx(c;)Rx(0;) Tranz(a;)Rz(o;) =1,

where the parameters a; and «; are constant and are determined by the
geometry of the links. In a revolute joint ¢; is fixed and 6; varies, while
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in a prismatic joint ¢; varies and 6; is fixed. An alternative expression is
obtained using what we call the n-bar parameters:

H Tranx(d;)Rx(¢;)Ra(r/2) = L.

There is a one-to-one mapping between both sets of parameters that
guarantees the equivalence. Nevertheless, the latter is a more compact rep-
resentation that simplifies further algebraic manipulations. For example, it
can be easily factored into the following two equations:

Fo(®) = [[ Rx(:)R2(r/2) = L (1)
Z i, =0, @

The solution set to F,,(®) = I, a system of nine trigonometric polyno-
mials in n variables, has been geometrically and topologically characterized
n (Castellet and Thomas 1999). This factorization is important because it
says that the solution space to F,,(®) = I and its tangent bunddle contains
enough information to solve our problem.

Due to the fact that F,,(®) = [ Z?(@)] i<iics is a product of orthogonal
<ig<
matrices equated to the identity, it can be reduced to the following single

trigonometric equation:

f11(®) + f25(®) =2 =0. (3)

fl-"j(i’) can be converted into a rational polynomial T’;(t) in a new vari-

able, t = (t1,...,t,), using the tangent-half-angle substitution, that is, by

introducing the substitutions sin(¢;) = 1322 and cos(¢;) = 11;15;22

Then, if we multiply the resulting rational polynomials by g, (t) =

[T, q(t;) with g(s) = 14 s?, we obtain the polynomials f_{;(t) = gn(t) f13(t)
(we adhere to the notation introduced in (Kovédcs and Hommel 199 ))
Therefore, Eq. (3) can be expressed as:

JTi(6) + f5(8) — 2gn(t) =0 . (4)

Let g(t) be a function in the variables t = (¢1,...,t,), then we define
the function g7 as g?(t) = g(t?) where t7 = (tn,t1,...,tn—1)-

Proposition 1. fénQ(Q) = {LIU(Q) = finl (¢na ¢17 s 7¢n—1)'
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Proof. If we denote F,,” (®) = [ (P

Had ] , we have that:
’ 1<i <3

F,.”(®) = (Rx(¢n)Ra(m/2)) Fu(®) (Rx(¢n)Ra(7/2))".
Then the element (1,1) of F,,7, i.e. f1419(®), is equal to the element (1,1)
of the product (Rx(¢n)Rz(7/2)) Fp,(®)(Rx(¢n)Raz(7/2))", that results to

be f35(%®).
]
Corollary 1. f7, + f_lnlg — 2¢q, =0.

It is well known that Ry [t], the set of polynomials in the variables
t1,...,t, of degree < m; in t;, is a vector space. Also, the Bernstein
multinomials { By a1 (t) } g« ;< defined as By as(t) = by, (81) - - - biyy e, (E0)
(where b, ;, denote de ith Bernstein polynomial of degree m) forms a ba-
sis, called the multivariate Bernstein basis (Sherbrooke and Patrikalakis
1993). Therefore, any polynomial f(t) € Ry, [t] can be written as f(t) =
Z?/I:O cr(f)Brm(t). This expression is the Bernstein form of f(t) and the
coefficients cr(f) are called the control points, because of their direct geo-
metric interpretation, as seen in the next section.

In our case, we are interested in the Bernstein form of the polynomial
f=7"+ 11 —2q, € Ry[t], where M = (2,...,2) € R". It is easy to
prove that ¢;(f) = cr(f1}) + er(fi5°) — 2¢r(gn). For simplicity, we write
By (t) instead of By p(t).

Proposition 2. The control points of qn(t) are cr(gn) = 2XD, where x(I)
is the number of elements of I equal to 2.

Proof. Tt can be checked that g(t;) = bo2(ti) + b1,2(t:) + 2b2,2(%;), therefore
the polynomial ¢,, can be expressed as:

n

an(t) = [ [bo2(t:) + bra(t:) + 2baa(t Z 2 B (t)
=1

O
Proposition 3. The control points of f,° are cr(f7°) = 1o (f1%), where
19 = (in, i1, yin_1).
Proof. The Bernstein multinomials Bj(t) satisfy the property Br(t?) =

B;,-1(t). Then,

M
fll ZC} fll B[ ta ZC[ 1(t) = ZC[a(f_lnl)B t
1=0
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Now, we only have to calculate the control points c;(f}), but first we
need the following proposition:
Proposition 4. f} and f{y satisfy the recursion:

flnl (¢17 ey ¢n) _2(¢17 R ¢n72) COS(¢H) + f1n3_1(¢17 RN (bn*l) Sln(‘bﬂ)
fln3(¢17 ey ¢n) _2(¢17 RN ¢n72) Sln(‘b”) + f1n3_1(¢17 RN ¢n71) COS(‘bn)

Proof. The detailed proof can be found in (Bombin et al. 2000).

O

Corollary 2. fIy and fly satisfy the recursion:

ﬁ(tla"'atn) = 1n1_2(t17---7tn72)gl( n— 1; ) +f (t17 tnfl)hl(tn)
Tt otn) = FT 2 (b tae2) g2 (bt tn) = Fls  (t1y - s tnt)ha(tn)
where, hl(tn; = 2t,, and ha(t,) = t,2—1 belong to Ry [t,,], and g1 (t,_1,t,) =
Q(tnfl)hQ(tn and g2(tn71,tn) = Q(tnfl)hl (tn) bdong to R(Q,Q) [tnfl,tn]'
Their control points different from zero in the corresponding Bernstein basis
are:
(0,0)(91) = €(0,1)(91) = c1,0)(91) = c1,1)(91) = —1,¢(2,0)(91) = ¢(2,1)(91) = —2
c0,1)(92) = c1,1)(92) = 1,¢(0,2)(92) = c(1,2)(92) = €(2,1)(92) = 2,¢(2,2)(92) =
Cl(hl) = ].,CQ(hl) =2 and Co(hg) =-1 Cl(hz) —-1.

Corollary 3. The control points of ff and f_1"3 satisfy the recursion:

C(il,...,in)(E) = Cliyonyin—2) FT ) Cinin) (1) F i oin—1) (15 )i (P1)
Clityonnin) (FT8) = Clirynsin—s) FI )i —1,in) (92) = Clinornyin 1) (f15 )i (R2)

Finally, we have that the Bernstein form of Eq. (4) is

M

S [T +ere D)~ 207 By = 0, 5

I=0

where c;(f]}) satisfies the recursion in corollary 3.

So far, for simplicity, we have treated all ¢; as variables. In practice many
of them are determined by the geometry of the mechanism and hence only
a reduced set of control points is actually needed (Bombin et al. 2000).

The control points of the partial derivatives of F(®) with respect to
¢; can be easily obtained from these results and using (Wang et al. 1997).
That is, a similar expression to that of Eq. (5) can be obtained for Eq. (2).

3. The subdivision-minimization strategy

For the moment, to simplify the presentation, let us assume that d; = 0, Vi;
i.e., we are working with a single-loop spherical mechanism. Hence, we only
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need to compute the solutions to Eq. (5). To this end, we use our own
variation of the Bézier clipping technique developed in (Sherbrooke and
Patrikalakis 1993). This method allows searching for the roots of a Bern-
stein form polynomial in the unit box [0, 1] of R". Since the variables ¢; in
Eq. (5) take values in their range, we first apply an affine parameter trans-
formation to Eq. (5) so that the initial box is converted into the unit box.
This scaling yields a new polynomial in Bernstein form for the left hand
side of Eq. (5), with a new set of control points (Farin 1990). Let us write
it as f(x) = Zﬁo wrBr(x) and construct the function F : R* — R**!
defined as F(x) = (z1, 22, ..., Ty, f(x)). Trivially, finding the roots of f(x)
is equivalent to detecting all points of the form (x,0) in the graph of
F(x). However, the latter formulation is advantageous. First, the graph
of F(x) is an algebraic variety in R"™! whose points can be parameter-
ized with polynomials in Bernstein form as F(x) = Z‘J,Vio vy Br(x), where
vy = (i1/ma,i2/ma, ..., iy /My, wr), which are called the control points of
F(x) (Sherbrooke and Patrikalakis 1993).

Now, the root-finding procedure can make use of two important proper-
ties of the Bernstein form of F'(x). The first one is the so-called convez hull
property: when x € [0,1]", F(x) is totally contained within the convex hull
of its control points v;. This follows immediately from the values taken by
the Bernstein polynomials By in the unit box. They all are non-negative and
sum to 1 (Farin 1990), and hence the linear combination of control points
vr in ZKO vrBr(x) is actually a convex combination when x € [0, 1]". The
second property is subdivision: if we are interested in the values that F(x)
takes within a sub-box of [0,1]", say B = [a1,b1] X [a2,be] X ... X [ap, by],
with 0 < a;,b; < 1, then it is possible to apply an affine parameter trans-
formation z; = a; + u;(b; — a;), 1 = 1,...,m, to scale B to the unit box and
rewrite F' in Bernstein form in terms of the new parameters u;, with new
control points. This can be accomplished by means of the De Casteljau
algorithm for Bézier surfaces, as explained in (Farin 1990). The important
point here is that, after the scaling, the new control points for F' are closer
to the graph of F' than the previous ones. These considerations permit the
following procedure to find all the roots of Eq. (5).

1. Compute the control points vy of F(x). Start with the box B = [0, 1]"

2. Using the convex hull property, find a sub-box B’ of B that contains
all the solutions of F(x) = (x,0) (see the details below). If there is no
such sub-box (i.e., B contains no solution), set B’ = &.

3. If B' # o, see if it is sufficiently small. If it does, conclude that there
is a root inside and return B'; otherwise split B’ into some number of
equally sized smaller boxes, scale these boxes back to [0, 1]™ using the
subdivision property for F', and recursively call step 2 once for each
new smaller box.
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It remains to see how step 2 can be performed. Although there are
several ways to implement it, leading to several variants of this algorithm,
we restrict here to the most effective of them, that uses linear programming.
Let C denote the convex hull of the control points vy, and let R be the region
of intersection of C with the hyperplane z,, 11 = 0. Then, we define B’ as the
smallest rectangular box enclosing R. Although the explicit computation
of R is a complex and time-consuming task, it is not necessary to carry it
out explicitly if all we need is just a bounding box for it. Indeed, R can be
described with a set of linear equalities and inequalities as follows. Since a
point x in R must be a convex combination of the control points v;, there
must be coefficients ¢y € R such that

M M
X = Zc; vy, ¢ >0 VI, and Zc; =1. (6)
=0 I=0

Moreover, since x must lie on the hyperplane =, = 0, its last coordi-
nate must be zero. Now, let the values u; and [; represent, respectively, the
upper and lower limits of the box B’ in the i-th coordinate. It is easy to see
that, in order to compute u; and [; for all 7, we simply need to minimize
the sum 7, (u; — ;), subject to the constraints u; — z; > 0, z; — l; > 0,
for i = 1,...,n, the constraints in (6), and z,,+1 = 0. This minimization is
a linear programming problem and, hence, it can be efficiently solved with
the simplex algorithm.

The above algorithm has been proven to terminate in all cases. More-
over, if there is a finite number of roots, then it returns a box enclosing
each of them that is smaller than a user-specified tolerance. If the number
of roots is infinite, the algorithm also terminates, providing a discretization
of the solution space in a number of small boxes enclosing it. Additionally,
the algorithm has the good property of being quadratically convergent to
the roots. See (Sherbrooke and Patrikalakis 1993) for details on all these
facts. Also, as the subdivision proceeds in step 3 above, the roots of F' can
be moved away from their true positions due to the inevitable round-off
errors. Nevertheless, theorem 5 in (Farouki and Rajan 1987) ensures that
the sensitivity of the roots versus small perturbations of the control points
decreases monotonically under De Casteljau subdivision, which makes the
algorithm quite robust.

Finally, note that to solve the inverse kinematics of a spatial mechanism
we can employ the same procedure with just a slight variation. Instead of
a single equation F(x) = (x,0) we will have one more equation: the one
corresponding to the translational part. Then, in step 2, when we solve
the linear program to get the sub-box B’, we will simply have to take
into account all the linear constraints describing the convex hulls of the
control points of both equations. The extension to deal with multiloop
spatial mechanisms can be done using an analogous reasoning.
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4. Conclusions

We have presented an algorithm for solving inverse kinematics problems
directly from the Denavit-Hartenberg parameters of the single or multiple
loop mechanism using a technique that takes advantage of the subdivison
and convex-hull properties of the Bernstein polynomials. This has been
possible thanks to the recursion found for the control points of the solution
space, a key contribution of this work. Unfortunately, the inverse kinematics
of mechanisms containing coupled rotational and translational motions (e.
g. cycloidal and screw motions) still remain outside the presented analysis.

The only recognized important disadvantage of subdivision techniques is
that they provide no explicit information about root multiplicities without
additional computations, but are able, under some conditions, of tracing
infinite number of roots, as done in (Zhou et al. 1993).

We have used a tangent-half-angle substitution. This is probably the
worst possible algebraic parameterization of the unit circle. Fortunately,
many other alternatives are possible (Piegl and Tiller 1989) which do not
modify our arguments. This is obviously a point that deserves further at-
tention.
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