
DISTANCE CONSTRAINTS
SOLVED GEOMETRICALLY

F. Thomas, J.M. Porta, and L. Ros
Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
Llorens i Artigas 4-6, 08028-Barcelona, Spain
{fthomas,jporta,llros}@iri.upc.es

Abstract Most geometric constraint problems can be reduced to give coordinates
to a set of points from a subset of their pairwise distances. By exploiting
this fact, this paper presents an algorithm that solves distance constraint
systems by iteratively reducing and expanding the dimension of the
problem. In general, these projection/backprojection iterations permit
tightening the ranges for the possible solutions but, if at a given point no
progress is made, the algorithm bisects the search space and proceeds
recursively for both subproblems. This branch-and-prune strategy is
shown to converge to all solutions.

Keywords: Distance constraints, distance geometry, geometric constraint systems.

1. Introduction
The resolution of systems of geometric constraints has aroused interest

in many areas of Robotics (contact formation between polyhedra, assem-
bly planning, forward/inverse kinematics of parallel/serial manipulators,
path planning of closed-loop kinematic chains, etc.) and CAD/CAM
(constraint-based sketching and design, interactive placement of objects,
etc.). The solution of such problems entails finding object positions and
orientations that satisfy all established constraints simultaneously. A
review of the methods proposed to solve this problem in the context of
Robotics can be found in (Nielsen and Roth, 1997).

Most of the proposed methods consist in translating the original geo-
metric problem into a system of algebraic equations. In this paper, we
depart from this usual formulation in that our algorithm does not rely on
an algebrization of the problem. Contrarily, all operations have a direct
interpretation in terms of geometric transformations in the embedding
space of the problem and variables are distances instead of degrees of
freedom linked to artificial reference frames.

Most direct and inverse kinematics problems can be expressed in terms
of systems of distance constraints between points. Consider, for example,
the problem of finding all valid configurations of a closed 6R linkage, a
cycle of of six binary links pairwise articulated with revolute joints (Fig.



(a) (b)

Figure 1. A general 6R linkage (a) and its translation into a tetrahedral ring (b).

1a). A binary link can be modelled by taking two points on each of
its two revolute axes and connecting them all with rigid bars to form a
tetrahedron. By doing so, a 6R linkage is easily translated into a ring of
six tetrahedra, pairwise articulated through a common edge (Fig. 1b)
which can be simply regarded as a set of points that keep some pairwise
distances.

The total number of pairwise distances between n points are n(n−1)
2 .

The above example involves 12 points and 66 distances from which 30
are known. Likewise, it can be checked that the translation of the for-
ward kinematics of the general Gough-Stewart platform into distance
constraints between points also involves 12 points and 66 distances, 36
of which are known. Therefore, if a computer program, able to obtain
all sets of values for the unknown distances compatible with the known
ones, would be available, obtaining all possible solutions of the inverse
kinematics of a 6R robot or the forwards kinematics of a Gough-Stewart
platform would become trivial.

Our problem can be more formally stated as follows: Given a graph
G = (Vn, E), with node set Vn = {1, . . . , n} and edge set E, and a
real partial symmetric matrix A = (aij) with pattern G and with zero
diagonal entries, determine whether A can be completed to a Euclidean
distance matrix (Laurent, 1998); that is, whether there exist vectors
x1, . . . ,xn ∈ �d for a given d ≥ 1 such that aij = ‖xi−xj‖2 for all ij ∈
E, where ‖x‖ denotes the Euclidean norm of x ∈ �d. The vectors
x1, . . . ,xn are then said to form a realization of A. Unfortunately, this
problem has been shown to be NP-complete if d = 1 and NP-hard if



d ≥ 2 (Saxe, 1979). Thus, the best we can expect is to come up with an
algorithm that, despite its unavoidable exponential complexity, works
well for problems of reasonable size.

Given an arbitrary symmetric matrix with 0 entries in its diagonal and
strictly positive entries in the rest, two different criteria have been found
to decide whether it corresponds to a Euclidean distance matrix. One
derives from the theory of Cayley-Menger determinants and the other
from the theory of positive semidefinite matrices. These two criteria
lie at the innermost of the two main families of algorithms that have
been proposed for solving the problem at hand. It is worth saying here
that all these algorithms lead to a rapid algebrization of the problem
while the one proposed in this paper is based on elementary geometric
operations, thus keeping the geometric flavor of the problem. Despite its
geometric nature, though, it is closely related to the algorithmic tools
developed for positive semidefinitive matrices. This connection permits
proving the correctness of the proposed algorithm.

This paper is structured as follows. Section 2 prepares the ground for
the sections that follow. To keep it short we give the needed material
in intuitive terms without going into mathematical details. Section 3
describes the two basic geometric operations in which our algorithm is
based; namely, projection and backprojection. Section 4 presents the
algorithm and examples to clarify the main points. Finally, section 5
contains the conclusions.

2. Preliminaries
The pairwise distances between n points, say x1,x2, . . . ,xn, will be

arranged in a symmetric matrix of the form D0 = (d2
ij), i, j = 1, . . . , n,

where dij is the Euclidean distance between xi and xj . In our case,
not all elements of D0 are known but lower and upper bounds on them
can readily be obtained. For example, all unknown distances are nec-
essarily smaller than the sum of all known distances, say σ. Then, all
unknown distances can be bound to lie in the interval [0, σ2]. But this
trivial bound can be further tightened. In the literature this process is
referred to as bound-smoothing: given the upper and lower bounds on
a subset of pairwise distances, triangle and/or tetrangle inequalities are
used to further tighten these bounds (Crippen and Havel, 1988). As a
consequence, in what follows, it is convenient to assume that all entries
in vectors and matrices are real compact intervals, and that all ordinary
arithmetic operations on them are carried out according to the standard
interval arithmetics. That is, intervals are added, subtracted, multiplied,



etc. in such a way that each computed interval is generated to contain
the unknown value of the quantity it represents.

Although it introduces a slight abuse of language, vectors and matrices
will be treated as sets which, under certain circumstances, could be
operated as such. For example, two matrices of the same size can be
intersected provided that the result is also a matrix with real compact
intervals.

The elements of D0 have to satisfy certain algebraic conditions, de-
rived from the theory of Cayley-Menger determinants, to be the set of
pairwise squared Euclidean distances between n points in �d (Porta et
al., 2004). Unfortunately, this characterization of realizability leads to
a rapid algebrization of the problem and we are here interested on ob-
taining an algorithm based on purely geometric constructions. To find
an alternative characterization of realizability, let us organize, without
loss of generality, the coordinates of x1, . . . ,xn−1 with reference to xn

in the following (n − 1) × d matrix:

X =


x1 − xn

x2 − xn
...

xn−1 − xn

 ,

where row i contains the coordinates of the vector pointing from xn to
xi. Then, the element (i, j) of the (n−1)× (n−1) matrix XXt contains
the inner product 〈xi − xn,xj − xn〉. Actually, G = XXt is known as a
Gram matrix, a positive semidefinite matrix whose rank is equal to the
dimension of the space in which the n points are embedded (in our case
d). Then, using the cosine theorem, we can directly obtain the elements
of G from those of D0 as follows:

G[i, j] = 〈xi − xn,xj − xn〉 =
1
2
(d2

in + d2
jn − d2

ij). (1)

Schoenberg showed that D0 is a proper Euclidean matrix if, and only
if, G, obtained using (1), is positive semidefinite and its rank gives the di-
mension of the space in which the points can be embedded (Schoenberg,
1935). This characterization of realizability has led to several algorithms
for solving the matrix completion problem by semidefinite programming
and variations (Alfakih et al., 1999), (Laurent, 1998), (Nikitopoulos and
Emiris, 2002). The problem with these algorithms is that they are only
able to find one realization within the provided ranges for the distances,
while we are actually interested in all possible realizations.

What is important for us is that Schoenberg’s characterization of re-
alizability permits concluding that the Gram matrix G can be uniquely



factorized into the product LLt, where L is an (n−1)×d lower triangular
matrix, because it is positive semidefinite of rank d. This factorization
can be obtained by the application of d steps of the Cholesky factor-
ization algorithm (Steward, 1998, p. 188). Then, the rows of L can
be directly seen as the coordinates of x1, . . . ,xn−1 and therefore it is
equivalent to X up to rotations. This algebraic fact has a nice geometric
interpretation on which the algorithm given below is based but, before
we explain it, let us introduce the basic operations in which it relies.

3. Basic operations: projection and
backprojection

Let us take as a reference the coordinate axis defined by xnx1, with
origin at xn and pointing to x1 in the positive direction. Then, the
projection din of din on this axis is, using the cosine theorem,

din = din cos βi =
1

2d1n
(d2

in + d2
1n − d2

i1). (2)

Hence,

dij = din − djn =
1

2d1n
(d2

in − d2
jn + d2

j1 − d2
i1), (3)

and the orthogonal component d⊥ij of dij is

(d⊥ij)
2 = d2

ij − d
2
ij = d2

ij −
1

4d2
1n

(d2
in − d2

jn + d2
j1 − d2

i1)
2. (4)

Then, we can construct the vector

v1[i] = din, i = 1, . . . , n, (5)

that contains the projections of din on the axis defined by xnx1, and the
matrix

D1[i, j] = (d⊥i,j)
2, i, j = 1, · · · , n, (6)

which is a distance matrix containing all squared distances involved in
D0 projected onto the hyperplane orthogonal to the axis defined by xnx1.
Note that D1[1, n] = 0, and, as a consequence, D1[i, 1] = D1[i, n], i =
1, . . . , n, so that we can define D̃1[i, j] = D1[i, j], i, j = 1, · · · , n−1, from
which D1 can be straightforwardly recovered. Then, deciding whether
n points can be embedded in �d from their interpoint distances boils
down to decide whether n − 1 points can be embedded in �d−1 from
a new set of interpoint distances obtained by projection. The above
projection process can be iteratively repeated so that D̃1 yields D2 and
v2 and so on. After d − 1 iterations, if our points can be embedded



in �d, D̃d−1 can be embedded on a line. After d iterations, D̃d should
be identically null. Space limitations prevent us from showing that,
if D0 is a point matrix, this is a necessary and sufficient condition of
realizability because v1, . . . ,vd provide a Cholesky factorization of the
Gram matrix associated with D0 (remind that all distances should be
treated as intervals and, as a consequence, all expressions above should
be evaluated using interval arithmetics).

Now, it can be checked that D̃k−1[i, j] = Dk[i, j] + (vk[i] − vk[j])2,
for i, j = 1, . . . , n − 1. Therefore, it is clear that Dd−1 can be recovered
from Dd and vd. This backprojection operation can take as input Dd

and may be repeated till D0 is recovered. Since Dd must be identically
null for solutions embedded in �d, one concludes that v1, . . . ,vd encodes
all the information required to recover D0.

4. The algorithm and examples
To find all realizations in �d contained in a given distance matrix

D0, the proposed algorithm projects this matrix d − 1 times yielding
Dd−1. As a byproduct of these projections, we get a set of coordinate
vectors that permit recovering D0 from Dd−1. Then, all elements in
Dd−1 that cannot be embedded on a line can be ruled out because they
correspond to realizations that cannot be embedded in �d. Thus, Dd−1

is pruned accordingly and backprojected, using the obtained coordinate
vectors, yielding D̂0. Then, if D̂0 ∩ D0 provides a reduction in the
original bounds, this process can be iterated for all possible projections
by permuting the indices of D0 until either (1) one of the entries in
the obtained distance matrix gets empty, in which case we can conclude
that our distance matrix contain no realization, or (2) the matrix is
“sufficiently” small, in which case it is considered a solution, or (3)
the matrix cannot be “significantly” reduced, in which case it is split
into two matrices by bisection. If the latter occurs, the whole process is
repeated onto the newly created matrices, and to the matrices recursively
created thereafter, until we end up with a collection of “small” matrices
containing all solutions.

The presented algorithm has been implemented in MATLAB using
the INTLAB toolbox (Hargreaves, 2002) that implements the standard
interval arithmetics. As an example, let us consider four points in �2

so that all but one distances between them are known. In general, this
leads to two possible realizations, as shown in Fig. 2, up to congruences.



x1 x1

x2x2

x3x3

x4

x4

(a) (b)

Figure 2. If there is only an unknown distance between four points in �2 – repre-
sented here by a dotted segment–, two possible realizations arise, up to congruences.

If the corresponding distance matrix is

D0 =

 0 16 36 d2
14

16 0 52 13
36 52 0 17
d2
14 13 17 0

,

the two realizations correspond to the values for d2
14 of 5 and 23.461.

Let us suppose that d2
14 = [4.9, 5.1]. This interval contains the real-

ization in Fig.2a. The application of two consecutive projections leads
to:

D̃1 =

(
[0, 0] [12.77, 12.82] [6.86, 7.53]

[12.77, 12.82] [0, 0] [38.94, 39.45]
[6.86, 7.53] [38.94, 39.45] [0, 0]

)
,

and

D̃2 =
(

[0, 0] [0, 1.35]
[0, 1.35] [0, 0]

)
,

respectively. The last projection contains the null matrix. In other
words, D0 might contain a realization in �2 within the analyzed interval.

Now, let us suppose that d2
14 = [5.1, 5.2] where no realization exists.

This is readily detected because, after the same two projections, one gets

D̃2 =
(

[0, 0] [0.26, 1.50]
[0.26, 1.5] [0, 0]

)
which does not contain the null matrix. Nevertheless, note that after
a single projection, the result can be efficiently pruned by embedding
it on a line. Then, let us assume that d2

14 = [0, 100]. By iterating for
all possible projections, and after a single bisection and 64 projections,
our algorithm is able to find the two solutions with an error bounded
to 0.001. The number of projections is highly dependant on the chosen
ordering for all possible projections. In this example, this number drops
to 12 by properly choosing this ordering.



��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

θ1

θ2

θ3

p1

p1

p2

p2

p3

p3

p4

p4

p5
p5

p6

p6

p7

p8

p9(a) (b)

Figure 3. The forward analysis of the 3RRR planar manipulator (a) reduces to that
of a 3RPR device (b).

As another example, let us consider the forward kinematics of the
3RRR planar manipulator in Fig. 3a which can be straightforwardly
reduced to that of the 3RPR planar device shown in Fig. 3b. Using
our formulation, this problem can be translated into 9 pairwise distance
constraints between 6 points, and the solution entails finding the 6 un-
known distances. For generic dimensions, it can have up to 8 different
discrete solutions. An eight-degree polynomial to compute them all is
derived in (Tsai, 1999, Section 3.4), and a numerical method of solution
can be found in (Gosselin and Sefrioui, 1991). For particular dimensions,
a one-dimensional solution set can arise for which standard numerical
approaches may fail to provide a proper description. For example, if the
distances between the three points forming the two triangles in Fig. 3b
are 1 and the three leg lengths are set to

√
3/2, one gets the solution

space shown in Fig. 4 using the presented algorithm. It has 6 discrete
solutions, contained in 6 isolated boxes, and a one-dimensional solution
set, obtained here as a discretization of 538 boxes. Since the shown so-
lution space is actually a projection of a solution space embedded in �6,
these boxes overlap at some points. This space has been obtained after
50054 projections and 1108 bisections for a maximum accepted error of
0.05.

5. Conclusions
An algorithm for solving systems of pairwise distance constraints be-

tween points, based on two simple geometric operations, has been pre-
sented. The cluster effect near singularities has not been observed, con-
trarily to what happened in (Porta et al., 2004), because this algorithm is



d2
35

d2
14

d2
26

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 4. Feasible configurations of the 3RPR planar manipulator. Each config-
uration corresponds to the same-numbered box in the plot above. See the text for
details.



based on the application of a sequence of projection/backprojection op-
erations, each of them derived from a necessary and sufficient condition
of realizability. The speed of convergence to the solutions heavily de-
pends on the chosen sequence of projections that are iteratively repeated.
The development of heuristics for properly choosing this sequence is a
point that concentrates our current efforts.

References
Alfakih, A.Y., Khandani, A., and Wolkowicz, H. (1999),“Solving Euclidean Distance

matrix completion problems via Semidefinite Programming,” Computational Op-
timization and Applications, Vol. 12, No. 1-3, pp. 13-30.

Crippen, G.M., and Havel, T. (1988), Distance Geometry and Molecular Conforma-
tion, John Wiley and Sons Inc., New York.

Gosselin, C., and Sefrioui, J. (1991), “Polynomial Solutions for the Direct Kinematic
Problem of Planar Three-Degree-of-Freedom Parallel Manipulators,” in Proc. In-
ternational Conf. on Advanced Robotics, Pisa, Italy, pp. 1124-1129, 1991.

Hargreaves, G.I. (2002), “Interval Analysis in MATLAB,” Numerical Analysis Report
No. 416, Manchester Center for Computational Mathematics, 2002.

Laurent, M. (1998), “A Connection Between Positive Semidefinite and Euclidean
Distance Matrix Completion Problems,” Linear Algebra and its Applications, Vol.
273, No. 1-3, pp. 9-22.

Nielsen, J., and Roth, B. (1997), “Formulation and Solution for the Direct and Inverse
Kinematics Problems for Mechanisms and Mechatronic Systems,” Proc. of the
NATO Advanced Institute on Computational Methods in Mechanisms, J. Angeles
and E. Zakhariev, Eds., Vol. I, pp. 233-252.

Nikitopoulos, T.G., and Emiris, I.Z. (2003), “Molecular Conformation Search by Ma-
trix Perturbations,” preprint.

Porta, J.M., Ros, L., Thomas, F., and Torras, C. (2004), “A Branch-and-Prune Algo-
rithm for Solving Systems of Distance Constraints,” IEEE Trans. on Robotics and
Automation, to appear.

Saxe, J.B. (1979), “Embedadbility of Weighted Graphs in k-Space is Strongly NP-
Hard,” Proc. of the 17th Allerton Conference in Communications, Control and
Computing, pp. 480-489.

Schoenberg, I.J. (1935), “Remarks to a M. Fréchet’s article,” Annals of Mathematics,
Vol. 36, pp. 724-732.

Steward, G.W. (1998), Matrix Algorithms. Volume I: Basic Decompositions, SIAM,
Philadelphia.

Tsai, L.-W. (1999) Robot Analysis. The Machanics of Serial and Parallel Manipula-
tors, John Wiley and Sons Inc., 1999.


