
Planning Singularity-free Force-feasible Paths

on the Stewart Platform

Oriol Bohigas, Montserrat Manubens, and Lluı́s Ros

Abstract This paper provides a method for computing force-feasible paths on the

Stewart platform. Given two configurations of the platform, the method attempts to

connect them through a path that, at any point, allows the platform to counteract any

external wrench lying inside a predefined six-dimensional region. In particular, the

Jacobian matrix of the manipulator will be full rank along such path, so that the path

will not traverse the forward singularity locus at any point. The path is computed

by first characterizing the force-feasible C-space of the manipulator as the solu-

tion set of a system of equations, and then using a higher-dimensional continuation

technique to explore this set systematically from one configuration, until the second

configuration is found. Examples are included that demonstrate the performance of

the method on illustrative situations.

Key words: Singularity-free path planning, higher-dimensional continuation, sin-

gularity avoidance, Stewart platform.

1 Introduction

Singular configurations of the Stewart platform are well-known and widely studied

in the Literature [9, 11]. They yield uncontrollable motions or unresolvable end-

effector forces and, thus, they are to be avoided in the vast majority of applications.

On this regard, several works consider the issue of local singularity avoidance [1],

but only a few tackle the more general problem of computing singularity-free paths

between two distant configurations. Solutions to this problem include an algorithm

based on deforming a parametrized path between the query configurations [5], a

variational approach that reduces the problem to a boundary value problem [14],

and a numerical technique based on treating the singularity locus as a collection
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of obstacles [6]. All of these algorithms work well in favorable situations, but [5]

and [14] mention limitations relative to proving path existence in certain cases,

and [6] is computationally intensive, as it requires constructing polytope approx-

imations of the entire singularity set before searching for the path. An important

drawback of [5, 14, 6], moreover, is that the clearance of the path relative to the

singularity locus is measured in terms of the determinant or the condition number

of the Jacobian matrix, which, as noted in [15], lack physical significance.

In contrast to such works, this paper provides a method for planning paths that

maintain a physically meaningful clearance with respect to the singularity locus.

This clearance is defined following the spirit of [3, 8], as the one that results from

only allowing force-feasible configurations; i.e., those on which the leg forces re-

main within the allowed limits, for any platform wrench lying inside a prescribed

six-dimensional region (Section 2). The planning method relies on defining a sys-

tem of equations whose solution manifold corresponds to the force-feasible subset

of the C-space, so that maneuvering through such manifold guarantees singularity

avoidance at all times (Section 3). Then, an extension of the higher-dimensional

continuation strategy given in [7] is defined to explore this manifold systematically,

until a path joining the start and goal configurations is found, or path non-existence

is determined at a given resolution (Section 4). The approach has been implemented

and validated on several experiments (Section 5).

2 Problem statement
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Fig. 1 The Stewart platform.

The Stewart platform consists of a mov-

ing plate, or platform, connected to a fixed

base by means of six legs, where each leg

is a universal-prismatic-spherical chain. The

most general version of such manipulator fol-

lows the so-called 6-6 design, where the leg

anchor points are all different (Fig. 1), though

not necessarily coplanar [10]. The six pris-

matic joints are actuated, allowing to control

the six degrees of freedom of the platform,

and the remaining joints are passive.

Let OXY Z and PX ′Y ′Z′ be fixed and mov-

ing reference frames, respectively attached to

the base and the platform (Fig. 1). Any con-

figuration of the platform can be uniquely

represented by a pair qqq = (ppp,RRR) ∈ SE(3), where ppp = [x,y,z]T is the position vec-

tor of point P in the fixed frame, and RRR is a 3× 3 rotation matrix providing the

orientation of PX ′Y ′Z′ relative to OXY Z. Not all values for RRR and ppp are permitted

though, because the leg lengths ρi need to be within the range [ρi,ρi] of allowable

values on each leg. Thus, if aaai and bbbi denote the position vectors of the anchor points
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Ai and Bi of the ith leg (Fig. 1), expressed in OXY Z and PX ′Y ′Z′ respectively, the

configuration will only be valid if for i = 1, . . . ,6 it satisfies

ρ2
i = |ppp+RRRbbbi −aaai|

2, (1)

ρi ∈ [ρi,ρi]. (2)

Often, moreover, each configuration qqq must be force feasible, in the sense that the

platform must be able to equilibrate any external wrench ŵww acting on it, subject to

lie inside a given six-dimensional region W ⊂ R
6. The significance of W depends

on the particular context of application. For example, W may be determined by

the set of allowable inertia forces acting on the platform, or by the set of wrenches

that should be suppliable to the environment. Specifically, the force-feasibility re-

quirement on a given qqq implies that for any wrench ŵww ∈ W there must be a vector

fff = [ f1, . . . , f6]
T of leg forces satisfying

JJJ(qqq) · fff = ŵww, (3)

with

fff ∈ D = [ f1, f1]× . . .× [ f6, f6], (4)

where JJJ(qqq) is the 6× 6 screw Jacobian of the manipulator at configuration qqq, and

[ fi, fi] is the interval of force magnitudes that can be resisted by the ith leg. In this

paper, W will be a six-dimensional non-degenerate ellipsoid defined by

(ŵww− ŵww0)
TEEE (ŵww− ŵww0)≤ 1, (5)

where ŵww0 is a fixed wrench and EEE is a constant 6× 6 positive-definite symmetric

matrix. Also, ŵww, ŵww0, and JJJ(qqq) will be assumed to be given in a frame PXY Z centered

in P and parallel to OXY Z, but any other frame could be assumed if desired.

Now, let C be the set of all qqq∈ SE(3) satisfying Eqs. (1)-(4) for all ŵww∈W , which

we will call the force-feasible C-space of the manipulator. Given two configurations

in C , qqq1 and qqq2, the goal of this paper is to provide an algorithm for computing a path

on C connecting them, if one exists, or to determine path non-existence otherwise.

To find such a path, we next define a system of equations that characterize C .

3 Equations of the force-feasible C-space

Let fff 0 be any vector of resultant leg forces corresponding to ŵww0, i.e.,

JJJ(qqq) · fff 0 = ŵww0. (6)

By substitution of ŵww− ŵww0 = JJJ(qqq)( fff − fff 0) into Eq. (5) we realise that, for a given

qqq, the set F of leg forces fff satisfying Eq. (3) for some ŵww ∈ W is given by

( fff − fff 0)
TBBB ( fff − fff 0)≤ 1, where BBB = JJJ(qqq)TEEE JJJ(qqq). Hence, F is an ellipsoid, be-
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cause EEE is symmetric and positive-definite, but this ellipsoid will be bounded in all

directions, or only in some, depending on whether det(JJJ(qqq)) 6= 0 or not.

Now note that, for qqq to be force-feasible, it must be F ⊂ D , which can be

checked as follows. Let vvvi ∈ R
6 be a vector satisfying

BBBivvvi = 000 (7)

vvvTi BBB vvvi = 1 (8)

vi,i ≥ 0 (9)

where vi,i denotes the ith component of vvvi, and BBBi stands for the matrix BBB with its

ith row removed. If det(JJJ(qqq)) 6= 0, then BBB and BBBi are full row rank, and there is

exactly one vector vvvi satisfying (7)-(9). Using Lagrange multipliers, one can see

that in such a case fff 0 − vvvi and fff 0 + vvvi are the vectors in F attaining the smallest

and largest value along the ith coordinate. Hence, when det(JJJ(qqq)) 6= 0, F ⊂ D iff

f0,i − vi,i ≥ fi and f0,i + vi,i ≤ fi, for i = 1, . . . ,6. (10)

When det(JJJ(qqq)) = 0, it will always be F 6⊂D , because F will be unbounded along

some of its principal directions.

Observe that the constraints in (2), (9), and (10) are equivalent to imposing

(ρi −mi)
2 + r2

i = h2
i , (11)

vi,i = s2
i , (12)

f0,i − vi,i = t2
i + fi, f0,i + vi,i =−u2

i + fi, (13)

respectively, where mi and hi are the midpoint and half-range of [ρi,ρi], and ri, si,

ti, and ui are newly-defined auxiliary variables. As a result, C can be characterized

as the set of points qqq that satisfy the system formed by Eqs. (1), (6), (7), (8), and

(11)-(13) for some value of the remaining variables. For ease of explanation, this

system will be written as FFF(xxx) = 000, where xxx ∈ R
nx encompasses all variables in the

system, including those in qqq.

Let M be the set of points xxx that satisfy FFF(xxx) = 000, which is a manifold of di-

mension d = 6 when no further constraints are imposed on qqq = (ppp,RRR). Note that

such points are in correspondence with the points qqq ∈C because any value of qqq ∈C

determines the values for the remaining variables in xxx ∈ M . Thus, since qqq1 and qqq2

have corresponding points xxx1 and xxx2 on M , and all paths on C are represented in

M , and viceversa, the original problem of computing a force-feasible path in C

from qqq1 to qqq2 can be reduced to that of connecting xxx1 and xxx2 through a path on M .

It is not difficult to see, moreover, that for any xxx ∈ M it will be det(JJJ(qqq)) 6= 0, so

that any path computed on M will be free of singular configurations. Certainly, if

it were det(JJJ(qqq)) = 0 for some xxx ∈ M , then BBB would be rank deficient, implying

that Ker(BBBi) = Ker(BBB) for some i. Therefore, any vvvi satisfying Eq. (7) would violate

Eq. (8), which is in contradiction with the fact that xxx ∈ M .
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Fig. 2 The higher-dimensional continuation method applied to a 2-dimensional manifold in R
3.

4 Exploring the force-feasible C-space for a path

To determine a path on M connecting xxx1 and xxx2 we can gradually construct an atlas

of M , i.e., a collection of charts where each chart Ci defines a local map from a do-

main Pi ⊂R
d to an open set of M around a point xxxi ∈ M , initially xxx1. The atlas will

be computed using the higher-dimensional continuation approach proposed in [7],

which defines the local map for chart Ci using ΨΨΨ i, an orthonormal basis of Txxxi
M ,

the d-dimensional tangent space of M at xxxi. The map is defined by first selecting a

vector uuui
j ∈R

d of parameters (Fig. 2, left), which is used to generate a point xxxi
j ∈R

nx

r

uuui
j

Pi

Pi

Bi

Bi

Bi
j
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j
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Fig. 3 Chart construction.

in the neighborhood of xxxi, using

xxxi
j = xxxi +ΨΨΨ i uuui

j. (14)

Then, a point xxx j ∈ M corresponding to the projec-

tion of xxxi
j on M is computed, by solving the sys-

tem formed by FFF(xxx j) = 000 and ΨΨΨT

i (xxx j −xxxi
j) = 000 us-

ing a Newton method initialized at xxxi
j. Each point

xxx j is the potential center of a new chart (Fig. 2,

right), and Henderson introduced a method to de-

termine how to select the chart centers to ensure

a good coverage of the manifold [7]. In his ap-

proach, the domain Pi of chart Ci is initialized

as a d-dimensional hypercube enclosing a ball Bi

of radius r, both defined in Txxxi
M , as illustrated in

Fig. 3, top. A vertex of Pi exterior to Bi, with po-

sition vector sss, is used to generate a point xxxi
j, us-

ing (14) with uuui
j = α · sss/‖sss‖, where α is initialized

to r. If the projection of xxxi
j to M does not con-

verge, or if the new chart C j at xxx j is too far or too different from Ci, the new chart

is discarded and a new attempt of chart generation is performed with a smaller α ,

allowing to adapt the size of the area covered by each chart to the local curvature of

the manifold. When C j is valid, it is used to crop Pi from the intersection between

Bi and Ci
j, the projection on Txxxi

M of the part of the manifold covered by C j. This

projection is approximated by a ball Bi
j of radius r in Txxxi

M , centered at the point
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given by uuui
j, as shown in Fig. 3, bottom. The intersection of Bi and Bi

j defines a new

face for Pi that eliminates some of its vertices (in particular the one given by sss) and

generates new ones. Symmetrically, the polytope P j associated with C j is cropped

using Ci. When Ci is surrounded by other charts, Pi becomes a convex polytope

included in Bi, and Ci is considered to be closed, meaning that no further expan-

sion of the atlas needs to be attempted from that chart. When all charts are closed,

the connected component of M containing the initial point xxx1 gets fully covered.

If a path exists from xxx1 to xxx2, xxx2 must be included in one of the charts of the atlas

and, thus, a solution path can be determined by searching on the graph implicitly

defined by the chart centers and their neighborhood relations. In practice, however,

the expansion of the charts is performed according to an A* search strategy using an

admissible heuristic [13], so that the path is returned as soon as it is found without

computing the whole atlas, and it is guaranteed to be the shortest possible on M . If

xxx2 is not included in any of the charts in the end, path non-existence is established

at the considered value for r.

5 Experiments

The method has been implemented in C, and run on a iMac equipped with a 2.93

GHz Intel Core i7 processor. To verify its performance on a realistic situation, the

geometric parameters of the INRIA left hand have been used [10]. All legs of this

manipulator admit forces in the range [ fi, fi] = [−300,300], and for the experiments

we have set ŵww0 = [0,0,150,0,0,0]T and EEE = III6×6, assuming SI units throughout. In

this case, the force-feasible C-space of this manipulator is close to the workspace

defined by its allowable leg lengths [10], and the algorithm solves typical planning

queries in a few seconds, even when permitting the variation of all pose parameters.

To graphically illustrate the performance of the method, however, it is bet-

ter to adopt the geometric parameters of the more academic manipulator in [9],

where large variations of the leg lengths are allowed, leading to a very large

workspace with interesting singularity surfaces. Two experiments are shown for

this manipulator, assuming [ fi, fi] = [−300,300] and EEE = III6×6 as before, but us-

ing ŵww0 = [0,0,1,0,0,0]T. In a first experiment we compute a force-feasible path for

the platform moving at a constant orientation, defined by the Euler angles φ =−2◦,

θ = 30◦ and ψ = −87◦ under the convention in [9], and at a constant value of z.

Using the start and goal configurations defined by the positions ppp1 = [0.4,0,0.1]T

and ppp2 = [−0.3,0,0.1]T for P, the resulting path in the XY plane is computed in

578 seconds. Fig. 4, left shows this path, together with the singularity curve to be

avoided, the atlas corresponding to the whole force-feasible connected component

accessible from ppp1 (shown as a mesh), and the region explored by the A* algorithm

(shaded in grey). It can be seen that the interpolated path between ppp1 and ppp2 would

go through singularities, but the computed path correctly avoids them while keeping

the leg forces within the specified ranges (Fig. 4, bottom). In a second experiment,

we solve the same planning query but keeping constant the orientation of the plat-
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Fig. 4 Top: Two paths computed for the manipulator in [9]. Bottom: Plot of the maximum and

minimum forces supported by each leg along the left path.

form only, obtaining the path in XYZ shown in Fig. 4, right in 90 minutes. The

singularity surface, computed using [2] and shown in the figure, is correctly avoided

by the computed path. It must be noted that these are hard planning queries, since

the workspace in [9] is enormous when compared to typical workspaces arising in

usual platforms. Moreover, once a partial atlas is computed, all planning queries

between configurations covered by such atlas can be solved in a few milliseconds.

6 Conclusions and future work

This paper has presented a path planning method for computing non-singular paths

on the Stewart platform, based on imposing the resolvability of a six-dimensional

set of wrenches at any point on the path. The method has been tested succesfully

on manipulators of various geometries, and computes paths in reasonable times in

realistic situations. The presented approach could be generalized by requiring the

path to fulfill additional constraints, like guaranteeing a certain positioning accuracy

of the platform, or the avoidance of platform collisions. While the former constraints

can in principle be incorporated using dual developments to those herein presented,

the latter require investigating the possibility of randomizing the planner, in the spirit

of [4] or [12], for example.
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