Fast Skeletonization of Spatially Encoded Objects

Francisco Romero, Lluis Ros and Federico Thomas
Institut de Robotica 1 Informatica Industrial (UPC-CSIC)
Gran Capita 2-4, 08034 Barcelona, Catalonia, Spain
E-mail: {fromero, liros, fthomas }@iri.upc.es

Abstract

Some thinning algorithms for 3D objects, or gener-
alizations of existing ones for 2D, have been proposed
in recent years. The one given herein is surprisingly
simple and very fast compared to most of them, and
still it has theoretically favorable properties. Actually,
it provides a connected surface skeleton that allows
shapes to be reconstructed with bounded error. In ad-
dition, it is also very attractive because it allows dis-
crete skeletons to be obtained directly from volumes
in many representations without converting them to a
voxel-based representation.

Our algorithm is a generalization of the one pre-
sented in [2] for 2D objects. It is based on the ap-
plication of directional erosions, while retaining those
voxels that introduce disconnections.

1. Introduction

Three-dimensional skeletons are a promising tool
for an increasing number of applications in biomedical

imagery [4, 8], and in general to many other applica- -

tions related to shape matching and tracking, naviga-
tion, shape abstraction and animation control [3].

The word skeleton is usually understood in 2D to
mean the medial axis of a given shape. The medial
surface of a 3D object is defined similarly to its 2D
counterpart: it is the set of the centers of all inscribed
spheres of maximal radius. The computation of the
medial surface for arbitrary objects is a complex prob-
lem. So far, it has only been efficiently solved for poly-
hedra [7]. Nevertheless, good approximations can be
obtained by using the so-called semicontinuous meth-
ods. They proceed by distributing a set of points over
the faces of the object for which we want its skeleton.
Then, the Delaunay triangulation is applied to these
points to obtain a set of tetrahedra whose centers are
used to approximate the medial surface [6].

When working in a discrete space, spheres are al-
ways approximations of their continuous counterparts
and the concept of skeleton should be redefined. Then,
3D discrete skeletons are approximations of this me-
dial surface. In any case, the common required prop-

0-7695-0750-6/00 $10.00 © 2000 IEEE

510

erties for any of these approximations are:

1. Reconstructability. A skeleton must contain sufficient
information which can be used to reconstruct the orig-
inal shape.

. Rotation-invariance. Due to robustness reasons, a
skeleton for a given volume must be independent from
its orientation.

. Connectedness. A skeleton must be homotopic to the
shape it corresponds to. In other words, it must pre-
serve 26-neighbor connectedness for the foreground
and 6-neighbor connectedness for the background.

. Thinness. A 3D object is thin if it can be described as a
set of possibly intersecting patches of discrete surfaces.

Unfortunately, in the discrete space these require-
ments become mutually incompatible [2], and, hence,
practical skeletonization methods are invariably a
compromise between them.

Although other alternatives are possible [8], two
main methods to obtain skeletons in discrete spaces
have been proposed: thinning methods and methods
based on distance transforms.

Thinning methods peel off the boundary of a vol-
ume. They produce skeletons by iteratively deleting
voxels from the boundary of the object. The deletion
of a voxel can be in a sequential algorithm or parallel
one. Each iteration of sequential algorithms consists,
in general, of three steps: (1) identify all border vox-
els, and label them with the iteration number; (2) in-
spect all voxels labeled with the current iteration num-
ber, and mark those that cannot be removed in order to
preserve the shape of the original object (connected-
ness); and (3) remove all unmarked border voxels. It
is obvious that the obtained skeleton using sequential
versions of this algorithm depends partly on the order
the voxels are processed. Up to our knowledge, the
latest algorithm for thinning volumes appeared in [5].

The methods based on distance transforms first
convert the volume, which consists of object (fore-
ground) and non-object (background) voxels, into an
object where every object voxel has the value corre-
sponding to the minimum distance to the background.
Different types of metrics for discrete objects are used,
aiming to approximate the euclidean distance so that
rotation-invariance is attained to some extend. Then,

Figure 1. Defined directions.

the ridges of the induced scalar field constitute the
skeleton. In general, these algorithms are not itera-
tive so that the skeleton is produced in a fixed number
of passes through the object. Up to our knowledge,
the most recent skeletonization algorithm based on a
distance transform appeared in [4).

The algorithm we propose here is an extension of
the one presented in [2]. It can be classified as a thin-
ning algorithm. The approach adopted satisfies the re-
quirements given above in the following order of pri-
ority: connectedness, thinness and reconstructability.
The preservation of the connectivity is the essential
condition for the skeleton in order to extract the shape
of the original object. Then, shapes can be nearly re-
constructed with an error, in our case, bounded to one
voxel.

The proposed procedure can be outlined as follows.
Those voxels whose deletion by a directional erosion
might destroy the connectedness are retained and clas-
sified as gaps, then the region is eroded and the corre-
sponding residuals computed. Gaps and residuals are
retained in the volume, and this process is repeated un-
til no progress is made.

As explained above, the obtained skeleton is an ap-
proximation to the medial surface. In our case, the
skeleton is the locus of maximal cubes. The algo-
rithm is sequential so that the result depends partly
on the order in which the directional erosions are per-
formed. It is first developed for spatial enumeration
(voxel-based) representations and then generalized to
spatially encoded squemes and arbitrary representa-
tions, provided they allow boolean and displacement
" operations to be performed efficiently.

This paper is structured as follows. In order to make
it as self-contained as possible, the required morpho-
logical operations are reviewed in Section 2. Next,
the concepts of residuals and gaps associated with di-
rectional erosions are introduced. These are two key
points for our skeletonization algorithm, which is pre-
sented in Section 3. It is also shown how a simple
spatial encoding technique speeds up the performance
of the algorithm. We conclude in Section 4.

2. Background

Let Z2 be the discrete space. Let X C Z® a 3D
volume. Let X = Z3\ X denote the background of X.
The connectivity used herein is (26,6)-connectivity,
which means 26-connectivity for the volume and

511

6-connectivity for the background. Each of the 26
neighbors of a voxel in the volume defines a direction
which will be numbered as shown in figure 1.

The erosion of X using the structuring element B
is definedas X © B = {y|vb € B,y +b € X},
and its dilation using the same structuring element as
X®B ={yly=z+bz € X,b € B}, and its
opening as XoB = ((X © B) @ B).

The residual, X L B, is the set made of those points
in X which do not belong to its opening using the
structuring element B, thatis, X L B = X \(X0B).

If X, denotes the translation of X in the direction
associated with b € B, then it can be shown that

XeB={]Xs.
beB

In other words, erosion can be accomplished by taking
the intersection of all the translates of X, where the
shifts in the translates are the negated members of B
seen as vectors.

An especially interesting case for B is that in which
B consists of two voxels, where one is the origin.
Then, the erosion of X using B can be computed sim-
ply by X & B = X N X_3, and its opening by

XoB = (X mX—b) U (X n .Y-b)b.

Since (B1© B2) & B3 = Bl1o (B2 ¢ B3), then, if
B=B1®B2®...® Bk, one concludes that

XeB=(..[(XeBl)eB26...o Bk).

Thus, if a structuring element can be broken down to a
chain of dilations of smaller substructuring elements,
the desired operation may be performed as a sequence
of suboperations.

As a first approximation, a skeleton can be defined
as the set of all the residuals of the successive erosions
of X, using the following simple algorithm:

algorithm T1:

input: X:

output: S;

S « o

while X # ¢
E+ X6 B;
S« SU(X\(E& B);
X « E;

endwhile;

end.

Now, let us assume that B is a centered 3x3x3 cubic
structuring element which can be broken down into a
chain of 6 dilations of two-voxel elements in the direc-
tions 0, 2, 4, 6, 8, and 10. Then, the above algorithm
can be rewritten as follows:

algorithm T2;

input: X;

output: S;

S« 0:

while X # 0
P+ XNXoNXanNXanXen XN Xq0;
S« SUX\(EUE;U E2 UEg U EgU Eg U E1q));
X + E;

endwhile;

end,

The main advantage of this algorithm over the pre-
vious one is that it only involves directional erosions
and dilations along the coordinate axes. Although the
skeleton thus obtained allows us to entirely reconstruct
the initial set by simply dilating each voxel according
to its distance to the boundary of the object, it is nei-
ther thin nor connectivity preserving. The first draw-
back can be easily overcame as follows:

algorithm T3;
input: X;
output: S;
S+ 0;
A« 0;
while X # 0
¥ directional erosion along y+ */
E «— X N Xo;
A+~ AU(X\(EUE4))
X « E;
/* repeat for directions z+, X+, y~, z-,and x- */

S+ S+ A4;
endwhile;
end.

Now, since residuals are independently thin (they
are obtained from single directional erosions), the ob-
tained skeleton is thin. As a counterpart, the original
shape can only be nearly reconstructed but, as it has
already been pointed out, thinness and reconstructabil-
ity are mutually incompatible goals. Then, shapes
can be nearly reconstructed with an error, in our case,
bounded to one voxel.

In order to overcome the remaining drawback —
connectivity— we first introduce the concept of direc-
tional gaps. Those voxels required to ensure connec-
tivity in the final skeleton and not included in the me-
dial surface computed by algorithm T3, will be part of
a set of disjoint regions that we call gaps. Contrary
to what one might expect, when considering only di-
rectional erosions, gaps can be easily computed. For
example, the directional gap of a binary region X in
direction O (the coordinate axis y in the positive direc-
tion) can be obtained by computing:

Xﬂ)_(oﬁ((X'{ﬂXe)U(Xi ﬁXz)U(XQOOXIS)U(X220X17)U

(X21 N X14) U (X2s ﬂX15) U (X12 ﬂX]o) U(XgeN Xg))

Gaps along the other coordinate axes, either in pos-
itive or negative directions, can analogously be ob-
tained. The above expression is obtained as a gener-
alization of the two-dimensional case. It is worth not-
ing that the concept of gaps, first introduced in [2], is
closely related to the set of 3 templates recently pre-
sented in [5].

3. The thinning algorithm

The motivation behind our thinning algorithm is
seen as follows. First those voxels whose deletion
by a directional erosion might destroy the connected-
ness are retained and classified as gaps, then the re-
gion is effectively eroded and the corresponding resid-
ual computed. Gaps and residuals are removed from

512

the object in order to concentrate the thinning effort
on the thick region. Iterations continue until an object
becomes empty. The following algorithm in pseudo-
code implements this procedure.

(b)

Figure 2. Result of the application of T3
(b), and T4 (c) on the object in (a)

The result always depends on the starting direction
but, in any case, the error of the reconstruction process
is bounded to one voxel.

algorithm T4
input: X;
output: S; /* skeleton of X */
S+ 0;
L+ 8
do
{* erosion along y+ */
I + ©; /* increment of skeleton */
G e XNXon [(X—,n)?s) U (X, n)’(;) U
* gap */
E + X N Xo; /* eroded image */
R « X\ (E U E4); /* residual */
I+~ TURUG:
X« EUL
/*repeat for directions z+, X+, y-, z-, and X- */

o (Xen Xs) s

X+« XnkL;

S+ Sul;

L« INnL:
until (X == 0);
end.

Figure 2 shows an object and the obtained skeletons
using algorithms T3 and T4. The thinning action of
T3 is greedy: clear topological changes occur. The
introduction of gaps by T4 fixes the problem.

The above algorithms have been implemented in C
on a Sun Ultra2-2200 workstation. It has been recently
criticized that in many papers on skeletonization of
volume objects the only given examples are tiny test
images, which makes it difficult to understand what
would be the results for reasonable sized real images
[1]. In our case, T4 has been tested on 3-D images ob-
tained by a TAC device. Figure 3 shows the results for
a human vertebra and a partial skull. The vertebra con-
tains 22,263 voxels, its skeleton is computed in 2.644
seconds and contains 5,606 voxels. The skull contains
20,001 voxels, it is computed in 3.095 seconds and has
8,165 voxels. The skeleton of the skull is computed in
six iterations. Table I shows the evolution of the pro-
cessing time for each iteration. Note the exponential
reduction in the time required for each iteration thanks
to the adopted incremental strategy.

Figure 3. Skeletons (lower row) obtained
using the proposed algorithm on real
data (upper row).

Table I Table 11
lter. CPU time ler. CPUtime CPU time
1 1874 (encoded) (unencoded)
2 oo 1 30 134
2 24 84
4 63

3 14 35

5 2 5
6 2 4 z >
Total 3095 Total 70 258

A relevant feature of algorithm T4 is that, contrary
to [5], it can be applied to other object representa-
tions different from explicit spatial enumeration. In
particular, we have applied it to volumes represented
by binary subdivision trees. Figure 4 shows two such
encoded objects and the obtained skeletons. In order
to show the effect of this codification in the process-
ing time, Table I compares its evolution for the sec-
ond encoded volume against its unencoded counter-
part. While the encoded object contains 435 boxes, the
unencoded version has 3.920 voxels. Thus, the bene-
fits of avoiding to work at voxel level are clear both in
memory requirements and computational time.

4. Conclusions

In this paper we have presented an algorithm based
on concise boolean expressions able to compute the
skeleton of 3-D objects in different representation
schemes. In particular, it has been shown how the ef-
ficiency of the algorithm can be greatly improved and
its memory requirements dramatically reduced when
dealing with objects represented with binary subdi-
vision trees. The enormous algorithmic difficulties
caused when working at voxel level due to the iden-
tification of all removable voxels using large look-up

513

Figure 4. Skeletons (lower row) obtained
using the proposed algorithm on en-
coded synthetic voiumes (upper row).

tables —as standand thinning aigorithms usualy do- is
thus avoided.

References

[1] G.Borgefors, I. Nystrom, and G. Sanniti Di Baja. Com-
puting skeletons in three dimensions. Pattern Recogni-
tion, 32:1225-1236, 1999.

{2] R. Cardoner and F. Thomas. Residuals + directional
gaps = skeletons. Patrern Recognition Letters, 18:343—
353, 1997.

{3] N. Gagvani. 3d skeletonization and volumen thinning.
See hrtp:/fwww.caip.rutgers.edu/ "gagvani/skel htmi.

{41 G. Malandain and S. Ferndndez-Vidal. Euclidean skele-
tons. Image and Vision Computing, 16:317-327, 1998.

[5] A.Manzanera, T. Bemnard, F. Préteux, and B. Longuet.

Medial faces from a concise 3d thinning algorithm. In

7th IEEE Conf. on Computer Vision, Vol. 1, 1999.

D. Sheehy, C. Armstrong, and D. Robinson. Computing

the medial surface of a solid from a domain Delaunay

triangulation. In ACM/IEEE Symposium on Solid Mod-

eling and Applications, May 1995.

E. Sherbrooke, N. Patrikalakis, and E. Brinson. An

algorithm for the medial axis transform of 3-d ob-

jects. [EEE Transactions on Visualization and Com-

puter Graphics, 2(1):44-61, 1996.

Y. Zhou and A. Toga. Efficient skeletonization of volu-

metric objects. IEEE Transactions on Visualization and

Computer Graphics, 5(3):196-209, 1999.

{6l

{71

(8]

