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Abstract

This work proves that the realizability of a line drawing
without occluding segments can be verified by checking
the concurrence of groups of three lines to a single point.
These lines are either those supporting segments in the
drawing or new ones added during the test itself.

Although this result was essentially already established
by W. Whiteley, the presented approach uses the concept
of delta-star reductions to obtain all possible spatial real-
izations and consistent edge-labellings (convex or con-
cave) of a given drawing.

As opposed to well-known algebraic approaches,
which require a Waltz filtering preprocessing step before
proceeding to the global geometric test, the approach pre-
sented herein is based on geometrically interpretable pro-
Jective conditions which allows an easy localization of the
source of eventual inconsistencies.

Keywords: Line Drawing Analysis, Projective Condi-
tions, Spatial Realizability, Spherical Polyhedra.

1 Introduction

A line drawing is a drawing containing only line segments
and junctions, points where two or more of these seg-
ments meet. A line drawing is said to be realizable or con-
sistent if it is the orthographic or perspective projection of
some three-dimensional scene of polyhedral objects, and
incorrect or inconsistent otherwise. Such a scene is
known as a realization of the line drawing.

This work addresses the classic problem in Artificial
Intelligence and Robotics consisting of deciding whether
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a drawing is realizable and, if so, giving a parameteriza-
tion of the space of all its possible realizations.

Since the pioneering werk of Guzman [7], the above
problem has been the object of research over the past 25
years. In 1971, Huffman [9] and Clowes [1] exploited the
fact that there is only a limited amount of different feasi-
ble assignments of concave (-), convex (+) or occlusive (>)
labels to the segments around a given junction. Once all
possible types of junctions are enumerated and registered,
everything reduces to a consistent labelling problem with
a single constraint: the types of junctions assigned to the
end-points of a segment must yield the same label for this
segment.

Several other authors refined this scheme to accept a
more complex input. For example, in [23] Waltz treated
pictures with shadows and cracks. Sanker [16] and Sugi-
hara [19] provided procedures to treat pictures with hid-
den segments. Drawings of paper-made objects were
considered by Kanade in [10].

The main drawback that arises with the labelling
scheme is that line drawings having consistent labellings
are not guaranteed to be the projection of a polyhedron.
For example, the line-drawing in fig. 1a admits the indi-
cated labelling but it does not correspond to any object
with planar faces.

One important alternative to the labelling scheme is the
use of reciprocal figures in a dual space. Reciprocal fig-
ures were already used more than a century ago by Max-
well [12] and Cremona [6] for graphical calculus in
mechanics. The idea has been rediscovered and used
repeatedly (see e.g. Huffman [9], Mackworth [11] or
Draper [8)) as a necessary condition: a labelled line draw-
ing can be classified as inconsistent if it does not admit a
reciprocal figure. However, again, only a necessary condi-
tion for correctness is obtained.



In 1982, K. Sugihara finally proposes a complete set of
constraints that characterizes realizable line drawings
[20]. Roughly speaking, his fundamental theorem states
that a labelled drawing is correct if and only if a system of
linear constraints of the form

Aw =0
Bw20

has a solution, which can be tested by linear programming
techniques. Here, the vector w denotes the unknown
parameters of the planar faces of the eventual realization,
and A4 and B are matrices derived from the particular {+,-
,>}-labelling, the positions of the junctions and the inci-
dence relations between junctions and regions in the
drawing.

In 1984, R. Shapira gave a counterexample proving the
incorrectness of the theorem [17] and Sugihara rectified it
by changing the definitions of 4 and B to more accurate
ones [21].

Although Sugihara’s approach seemed to be only
applicable to the special case in which line drawings
solely contain trihedral junctions, soon after W. Whiteley
proved Sugihara’s theorems in the general case [25].

A problem with Sugihara’s method is that condition (1)
is too strict and slight perturbations of vertex positions can
make a line drawing incorrect. In a realistic application, it
is impossible to guarantee the exact position of objects in
a scene and some uncertainty must be taken into consider-
ation. In order to correct superstrict incorrect pictures,
Sugihara proposes to delete from () those constraints that
lead to this superstrictness by using the purely combinato-
rial concept of position-free incidence structures [21].
However, in [26] W. Whiteley reports several limitations
of this technique.

1. Shimshoni and J. Ponce propose a variation of Sugi-
hara’s approach [13]. They define a system similar to (1)
but, unlike Sugihara, they do not eliminate constraints that
lead to a superstrict set of equations, but explicitly intro-
duce uncertainty in these constraints. A necessary condi-
tion for a line drawing to be the correct projection of a
polyhedron is that this system admits a solution, which
again can be tested using linear programming;

As far as our problem is concerned, the work of some
significant combinatorial geometers is often unnoticed by
the robotics community. In this sense, H. Crapo and W.
Whiteley have been investigating the connection between
the realizability of linear scenes and the rigidity of planar
bar frameworks ([2], [3], [4], [24], [25] and [27]). They
have proved that a line drawing is consistent if and only if
the associated planar bar framework supports a non-null
pattern of stresses on the bars. Hence, the realizability of a
drawing and the rigidity of a planar framework have been
proved to be equivalent problems.

1)

This paper is structured as follows. Section 2 introduces
the used notation and defines the type of drawings we
treat. In section 3 several well-known projective condi-
tions are reviewed and it is shown that they all can be sub-
sumed by applying a unique test of concurrence on groups
of three lines. Section 4 introduces the idea of delta-star
reductions, a set of operations used in section 5 to illustrate
a novel consistency test, which is fully formalized in sec-
tion 6. Based on this result, an algorithm to obtain labelled
realizations of a given drawing is presented in section 7.
Conclusions and points that deserve further attention are
finally discussed in section 8.

2 Notation and hypotheses

We assume that every junction in a line drawing is com-
mon to at least two line segments and that the segments
partition the plane of the drawing into several polygonal
regions.

The incidence structure of a line drawing L is a planar
and connected graph G (L) = (J,S) where Jis the set of
junctions of L and S is the set of line segments. There is a
one-to-one correspondence between the elements in a con-
sistent line drawing and the elements of the polyhedral
scenes it represents: junctions correspond to vertices, line
segments to edges, and polygonal regions to faces.

Although it induces an abuse of language, we will refer
to the line of support of a given edge / or the plane of sup-
port of a given face ¢ by using the terms /ine I and plane
O, respectively.

The line drawings are supposed to contain no occlusive
line segments. That is, every segment represents the inter-
section of two adjacent faces in 3-space. This even holds
for the segments of the outer contour of the drawing
which, hence, represent coplanar edges in 3-space.

Under these assumptions, the realization of a correct
drawing is a spherical polyhedron and, therefore, the class
of drawings considered is restricted to those whose inci-
dence structure is planar, edge 3-connected and vertex 2-
connected [3].

As briefly described in the conclusions, it is possible to
relax the non-occlusivity condition, but this assumption
greatly simplifies the treatment given below.

3 Edge-concurrence subsumes all
projective conditions

There are several well-known projective conditions that a
line drawing should accomplish in order to correctly repre-
sent the projection of a polyhedral scene (see e.g. Crapo
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[4], [5], Whiteley [24], Sabater [15], Sugihara [20]). We
now review some of them.

The edge alignment condition (fig. 1a, left) states that
if two different edges of a polyhedron share the same two
faces, then the two edges must be aligned.

Fig. 1. Edge-alignment (a), edge-concurrence (b)
and n-calotte (c) conditions.

The edge concurrence condition (fig. 1b, left) says that
given three faces of a polyhedron, if any two of them
share a common edge, then these edges must all be con-
current to the same point. This is true even in the case that
the edges are parallel, since we can view them as embed-
ded in projective 3-space, allowing the existence of
“points at infinity” [18].

In [4] and [5] Crapo refers to the n-calotte condition
which imposes constraints on the concurrence of all edges
incident to a given n-gonal face of a polyhedron. We
describe here the case » = 4. Given a quadrilateral face
of a polytope such as face ¢ in fig. lc, left, consider the
point M of intersection of line 8 — a with line 6 —v , and
point N, where o — B intersects with y - B . Then, M and
N must be aligned with O, where a —¢ intersects with
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€—7 , because M, N and O must lie on the intersection of
planes o and y .

The above three conditions involve two types of geo-
metric elements of the line drawing: regions and line seg-
ments. Then, it seems natural to express them in terms of
the topology of what we call the constraint graph, a graph
G,(L) =.(V,E) which contains a vertex in ¥ for each
region in the line drawing, and an edge in E for each line
segment separating two adjacent regions.

Now, to test the edge-alignment condition, we just
gather all pairs of vertices v e ¥V with parallel edges
between them and judge whether the coefficients of their
corresponding segments are equal or not (fig. 1a, right).

In order to test the edge-concurrence condition, we
detect all cycles of length three in G,(L) and judge
whether the corresponding segments meet at a single point.

The 4-calotte condition in fig. 1¢ clearly reduces to the
three edge-concurrence tests for the sets of lines

{8~a,d-y, MN},

{a—B,y—B, MN},
{o—~¢€,7v—¢€ MN}.

This cannot be directly expressed in terms of the topol-
ogy of G, (L) (fig. 1c, top-right) because the drawing does
not provide the projection of line MN. However, by simply
adding a fictitious edge to G,(L) corresponding to the
unknown projection of line o —y (fig. 1c, bottom-right),
all relevant 3-cycles emerge. Edge-concurrence of the 3-
cycles a,9,y,a,and «, B,y,« constrains fictitious line
o -y to meet M and N, respectively. Once the location
ofa —y is known, the 4-calotte condition is finally veri-
fied when checking the 3-cycle o, €, 7, a..

Note that, in general, once a fictitious edge is fixed, this
information can be propagated and used to fix other ficti-
tious edges.

We say that a constraint graph is globally consistent if
we can find values for its fictitious edges in such a way
that all edge-concurrence conditions corresponding to all
3-cycles in the graph are satisfied.

An important question arises: Is it possible that the real-
izability of a line drawing can be decided by solely testing
edge-concurrence conditions on 3-cycles of either known
or fictitious edges? W. Whiteley provided an affirmative
answer to this question in 1991 [27].

Let G,(L) be the constraint graph of a line drawing.
Then, arbitrarily choose one face ¢ of the polyhedron rep-
resented by L and construct a new constraint graph,
G' (L), by extending G, (L) with all fictitious edges of
the form (@, x) that represent the intersection of ¢ with
any other face x of the polyhedron. Although explained in
a different language in [27], Whiteley’s theorem states as
follows.



Theorem. (Whiteley) L is realizable if and only if
Gf (L) is globally consistent.

This theorem not only unifies all projective conditions
to a single one, edge-concurrence, but also proves that not
all possible fictitious edges have to be added to G, (L) to
obtain a sufficient set of projective conditions.

4 Delta/star reductions

It is always possible to reduce any spherical polyhedron to
a simplex by applying a finite sequence of the two follow-
ing operations:

* The simplicial completion (fig. 2a), which eliminates a
triangular face by extending its three neighboring faces
as far as their common point of intersection.

¢ The simplicial elimination (fig. 2b), which simply
removes a trihedral vertex by cutting it through the
plane defined by its three neigboring vertices, obtaining
a new triangular face.

(a)

'v-(b) .

Fig. 2. Simplicial completion (a) and elimination (b).

We do not prove this assertion here but let us just men-
tion that the application of at least one of these two opera-
tions is guaranteed by the fact that any spherical
polyhedron has either a vertex of degree three or a trian-
gular face [14].

We can reason in a similar way when checking the
realizability of a line drawing. If a line drawing is consis-
tent, then it has to be possible to transform it to the projec-
tion of a simplex by means of some reduction steps
analogous to the simplicial operations in the 3D case. This
leads us to the definition of the delta/star reductions
(A /Y reductions, for short).

The projection of the simplicial completion operation
onto a plane induces the four different types of delta-to-
star (A — Y, for short) reductions shown in fig. 3a. Each
of these operations adds a new junction which corre-

sponds to the new trihedral vertex appearing in the polyhe-
dron. Those segments that meet at a junction of degree 3 in
the original triangle will be called simple segments.

The projection of the simplicial elimination operation
leads to four types of star-to-delta (Y — A, for short)
reductions (fig. 3b). A new triangular region appears

@

A>T

KA oA oA

Y;>A

Fig.3. A—> Y (@) and Y — A (b) operations.

within the three original junctions of the star.

It is always possible to reduce a correct line drawing of
a polyhedron to the projection of a simplex by applying
these operations (for details see [14], which essentially fol-
lows [22]). How this can be used to test the consistency of
a drawing will soon be clarified in the next section by
means of an example, and formalized as a theorem in sec-
tion 6, but first it is worth noting that:

® Itcanbeeasilyseenthat ¥, —» A, ¥, > A, and ¥, > A
can be expressed as combinations of A, —» Y and
Y,—> A (fig. 4). This fact allows us to reduce the
number of strictly necessary reductions.

* In order to apply a A — Y reduction, the position of the
new junction must be known. This position is clear in
A, —> Y and A; — Y because it is totally constrained to
lie in the point where the simple segments meet. In
A, — Y this position is undetermined and must lie on
the line of support of the unique simple segment availa-
ble. In A; — Y the position is totally free.
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Fig. 4. Y, > A,
expressed as combinations of Ay~ Y and
Y,—>A.

Y,>A, and Y,>A

* In a A— Y reduction, the three regions neighboring
the edges of the triangle (delta) correspond to three
faces in 3-space for which the intersection of any two
of them is sometimes provided in the drawing by sim-
ple segments. When this is not the case, we can still
make use of these intersection lines adding them to the
corresponding constraint graph as fictitious edges, in
the same way as we did in the 4-calotte example of fig.
Ic. Despite the lack of information on the position of
the new junction, the use of the same propagation
mechanism can yield to the complete determination of
its location. As a consequence, in A; > Y and Ay, > Y
geometric propagation through fictitious edges may fix
the position of the new junction.

® Each A — Y reduction induces a local geometric con-
sistency test. Indeed, the new junction represents the
point of intersection of the three faces around the trian-
gle. Hence, in A; — Y the three simple segments must
be concurrent. In the rest of A — Y operations the con-
currence test involves simple and fictitious segments.
The test is then delayed until all of them become deter-
mined by geometric propagation after other reduction
steps.

® Y — A reductions are represented in a constrains graph
by adding a vertex (corresponding to the new triangular
face) and three edges. Moreover, before applying them,
one must be sure that the position of the new vertex of
the 3-star is consistent with the rest of the drawing.
This can only be done when the rest of the drawing is
known to be consistent, and hence this reduction must
be delayed until then.

5 Applying A/Y reductions to an example

As we have already seen, A/Y reductions may add new
fictitious edges and vertices to the constraint graph, thus

creating new 3-cycles and inducing new edge-concurrence
tests. The goal is to prove that the overall consistency of
the drawing can be checked by simply verifying all con-
currence tests implicit in the constraint graph, once this has
been extended with all fictitious edges and faces corre- -
sponding to A/Y reductions. Before proving this, we illus-
trate this procedure with an example.

The drawing in fig. 5a can be easily reduced to the pro-
jection of a simplex by means of four A — ¥ reductions,
one for each of the four triangles in it. Let us suppose that

Fig. 5. Checking the consistency of a
truncated pyramid.

the first reduction is applied over the central triangle,
which has no simple edges. This is a A — Y reduction
and, for the moment, it is impossible to tell where the new
central junction ¥ should lie to keep the consistence of the
drawing (fig. 5b). In the corresponding constraint graph
this is translated into the addition of a new 3-cycle with
three fictitious edges (the thick grey ones in fig. 5¢).

We go on by applying a A, — Y reduction to the lower-
right triangle (fig. 5d). This time, the position of the new
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junction is completely determined. Actually, we have
three edges that must be concurrent, namely (B,£),
(&,8) and (3, B). Since from the line drawing we know
the location of (B, &) and (&, 8), we are able to fix edge
(5, B). This corresponds to the verification of the edge-
concurrence condition on the 3-cycle d,&,B,8. This
allows us to “propagate” this new information to fix edge
(8, B) in the first 3-cycle ¢, 5,8, ¢ .

We now proceed analogously with another A —» Y
operation over the lower-left triangle. Again, the edge-
concurrence condition on the 3-cycle &, ¢, 5,& fixes the
location of edge (@, §), which permits to fix the position
of vertex V. Finally, a A— Y operation on the upper tri-
angle leads to the unique consistency test of the whole
process: if the drawing is consistent, edge (¢, ) must be
concurrent with the two previously determined edges
(¢, 0) and (3,8) .

6 A novel consistency test

Consider a line drawing L together with its constraint
graph G, (L) and a sequence s of A/Y reductions taking L
to the projection of a simplex. We build an extended con-
straint graph, G,* (L) , by addingto G, (L) all fictitious
edges between non-adjacent vertices of G, (L), all ficti-
tious edges corresponding to all A — Y reductions in s
and all fictitious faces and edges correspondingto ¥ — A
reductions in s.

Theorem. L is the drawing of a spherical polyhedron if
and only if G* (L) is globally consistent.

Proof. (=) If L represents a spherical polyhedron all
groups of three edges corresponding to intersections of
three pairwise adjacent faces must be concurrent and
G,* (L) is globally consistent.

(<) Suppose that G, * (L) is globally consistent. We
prove that L is realizable by induction on the number » of
reduction steps in the sequence s.

For n = 1 we distinguish two cases. If the reduction is
a A— Y, then L must be combinatorially equivalent to
one of the following planar, vertex 2-connected and edge
3-connected line drawings:

A A

The first (leftmost) drawing is always realizable
regardless of the position of its junctions. Obviously, no
3-cycle is inconsistent on its graph G,* (L) and the theo-
rem holds. The second drawing is realizable provided that

the three simple segments incident to the vertices of the
bold triangle are all concurrent, which is guaranteed by the
consistency of G* (L) and the theorem again holds.

If the reduction is a ¥ — A then the possible line draw-
ings are combinatorially equivalent to one of these two tri-

angulated realizable drawings:

Now, suppose the theorem is valid for n» = k. We
prove that the validity extends to the case » = k+1 . For
this, we distinguish whether the first reduction step applied
to L to obtain a new drawing L’isa A—> Y ora Y > A.
For the first case fig. 6 depicts the relevant segments of L

L

Fig. 6. Proof of the theorem for
n=k+1: A—Y case.

and L’, and the edges of their constraint graphs.

If G.*(L) is consistent, any of its subgraphs is also
consistent, in particular so is G,*(L’) . Since L' needs
k steps to be reduced to the projection of a simplex, by
induction hypothesis L' is realizable. If L’ is realizable,
then so is L, since a realization of L is simply obtained by
cutting the polyhedron corresponding to L’ by a plane
intersecting the three vertices of the 3-star o, — B —1v .

When the first reduction is a ¥ — A (fig. 7), recall that
we only have to consider the case Yy —> A.

The only difference between G*(L) and G,*(L')
are edges (a,B), (B,y) and (y,a), fictitious in
G * (L") butknown in G,* (L) . Then, if G* (L) iscon-
sistent, so is G,* (L") since we can fix these three ficti-
tious edges to the values they have in the three
corresponding edges in G,*(L). Now, by induction
hypothesis, L’ has a realization R’ and a realization R of
L can be easily obtained by extending the three faces «, B
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G (L)

Fig. 7. Proof of the theorem for
n=k+1: Y —> A case.

and y of R’ as far as their common point of intersection,
which must project onto P because edges (a, B), (B,7)
and (y, o) were fixed as they arein G, *(L) . O

7 Labelling edges

Once a drawing is known to be consistent, the proposed
consistency test also provides a way to obtain its realiza-
tions. To this end, just take the final projection of the sim-
plex, give arbitrary heights to its four vertices, and apply
the spatial operations corresponding to the inverses of the
A/Y reductions in s. It is not difficult to show that the
degrees of freedom of these realizations only appear when
a ¥; > A reduction is “undone” and an arbitrary height
for the vertex in the new 3-star (of type ;) must be cho-
sen [14]. Moreover, the concave (-) or convex (+) shape of
an edge directly depends on the value taken for this
height.

As an example, fig. 8 shows the evolution of a drawing
(fig. 8a) and its spatial realization (fig. 8b) after undoing
two reductions, a ¥; > A and a ¥, = A. If the initial
state of the polyhedron is that in fig. 8b, we clearly see
that, once a choice is made for the height of vertex V, the
edges arround it take a concave or convex shape (fig. 8c
and d, respectively) which, in turn, determme the shape of
subsequent new edges around .

8 Conclusions

We have presented a novel approach to solve the problem
of deciding whether a drawing corresponds to the projec-
tion of a polyhedron. When compared to former
approaches, it exhibits two main advantages. First, the

<'

Fig. 8. Convexity and concavity emerges

usual problem of superstrictness arising in algebraic
approaches can be overcome by simply allowing some
error tolerance in all concurrence tests. Additionally, when
one of these tests fails, involved vertices can be easily
identified and the source of inconsistency, located. Sec-
ond, consistent edge-labellings are synthesized as a result
of the reconstruction, instead of being a required input.

Although our approach is currently limited to drawings
without occlusive segments, it clearly establishes the basis
for future developments. In this sense, if a drawing con-
tains occlusive segments, then our test will probably judge
it as inconsistent. Nevertheless, the drawing can still be
correctly interpreted if we mark some of its segments as
occlusive and properly add new edges to its incidence
structure. For example, the (partial) drawing in fig. 9a is
inconsistent, but if we consider that segments / and m are
occlusive and add an extra segment » to it, then our proce-
dure can recover the three dimensional shape as shown in
fig. 9c. This is part of our current research.

k
n

- €£

(@ (b)

Fig. 9. Treating occlusive segments

Acknowledgements

The authors wish to express their gratitude to Prof. Walter
Whiteley for his valuable comments during the stay of the
first author at York University, Toronto.

3565



Also, the financial support from the Spanish CICYT
under contract TIC96-0721-C02-01 (project REST) and
the Spanish Ministry of Education and Culture under
grant AP94 46634232 is gratefully acknowledged.

(i

(2]

[3]

4]

51

6]

n

(81

1
[10]

(1]

[12]

[13}

[14]

{15]

References

M. B. Clowes, “On Seeing Things”, Artificial Intelli-
gence, Vol. 2, No. 1, pp.79-116, 1971.

H. Crapo, and W. Whiteley, “Statics of Frameworks and
Motions of Panel Structures, a Projective Geometric
Introduction”, Structural Topology, No. 6, pp. 42-82,
1982.

H. Crapo, and W. Whiteley, “Plane Self Stresses and Pro-
jected Polyhedra I: The Basic Pattern”, Structural Topol-
ogy, No. 20, pp. 55-78, 1993.

H. Crapo, and J. Ryan, “Spatial Realizations of Linear
Scenes”, Structural Topology, No. 13, 1986.

H. Crapo, “Towards Nonlinear Cayley Factorization”,
Symbolic Computations in Geometry, IMA Preprint
Series 389, Inst. for Mathematics and Its Applications,
Univ. of Minnesota, January 1988.

L. Cremona, Graphical Statics (English translation),
Oxford University Press, 1890.

A. Guzman, “Decomposition of a Visual Scene into
Three-Dimensional Bodies”, Proceeedings of AFIPS Fall
Joint Conference, pp. 291-304, 1968.

S. W. Draper, “The Use of Gradient and Dual Space in
Line-Drawing Interpretation”, Artificial Intelligence, Vol.
17, pp. 461-508, 1981.

D. A. Huffman, “Impossible Objects as Nonsense Sen-
tences”, Machine Intelligence 6, pp. 295-323, 1971,

T. Kanade, “A Theory of Origami World”, Artificial
Intelligence, Vol. 13, pp. 279-311, 1980.

A. K. Mackworth, “Interpreting Pictures of Polyhedral
Scenes”, Artificial Intelligence, Vol. 4, pp. 121-137,
1973.

J. C. Maxwell, “On Reciprocal Figures and Diagrams of
Forces”, Philosophical Magazine, Ser. 4, Vol. 27, pp.
250-261, 1864,

J. Ponce, and 1. Shimshoni, “An Algebraic Approach to
Line-Drawing Analysis in the Presence of Uncertainty”,
IEEE Int. Conf- on Robotics and Automation, May 1992.
L. Ros, and F. Thomas, “A Geometric Test Based on
Edge-Concurrence Checks to Verify 3D Realizability of
Line Drawings”, IRl Tech. Rep. 9704, Institut de
Robdtica i Informatica Industrial, July 1997. Available
through http://www-iri.upc.es/people/ros.

M. A. Sabater, “Un Model d’Incertesa Fitada per a la
Propagacié i Fusié d’Informacié Geométrica Incerta”,
PhD thesis, Polytechnic University of Catalonia, Septem-
ber 1996.

[16]

(17

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

{271

3566

P. V. Sanker, “A Vertex Coding Scheme for Interpreting
Ambiguous Trihedral Solids”, Computer Graphics and
Image Processing, Vol. 6, pp. 61-89, 1977.

R. Shapira, “A Note on Sugihara’s Claim”, IEEE Tr. on
Pattern Analysis and Mach. Intelligence, Vol. 6, No. 1,
January 1984.

J. Stolfi, Oriented Projective Geometry. A Framework for
Geometric Computations, Academic Press Ltd., 1991.

K. Sugihara, “Picture Language for Skeletal Polyhedra”,
Computer Graphics and Image Processing, Vol. 8, pp.
382-405, 1978.

K. Sugihara, “Mathematical Structures of Line Drawings
of Polyhedrons. Towards Man-Machine Communication
by Means of Line Drawings”, IEEE Trans. on Pattern
Analysis and Mach. Intelligence, Vol. 4, No. 5, September
1982.

K. Sugihara, “A Necessary and Sufficient Condition for a
Picture to Represent a Polyhedral Scene”, IEEE Trans. on
Pattern Analysis and Mach. Intelligence, Vol. 6, No. 5,
1984.

K. Truemper, “On the Delta-Wye Reduction for Planar
Graphs”, Journal of Graph Theory, No 13, pp. 141-148,
1989.

D. Waltz, “Understanding Line Drawings of Scenes with
Shadows”, in The Psychology of Computer Vision (P. H.
Winston ed.), pp. 19-91, Mc Graw Hill, 1975.

W. Whiteley, “Matroids and Rigid Structures”, in Matroid
Applications (N. White ed.), Encyclopedia of Mathemat-
ics 40, pp. 1-53, Cambridge University Press, 1992.

W. Whiteley, “A Matroid on Hypergraphs, with Applica-
tions in Scene Analysis and Geometry”, Discrete and
Computational Geometry, Vol. 4, pp. 75-95, 1989.

W. Whiteley, “From a Line Drawing to a Polyhedron”,
Journal of Mathematical Psychology, Vol. 31, pp. 441-
448, 1987.

W. Whiteley, “Weavings, Sections and Projections of
Spherical Polyhedra”, Discrete Applied Mathematics 32,
275-294, 1991.



