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Abstract— This paper provides a method to compute all types
of singularities of non-redundant manipulators with non-helical
lower pairs and designated instantaneous input and output
speeds. A system of equations describing each singularity type is
given. Using a numerical method based on linear relaxations,
the configurations in each type are computed independently.
The method is general and complete: it can be applied to
manipulators with arbitrary geometry; and will isolate singu-
larities with the desired accuracy. As an example, the entire
singularity set and its complete classification are computed for
a two-degree-of-freedom mechanism. The complex partition of
the configuration space by various singularities is illustrated by
three-dimensional projections.

Index Terms— Singularity set computation, non-redundant
manipulator, linear relaxation, branch-and-prune method.

I. INTRODUCTION

In robot singularities either the forward or the inverse

instantaneous kinematic problem becomes undeterminate;

the properties of the mechanism changing dramatically, and

often detrimentally. The rich literature on singularity anal-

ysis, a central topic in Robot Kinematics, does not provide

a general algorithm to explicitly compute and classify the

singularity set of any given mechanism. Most works, in-

cluding previous methods for computing singularities, focus

on particular classes of singularities, and on specific robot

architectures [1]–[13].

In [14], a general singularity classification was attempted,

based on an input-output velocity equation. This overlooks

cases where the motion of the mechanism cannot be de-

scribed only with the input and output speeds. In [15, 16]

more general methods from differential geometry were ap-

plied, and three singularity types were proposed. In [17, 18],

a general manipulator model, in terms of differentiable map-

pings between manifolds, allowed a rigorous mathematical

definition of kinematic singularity. Three basic types of

singularities are identified: configuration-space, input, and

output singularities, but the approach also allows a finer

classification using six types, corresponding to various im-

portant physical and kinematic phenomena that may occur in

a singularity. Although various conditions for the presence

of singularities of all types have been presented [18, 19],

no practical method for singularity computation has been

proposed. The present work is aimed at completing this task.
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Genova, Via Opera Pia 15a, 16145 Genoa, Italy.

This work has been partially supported by the Spanish Ministry of
Economy through the contract DPI2010-18449, and by a Juan de la Cierva
contract supporting the fourth author.

The rest of the paper is organized as follows. Section II

provides some necessary background for the paper, in order

to derive, in Section III, a system of equations characterizing

each singularity type. Section IV describes a numerical

method based on linear relaxations able to isolate the sin-

gular configurations encoded by each system obtained. The

performance of this method is then illustrated in Section V

on a particular manipulator. Section VI, finally, provides the

main conclusions of the paper.

II. BACKGROUND

Every manipulator configuration can be described by a

vector q of scalar generalized-coordinate variables. In the

case of manipulators containing closed-loops, or when a joint

does not admit a global parametrization, not all values of q

correspond to feasible configurations, and the configuration

space is given by the solution set of a system of non-linear

equations

Φ(q) = 0, (1)

which expresses the assembly constraints imposed by the

joints [20]. In addition, the possible motion rates of the

manipulator, i.e. its feasible instantaneous motions, are char-

acterized by a system of linear equations

L ·m = 0, (2)

called the velocity equation in [18]. The matrix L, which

depends on the configuration q, can be seen to have the

following structure

L =

[

−I Aa Ap

0 Da Dp

]

.

The velocity vector m =
[

Ω
oT,ΩaT,ΩpT

]T

has as com-

ponents Ω
o, a vector describing the rate of change of the

output motion (for example, the velocity of a point or the

angular velocity, or the twist, of an end-effector body), as

well as Ω
a and Ω

p, describing the rate of change of input

and passive motion, respectively (typically, Ωa and Ω
p are

the actuated and unactuated joint speeds, respectively). Such

a system of equations can be obtained for any manipulator

and therefore can be used for the practical identification of

singularities.

In this paper we assume that, for every configuration,

the dimension of the output and input velocity vectors are

equal to the (global) mobility, n, of the kinematic chain

(the mobility is equal to the dimension of the configuration

space, i.e., to the maximum dimension of its tangent space,

wherever such space exists [21]).



The instantaneous kinematic analysis of a manipulator

addresses two main problems:

• The forward instantaneous kinematics problem (FIKP):

find m given the input Ωa, and

• The inverse instantaneous kinematics problem (IIKP):

find m given the output Ωo.

Note that in each case it is required to find all instanta-

neous parameters of the manipulator, not just the output or

input speeds, respectively. Following [18], a configuration is

defined as nonsingular when both the FIKP and the IIKP

have unique solutions for any input or output. This leads

to the identification of three basic types of singularities,

namely, input singularities and output singularities, where

the FIKP and the IIKP are undetermined, respectively, and

configuration-space singularities, where both the FIKP and

IIKP become undetermined for any definition of input or

output from the given velocity variables. However, depending

on the cause of the degeneracy, six substantially different

types of singularities can be recognized. These are redundant

input (RI), redundant output (RO), impossible input (II),

impossible output (IO), increased instantaneous mobility

(IIM) and redundant passive motion (RPM) singularities.

Each of the six singularity-type definitions describes an

important change in the kinematic properties of the manip-

ulator that occurs in a singular configuration of that type.

When the mechanism is in a singularity of type RO or IO

(RI or II), the output (input) is indeterminate or restricted.

In an IIM-type configuration the instantaneous motion of the

manipulator is indeterminate, no matter which n parameters

are being controlled. In an RPM-type singularity, the passive

motion of the mechanism is indeterminate, which may create

problems such as interference with other links and obstacles.

It is, therefore, desirable to know whether or not a given

configuration belongs to each of these types.

Next section recalls the definition of each type of sin-

gularity and defines a system of equations that encodes all

singular configurations for each type.

III. CHARACTERIZATION OF SINGULARITIES

For the definition of the systems of equations, let LI , LO

and LP be the submatrices of L obtained by removing the

columns corresponding to the input, output, and both the

input and output, respectively.

As proven in [18, 19], the singularities of a manipulator

can be characterized by those configurations where either the

matrix LI or the matrix LO is rank deficient. Note that if a

matrix is rank deficient, its kernel has to be non-empty and,

in particular, it must include a vector of unit norm. Thus, all

singularities can be determined by solving the following two

systems of equations:

Φ(q) = 0

LT

I ξ = 0

‖ξ‖2 = 1







,

Φ(q) = 0

LT

Oξ = 0

‖ξ‖2 = 1







. (3)

The first equation of each system constraint q to be a feasible

configuration of the mechanism, the second and third lines

imply the existence of a nonzero vector in the kernel of the

corresponding matrix. Note that ‖ξ‖2 can be any consistent

norm, for instance, ξTDξ with D a diagonal matrix where

the entries have the proper physical units. There is no need

for the norm to be invariant with respect to change of frame

or units. In short, the condition ‖ξ‖2 = 1 only serves to

guarantee that ξ is not 0.

The solution of the system on the left in Eq. (3) includes

all configurations where the FIKP is undeterminate, corre-

sponding to all input singularities, while the solution of the

system on the right includes all output singularities, where

the IIKP is undeterminate. Configuration-space singularities

will satisfy both systems in (3), as well as any analogous

system obtained by deleting n columns in L.

The singularity set can be seen to contain six distinct low-

level singularity types, whose definitions are recalled next.

Following each definition, a system of equations encoding

the configurations of the corresponding type are derived.

RI-type

A configuration is a singularity of RI type if there exist a

nonzero input, Ωa 6= 0, and a vector Ω
p, which satisfy the

velocity equation (2) for a zero-output, Ωo = 0, i.e.

LO

[

Ω
a

Ω
p

]

= 0.

This means that the kernel of LO has to include a vector

with Ω
a 6= 0. Note that, as before, if such a nonzero vector

exists, there will also exist a unit vector with nonzero Ω
a.

Thus q is a singularity of type RI if and only if the system

of equations

Φ(q) = 0

LOξ = 0

‖ξ‖2 = 1







(4)

is satisfied for some value of ξ =
[

Ω
aT,ΩpT

]T

, with

Ω
a 6= 0.

The RI singularity is illustrated in Fig. 1 by a four-bar

mechanism. In the configuration shown on the left, the output

link DC cannot move, since the velocity of point C must be

zero, while the instantaneous input, ωA, can have any value.

AA

B

B

C C

DD

ωAωA ωDωD

Fig. 1. A four-bar planar mechanism in an RI and IO singularity (left)
and in an RO and II singularity (right). AD = AB = BC = 1, CD = 2.



RO-type

A configuration is a singularity of RO type if there exist

a nonzero output, Ωo 6= 0, and a vector Ω
p, which satisfy

the velocity equation for a zero-input, Ωa = 0, i.e.

LI

[

Ω
o

Ω
p

]

= 0.

Following a similar reasoning as before, q is of type RO if

and only if it satisfies the equations

Φ(q) = 0

LIξ = 0

‖ξ‖2 = 1







(5)

for some value of ξ =
[

Ω
oT,ΩpT

]T

, with Ω
o 6= 0.

The four-bar of Fig. 1 (on the right) is shown in an RO-

type singular configuration. The input link AB is locked,

while the instantaneous output, ωD, can have any value.

IO-type

A configuration is a singularity of IO type if there ex-

ists a vector Ω
o 6= 0 for which the velocity equation

cannot be satisfied for any combination of Ω
a and Ω

p.

In other words, this means that there is a nonzero vector
[

Ω
oT,0T,0T

]T

that cannot be obtained by projection of any

vector
[

Ω
oT,ΩaT,ΩpT

]T

belonging to the kernel of L.

In order to derive the system of equations for this type, let

V = [v1, . . . ,vr] be a matrix whose columns form a basis

of the kernel of L. Then, all vectors
[

Ω
oT,0T,0T

]T

that can

be obtained by projection of some vector of the kernel of L

are in the image space of the linear aplication given by the

matrix

A =
[

In×n 0
]

V ,

where n is the dimension of vector Ω
o. Thus, a singular

configuration is of IO type if the map A is not surjective,

i.e. A is rank deficient. In this situation it can be seen that

there exists a unit vector Ωo∗ in the kernel of AT and, hence,

a vector
[

Ω
o∗T,0T,0T

]T

in the kernel of V T. Such a vector

is orthogonal to all vectors v1, . . . ,vr, so it must belong to

the image of LT. In conclusion, there must exist a nonzero

vector Ωo∗ satisfying

LTψ =





Ω
o∗

0

0



 ,

for some vector ψ. By letting ψ =
[

ψ
1
T,ψ

2
T
]T

, where ψ
1

has the same dimension as Ω
o∗, and by taking advantage of

the structure of L, it can be seen that ψ
1
= −Ω

o∗. Therefore

a configuration, q, is an IO-type sigularity if and only if it

satisfies
Φ(q) = 0

LT

Oξ = 0

‖ξ‖2 = 1







, (6)

for some ξ =
[

−Ω
o∗T,ψ

2
T
]T

, with Ω
o∗ 6= 0. For all

solutions of this system, the obtained value of Ωo∗ will be a

non-feasible output of the manipulator at the corresponding

configuration.

A singular configuration of type IO can be seen by

considering again the four-bar configuration shown in the

left-hand-side part of Fig. 1. The only feasible output is zero,

and any non-zero output is impossible.

II-type

A configuration is a singularity of type II if there exists

a vector Ω
a 6= 0 for which the velocity equation cannot

be satisfied for any combination of Ω
o and Ω

p. Following

similar observations as for the IO type, a configuration q is

a singularity of II type if and only if there exists a nonzero

vector Ωa∗ such that

LTψ =





0

Ω
a∗

0



 ,

for some ψ. By taking advantage of the structure of L as

before, it can be seen that ψ
1
= 0, and the previous condition

can be written as
[

DT

a

DT

p

]

ψ
2
=

[

Ω
a∗

0

]

.

In principle, there will be many combinations of ψ
2

and Ω
a∗

satisfying this condition, but since ψ
2

must be nonzero and

in the kernel of DT

p , it can be chosen of unit norm. Hence,

II-type singularities are exactly the configurations that satisfy

Φ(q) = 0
[

DT

a

DT

p

]

ψ
2
=

[

Ω
a∗

0

]

‖ψ
2
‖2 = 1















, (7)

for some ψ
2

with Ω
a∗ 6= 0.

The four-bar of Fig. 1 (right) is shown in an II-type

singular configuration: the input link is locked, and any non-

zero input is impossible.

RPM-type

A configuration is a singularity of type RPM if there exists

a nonzero Ω
p vector which satisfies the velocity equation for

a zero input and a zero output, i.e. LPΩ
p = 0. This will

happen when the kernel of LP is non-zero and, thus, the

following system of equations

Φ(q) = 0

LPΩ
p = 0

‖Ωp‖2 = 1







(8)

encodes all RPM-type singularities q.

Fig. 2 shows a 1-dof mechanism with three sliders. The

velocity of point A is the input, the velocity of B is the

output, and the velocity of C is a passive joint rate. In the

configuration shown on the right, both points A and B must

have zero velocity, while the velocity of point C can be non-

zero. Hence, motion of the manipulator is possible when both

the input and the output are zero, and the manipulator is in

an RPM-type singularity.



AA

BB

CC

vA

vB

vC vC

Fig. 2. A 1-dof planar manipulator in a non-singular configuration (left)
and in an RPM singular configuration (right).

IIM-type

A configuration is a singularity of type IIM if L is rank

deficient. In fact, it corresponds to configurations where the

instantaneous mobility is greater than the number of degrees

of freedom. The definition directly allows to write the system

of equations
Φ(q) = 0

LTξ = 0

‖ξ‖2 = 1







, (9)

that will be satisfied for some ξ by a configuration q if and

only if it is an IIM-type singularity.

A four-bar in the flattened configuration of Fig. 3 obtains

a transitory mobility of 2 and, thus, it is in an IIM-type

singularity.

A B

CD

Fig. 3. An IIM-type singularity.

IV. ISOLATION OF SINGULARITIES

A numerical method able to solve the previous systems

of equations is next described. The method consists in first

formulating the system of equations that characterizes each

singularity type in an appropriate way, allowing to compute

an initial box bounding the location of all solutions, and

then using a numerical technique that exploits the structure

of the system to isolate the set of singularities at the desired

resolution.

A. Equation formulation

All systems in (3)-(9) can be formulated so they adopt

the form of a polynomial system of quadratic equations (i.e.

equations where only monomials of the form a, a2, or ab

appear, where a and b refer to any two of the variables).

In addition, it will be seen that each variable in the system

can only take values within a limited interval, so that from

the Cartesian product of all such intervals one can define a

box B that initially bounds all solutions of the system. This

allows the use of a particularly simple technique to compute

the solution of the systems numerically.

First note that the structure of all systems (3)-(9) is very

similar. The first line is always Eq. (1), because all solution

points must correspond to feasible configurations of the

manipulator. The second line always involves matrix L, or

one of its sub-matrices, and the third line corresponds to

the norm of some vector. For a manipulator involving lower

pairs of any kind, except the helical pair, the formulation

proposed in [22] makes Eq. (1) directly adopt the form of a

polynomial system of quadratic equations. The second line

will be quadratic too, because all the entries in L are linear

terms, and the third line is directly a quadratic expression.

Moreover, as proven in [22], one can always define a

possible interval of values for all variables q used in such a

formulation. Note, additionally, that the entries of the vector

in the last line of each system are also bounded in the range

[−1, 1]. In the case of system (7), the feasibility intervals for

the entries of Ω
a can be readily obtained by mapping the

known intervals using DT

aψ2
= Ω

a.

Thus, in order to apply the numerical method, it only

remains to model the fact that in systems (4)-(7), Ωa or Ωo

must be different from zero. Since the technique can also

handle non-strict inequalities, this can be done by setting

‖Ωa‖2 ≥ ǫ for systems (4) and (7), and ‖Ωo‖2 ≥ ǫ for

systems (5) and (6), where ǫ is a sufficiently small value. By

using this inequality some singularities might be lost, but ǫ

can be made arbitrarily small, reducing this set of missed

solutions to a negligible size.

Finally, for ease of explanation, note that all systems (3)-

(9) can be written as

F (x) = 0, (10)

where, in each case, x contains all the variables involved

in the system. Let us now define the changes of variables

pi = x2

i for each quadratic monomial and bk = xixj for each

bilinear monomial in (10), in order to allow transforming the

system into the expanded form

Λ(x) = 0
Γ(x) = 0

}

, (11)

where Λ(x) = 0 is a collection of linear equations in x

and Γ(x) = 0 is a collection of quadratic equations, each of

which adopts one of the two forms xk = x2

i or xk = xixj .

B. Numerical solution

The algorithm for solving system (11) recursively applies

two operations on the computed box B: box shrinking and

box splitting. Using box shrinking, portions of B contain-

ing no solution are eliminated by narrowing some of its

defining intervals. This process is repeated until either the

box is reduced to an empty set, in which case it contains

no solution, or the box is “sufficiently” small, in which

case it is considered a solution box, or the box cannot be

“significantly” reduced, in which case it is bisected into two

sub-boxes via box splitting (which simply bisects its largest

interval). To converge to all solutions, the whole process is
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Fig. 4. Polytope bounds within box Bc.

recursively applied to the new sub-boxes, until one obtains

a collection of solution boxes whose side lengths are below

a given threshold σ.

The crucial operation in this scheme is box shrinking,

which is implemented as follows. Note first that the solutions

falling in some sub-box Bc ⊆ B must lie in the linear variety

defined by Λ(x) = 0. Thus, we may shrink Bc to the smallest

possible box bounding this variety inside Bc. The limits of

the shrunk box along, say, dimension xi can be found by

solving the two linear programs

LP1: Minimize xi, subject to: Λ(x) = 0,x ∈ Bc

LP2: Maximize xi, subject to: Λ(x) = 0,x ∈ Bc.

However, observe that Bc can be further reduced, because

the solutions must also satisfy all equations xk = x2

i and

xk = xixj in Γ(x) = 0. These equations can be taken into

account by noting that, if [vi, ui] denotes the interval of Bc

along dimension xi, then:

1) The portion of the parabola xk = x2

i lying inside Bc

is bound by the triangle A1A2A3, where A1 and A2

are the points where the parabola intercepts the lines

xi = vi and xi = ui, and A3 is the point where the

tangent lines at A1 and A2 meet (Fig. 4a).

2) The portion of the hyperbolic paraboloid xk = xixj ly-

ing inside Bc is bound by the tetrahedron B1B2B3B4,

where the points B1, . . . , B4 are obtained by lifting the

corners of the rectangle [vi, ui]× [vj , uj ] vertically to

the paraboloid (Fig. 4b).

Thus, linear inequalities corresponding to these bounds can

be added to LP1 and LP2, which usually produces a much

larger reduction of Bc or, if one of the linear programs is

found unfeasible, its complete elimination. In this step, the

inequalities needed in systems (4)-(7) can also be taken into

account.

The collection B of all solution boxes, which is returned as

output upon termination, is said to form a box approximation

of the solution set of Eq. (11), because the boxes in B form

a discrete envelop of a such set, whose accuracy can be

adjusted through the σ parameter. Notice that the algorithm

is complete, in the sense that it will succeed in isolating all

solution points of Eq. (11) accurately, provided that a small-

enough value for σ is used.

V. AN ILLUSTRATIVE EXAMPLE

The 2-dof planar manipulator shown in Fig. 5 is used here

to illustrate the computation of each one of the singularity

types. The inputs are the joint velocities at A and E, and

the output is the motion of point G. The loop equations

Φ(q) = 0 are written as

0 = −x+ 2 cos θD + 3

2
cos θC ,

0 = −y + 2 sin θD + 3

2
sin θC ,

0 = cos θA + cos θB − 2 cos θD − 1,

0 = sin θA + sin θB − 2 sin θD,

0 = 2 cos θD + 3

2
cos θC + 2 cos θG − 3 cos θE − 1,

0 = 2 sin θD + 3

2
sin θC + 2 sin θG − 3 sin θE ,

(12)

where θA, θB , θC , θD, θE and θG are the counterclockwise

angles of links AB, BC, CG, DC, EF , and GF , respec-

tively, relative to the ground, and x, y are the coordinates of

point G relative to a fixed frame centered in D. The velocity

equation of the manipulator may be obtained, for instance,

by differentiating (12) with respect to all variables, but it

could also be obtained using the twist loop equations, or by

any other means. In order to achieve the desired quadratic

formulation, the changes of variables cτ = cos θτ and sτ =
sin θτ can be applied for all τ ∈ {A,B,C,D,E,G}. Since

the variables cτ and sτ represent the cosine and sine of a

variable, the circle equations c2τ + s2τ = 1 are introduced in

A

B

C

D

E

F

X

Y

G(x, y)

ωA ωE

Fig. 5. A 2-dof planar manipulator. The link dimensions are AB = AD =
BC = DE = 1, CD = FG = 2, CG = 1.5 and EF = 3.
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Fig. 6. Two-dimensional configuration space of the manipulator computed
at σ = 0.1. Two holes can be seen, whose boundary corresponds to
configurations where E, F and G are aligned.

the systems encoding each one of the singularity types, for

all angles.

Given that the manipulator has two degrees of freedom, its

configuration space is a surface, shown in Fig. 6 projected

onto the x, y and θA variables. This surface was obtained

from the computation of all solutions of (1) using the same

numerical technique presented in the previous section. Note

that by fixing x, y, and θA, there are still two possible

positions of point F , so that most of the points in this

projection correspond, in fact, to two different configurations

of the manipulator. Only the points where E, F , and G are

aligned represent a single configuration, and these are exactly

the boundaries of the two “holes” that the surface presents.

The singularity set is generally of lower dimension than

the configuration space, so that only curves or points are to

be expected in the solution set of all systems of equations.

The result of the computation of each type of singularity is

shown in Figs. 7 and 8, projected onto the output and one

input (x, y, θA), and onto the output only, respectively. In

Fig. 7, the configuration space is shown in blue, separated in

two parts so that a cross-section can be seen, but both parts

are actually connected through π and −π as in Fig. 6. The

grey area in Fig. 8 represents all attainable positions of point

G, i.e. the workspace of the manipulator.

As it turns out, this manipulator contains no IIM configura-

tions, and the computation of this type of singularity gives no

box as output. On the contrary, there are eight distinct RPM

singularities, which in these projections appear coincident in

pairs as four orange boxes, corresponding to the two possible

locations of F . Using a different projection, for instance onto

(θA, θD, θE), the eight boxes appear separated.

The green curves correspond to singularities that are both

of type RI and of type IO. These configurations can be seen

to contour the two “holes” of the configuration space in

this projection. The red curves correspond to configurations

simultaneously belonging to the RO and the II type. Even if

the curves for RI and IO seem to coincide everywhere, there

are some IO configurations that are not of RI type, and the

same happens for II and RO singularities, respectively. This

is illustrated in Fig. 7 with a magnifying bubble that shows

only the output of computing RI singularities. These gaps on

the curves of RI and RO, which can be found by properly

adjusting the ǫ parameter, coincide with the location of the

RPM singularities and, hence, the RPM singularities are also

of type II and IO (but not of type RI or RO). Fig. 8a shows

an example of an (RPM, II, IO) singularity, while Fig. 8b and

Fig. 8c show examples of (RI, IO) and (RO, II) singularities,

respectively.

Fig. 7 also shows yellow curves that correspond to con-

figurations where points D, B and G are aligned. In these

configurations there is only one possible location of point

C. Hence, these configurations, together with those where

E, F , and G are aligned, allow the transition between

different assembly modes. In the figure, these configurations

coincide with the points of self-intersection of the projection

of the configuration space on the (x, y, θA) space. The

configuration space itself has no self-intersections as there

are no configuration-space, or IIM-type, singularities. The

yellow points are only singularities of the projection map.

Using the same code of colors, Figs. 9 and 10 show the

projection of the results onto the the 3-dimensional space of

the two input angles and one passive joint angle (θA, θE ,

θD) and onto the 2-dimensional input space only. The eight

RPM singularities appear separated. As before, for each θA,

θE , and θD fixed, there are still two possible locations of

point C in general, and almost all points in this projection

correspond to two distinct configurations of the manipulator.

It can be seen that the configuration space presents four

“holes” in these projections. These four contours are made

of those configurations where G, C, and F are aligned and

there is only one possibility for C. Note that none of these

“holes” coincides with one in the previous projection, but,

once again, crossing each curve allows the transition between

two different assembly modes. One can imagine the two

assembly modes as the two “sides” of the surface of the

configuration-space projection. To “get to the opposite side”,

i.e., to change assembly mode, the motion curve must “go

through a hole”.

VI. CONCLUSIONS

This paper has introduced a method for the numerical

computation and detailed classification of the entire singu-

larity set of a mechanism with arbitrary geometry and non-

helical lower-pair joints. Singularity subsets corresponding

to the six singularity types are computed. The approach,

based on the segmentation of the configuration space, is

particularly practical and useful for lower-dof mechanisms.

In higher-dimensional problems, as is the case with any

method, computation times increase and visualization be-

comes difficult. To circumvent this, it is possible to consider

lower-dimensional sections of the configuration space.
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Fig. 7. All singular configurations are shown on the configuration space of the manipulator. Green: (RI,IO), red: (RO, II), orange: (RPM, II, IO). There
are no IIM-type singularities.
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Fig. 8. Projection to the (x, y) space. (a) RPM-IO-II; (b) RI-IO; (c) RO-II
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