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Abstract— This paper provides an algorithm for computing
singularity-free paths on non-redundant closed-chain manipula-
tors. Given two non-singular configurations of the manipulator,
the method attempts to connect them through a configuration
space path that maintains a minimum clearance with respect
to the singularity locus at all points. The method is resolution-
complete, in the sense that it always returns a path if one exists
at a given resolution, or returns “failure” otherwise. The path
is computed by defining a new manifold that maintains a one-
to-one correspondence with the singularity-free configuration
space of the manipulator, and then using a higher-dimensional
continuation technique to explore this manifold systematically
from one configuration, until the second configuration is found.
Examples are included that demonstrate the performance of the
method on illustrative situations.

Index Terms— Closed-chain motion planning, singularity-free
path, higher-dimensional continuation, singularity avoidance.

I. INTRODUCTION

A fundamental task in Robotics is the computation of

collision-free motion paths between two configurations of a

manipulator [1]. The subject has received substantial atten-

tion and, specially for open-chain manipulators, efficient al-

gorithms exist that solve hard instances of the problem, even

on cluttered environments and highly-dimensional spaces [2].

To compute a solution path, however, most of these algo-

rithms require a parametric description of the configuration

space (C-space), which complicates substantially their appli-

cation to manipulators with closed kinematic chains. Such

chains arise in a variety of contexts in Robotics, including

parallel manipulators, multi-arm manipulation, or reconfig-

urable mechanisms, but they appear in other domains too,

like on mechanical models of deployable structures, nano-

devices, or biomolecules. In all of such contexts, a number

of kinematic loop-closure constraints must be taken into

account, which relate configuration parameters by non-linear

equations, and thus induce a complex topological structure

on the C-space. In general, as a result, this space may have

several connected components and lower-dimensional singu-

larity sets, and may not admit a global parameterization [3].

Despite the difficulty of the problem, some strategies have

been given to synthesize feasible motion paths on closed-

chain manipulators [4]–[10]. However, none of such works

addresses the problem of avoiding the so-called singular
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configurations, where the kinetostatic performance of the

manipulator dramatically degrades. Although several types

of singularities can be distinguished [11], those of primary

interest in closed-chain manipulators are the forward, or

parallel singularities, which compromise the velocity control

of the manipulator and, dually, its capacity to withstand

externally-applied forces, possibly leading to malfunction

or breakage of the structure. In practice, thus, any path

connecting two configurations must not only run through

collision-free regions of the C-space, but also must avoid

crossing the forward singularity locus at any point.

Several works in the Literature consider the problem of

on-line singularity avoidance [12], but only a few of them

tackle the more general problem of computing singularity-

free paths between distant configurations. Solutions to this

problem have been given for parallel manipulators only, and

include an algorithm based on deforming a parametrized path

between the query configurations [13], a variational approach

that reduces the problem to a boundary value problem [14],

and a numerical technique based on treating the singularity

locus as a collection of obstacles [15]. All of these algorithms

work well in favorable situations, but [13] and [14] mention

limitations relative to proving path existence in certain cases,

and the method in [15] is computationally intensive, as it

requires constructing polytope approximations of the entire

singularity set before searching for a feasible path. In some

way or another, moreover, the methods in [13]–[15] exploit

the fact that the considered C-spaces have closed-form pa-

rameterizations, and hence it is not trivial to extend them to

tackle general kinematic structures.

The method provided in this paper, in contrast, makes no

recourse to closed-form parameterizations, and hence can be

applied to any non-redundant closed-chain manipulator. As

opposed to [15], moreover, it treats singularities implicitly,

not explicitly as obstacles, resulting in a computationally less

intensive approach. The method relies on defining a system

of equations whose solution manifold corresponds to the

singularity-free subset of the C-space, so that maneuvering

through such manifold guarantees singularity avoidance at

all times. Then, an extension of the higher-dimensional

continuation strategy given in [9] is defined, to explore

this manifold systematically, until a path joining the start

and goal configurations is found, or path non-existence is

determined at a given resolution. The method, as presented,

only avoids crossing singular configurations and neglects

possible collisions of the manipulator. However, this is done

for ease of explanation only, and incorporating the treatment

of collisions only requires adopting the provisions made

in [9] to this end.



The rest of the paper is organized as follows. Sec-

tion II prepares the ground for the paper and describes the

conditions that characterize the forward singularities of a

manipulator, explaining their significance from a physical

and geometrical point of view. Based on such background,

Section III then describes the proposed singularity-free path

planning method. Section IV shows the method’s perfor-

mance on illustrative situations. Section V, finally, provides

the paper’s conclusions and highlights several points deserv-

ing further attention.

II. PRELIMINARIES

The allowable positions and orientations of all links in

a manipulator can always be encoded in a vector q of nq

generalized coordinates, subject to a system of ne equations

Φ(q) = 0, (1)

which expresses the assembly constraints imposed by the

joints [16]–[18]. Here, Φ(q) : Q → E is a differentiable

map, and Q and E are nq- and ne-dimensional manifolds,

respectively.

Let C denote the C-space of the manipulator. That is,

C = {q ∈ Q : Φ(q) = 0}. (2)

In the usual setting, the differential Φq = [∂Φi/∂qj ] is

full rank at all points q ∈ C, except on a zero-measure

set of points G where C may loose the manifold structure.

Thus, C \ G can be thought to be a smooth manifold of

dimension d = nq − ne. The points of G are called C-space

singularities [11] and typically occur in bifurcations, sharp-

nesses, or dimension changes (Fig. 1). Note that, despite Φq
is a differentiable function globally describing C, all of such

accidents may eventually occur in C.

The vector q will be assumed to contain a subvector v

of nv coordinates, corresponding to the actuated degrees of

freedom, or inputs, of the manipulator. This allows consider-

ing the partition q = [yT,vT]T, where y encompasses the ny

coordinates of q not present in v, and to write (1) as

Φ(y,v) = 0. (3)

It will be further assumed that the manipulator is non-

redundant, i.e., that nv = d, which means that the number

of inputs in v is the lowest required to fix a configuration,

and in particular that ny = nq − nv = nq − d = ne.

To see the role of singular configurations, consider the

time derivative of (3):

Φyẏ +Φvv̇ = 0. (4)

Note that for configurations q on which Φy is full rank we

can write (4) in the equivalent form

ẏ = −Φ
−1

y Φvv̇, (5)

which provides the time rates of the y coordinates in terms

of the time rates of the input coordinates v—i.e., the solution

to the forward instantaneous kinematic problem of the ma-

nipulator. However, (5) only holds whenever the matrix Φy
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Fig. 1. Examples of C-space singularities.
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Fig. 2. Interpretation of points q ∈ C \ G where det(Φy) = 0.

is full rank, and only in this case the input rates v̇ will

determine a single value for the remaining rates ẏ. This must

be so because, if Φy is rank-deficient at q, then (4) yields,

for a given value of v̇, either no solution or infinitely-many

solutions for ẏ, in which case it is not possible to uniquely

determine the velocity of the manipulator by specifying the

velocities of the actuators. Following these observations, a

configuration q ∈ C is said to be singular if det(Φy) = 0.

Geometrically, the matrix Φy may be rank deficient either

because Φq itself is rank deficient, or because only Φy is.

In the first case q is in G and in the second case the tangent

space to C at q projects onto the v-space as a linear variety

of dimension lower than nv (Fig. 2). In any case, both kinds

of situations need to be avoided if a safe motion path for the

manipulator is desired. A numerical method to obtain such

paths is now given in the following section.

III. THE METHOD

Let Cs denote the set of singular configurations, and let

Csfree = C \ Cs. We call these sets the singularity locus and

the singularity-free C-space of the manipulator, respectively.

A singularity-free path joining two configurations of Csfree,

qs and qg , is a continuous map τ : [0, 1] → Csfree, such that

q(0) = qs and q(1) = qg . The problem dealt with in this

paper, thus, consists in computing such paths between two

predefined configurations, qs and qg . This section proposes a

new method to this end, based on defining a proper system

of equations characterizing Csfree (Section III-A), and then

resorting to a continuation method that uses these equations

to trace Csfree systematically, until a path from qs to qg

is found, or path non-existence is proved, at a considered

resolution (Section III-B).



A. A system of equations defining Csfree

Observe that a configuration q = [yT,vT]T ∈ C is non-

singular if, and only if, it satisfies

Φ(q) = 0

det(Φy) · b = 1

}

(6)

for some value of b, where b ∈ R is a newly-defined,

auxiliary coordinate. Certainly, the first condition in (6)

imposes q to be a valid configuration, and the second

condition holds at q for some b whenever det(Φy) 6= 0.

In other words, (6) constitutes a system of equations that

fully characterizes Csfree. For ease of explanation, (6) will be

written as

F (x) = 0 (7)

herafter, where

x = [qT, b]T, (8)

and

F (x) =

[

Φ(q)
det(Φy) · b− 1

]

.

Let M be the set of points x that satisfy (7), and define the

function b(q) = 1/det(Φy(q)). Note that the points x ∈ M
are in one-to-one correspondence with the points q ∈ Csfree,

because for each q ∈ Csfree only the point x = [q, b(q)]T

satisfies (6). Accordingly, all paths on Csfree are uniquely

represented in M, and viceversa. Thus, the original problem

of computing a singularity-free path on C from qs to qg can

be reduced to that of connecting

xs = [qT

s , b(qs)]
T

and

xg = [qT

g , b(qg)]
T

through some path on M. This reduction is advantageous

because, by letting the path planner operate in M, instead of

in C directly, guarantees that any computed path on M will

have a corresponding path on C lying entirely in Csfree. This

eliminates the need of checking singularity crossings in the

planner, which, as noted in [13], may be difficult in some

situations, due to the intricate structure of the singularity

locus.

The correspondence of the two problems is schematically

illustrated in Fig. 3. The horizontal plane at the bottom

represents C, which in this example coincides with the

ambient space Q for simplicity, and the singularity locus Cs

is represented by two red parabolas in this plane. To con-

struct M, we add a new dimension b to Q (the vertical

axis in the figure), and we lift every point q ∈ C to the

point x = [qT, b(q))]T. Then, M can be thought of as a

new manifold extending infinitely in the direction b, as the

projection q of a point x ∈ M approaches Cs.

Two important observations are in order regarding the

search for a path. On the one hand, note that the differential

Fx has the block structure

Fx =







Φq 0

∗ det(Φy)






,

C = Q

M
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b

Fig. 3. The original problem of computing a singularity-free path on C
connecting qs and qg is transformed into one of finding an arbitrary path
on M connecting xs and xg .

from which we see that Fx is full rank at all points x ∈ M,

because Φy (and hence Φq) is full rank at such points. By

the Implicit Function Theorem, this implies that M has the

structure of a smooth manifold everywhere [19], which is

beneficial from the point of view of applying a continua-

tion method to explore M [20], because no bifurcations,

sharpnesses, or dimension changes are expected to be found

along the way, thus simplifying the numerical treatment of

the problem. On the other hand, all of the q coordinates

have known bounds in practice [18], like those derived from

mechanical limits on the joints, and |b| should be maintained

below a given threshold bmax to guarantee some clearance

from Cs. As a result, the search for a path on M must

be restricted to a given domain D of the x-space, usually

defined as the Cartesian product of a number of intervals

derived from such bounds.

B. Exploring M for a path

To determine a singularity-free path connecting xs and xg

we can gradually construct an atlas of M∩D. An atlas is

a collection of charts where each chart Ci defines a local

map between a domain Pi ⊂ R
d and an open set around a

given point xi ∈ M, initially xs. The atlas will be computed

using the higher-dimensional continuation method proposed

in [20]. This method defines the local map for chart Ci

using Ψi, an orthonormal basis of Txi
M, the d-dimensional

tangent space of M at xi. The map is determined by first

selecting a d-dimensional vector ui
j of parameters (Fig. 4-

top), which is used to generate a point xi
j ∈ R

nq+1 in the

neighborhood of xi as

xi
j = xi +Ψi u

i
j . (9)

Then, a point xj on M is computed by orthogonally

projecting xi
j . This projection is obtained by solving

F (xj) = 0,

Ψ
T

i (xj − xi
j) = 0,

(10)
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Fig. 4. The higher-dimensional continuation method applied to a two-
dimensional manifold in 3D space. Left: A point xj on M can be obtained

by orthogonally projecting a point xi
j on Txi

M. Right: If a new chart is

defined at xj , it must be properly coordinated with the chart at xi so that
their projections smoothly covers the manifold.
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Fig. 5. Polytope-based chart construction. Left: The domain for chart Ci,
Pi, is a box including a ball of radius r around xi. Right: Pi is refined
using a ball Bi

j that approximates Ci
j , the projection on Ci of the part of

the manifold covered by Cj .

using a Newton method initialized at xi
j and where, at each

iteration, xj is updated with the increment ∆xj fulfilling
[

Fxi

Ψ
T

i

]

∆xj = −

[

F (xi)

Ψ
T

i (xj − xi
j)

]

. (11)

The update is applied until the norm of the right-hand side

of (11) becomes negligible or for a maximum number of

iterations.

Each point on the manifold is the potential center of a new

chart (see Fig. 4-bottom), and a method due to Henderson

can be used to decide where to place the chart centers so as to

ensure a good coverage of the manifold [20]. In his approach,

the domain Pi of chart Ci is initialized as a d-dimensional

hypercube enclosing a ball Bi of radius r, both defined in

Txi
M, as illustrated in Fig. 5-top. A vertex of Pi exterior

to Bi, with position vector s, is then used to generate a point

xi
j , using (9) with

ui
j = α

s

‖s‖
, (12)

where α is initialized to r. If the projection from xi
j to M

does not converge, or if the new chart Cj at xj is too far or

too different from Ci, i.e., if

‖xj − xi
j‖ > ǫ, (13)

or

‖ΨT

i Ψj‖ < 1− ǫ, (14)

for a given threshold ǫ, the new chart is discarded and a new

attempt of chart generation is performed with a smaller α.

q2

q1

q3

Fig. 6. A fictitious three-dimensional C-space with its singularities
highlighted in red, assuming that q1 and q2 are the actuated degrees of
freedom.

This procedure adapts the size of the area covered by each

chart to the local curvature of the manifold. When Cj is valid,

it is used to crop Pi from the intersection between Bi and Ci
j ,

the projection on Txi
M of the part of the manifold covered

by Cj . This projection is approximated by a ball Bi
j of radius

r in Txi
M, centered at the point given by ui

j , as shown in

Fig. 5-bottom. The intersection of Bi and Bi
j defines a new

face of Pi that eliminates some of its vertices (in particular

the one given by s) and generates new ones. Symmetrically,

the polytope Pj associated with Cj is cropped using Ci.

When Ci is surrounded by other charts, Pi becomes a convex

polytope included in Bi, and Ci is considered to be closed,

meaning that no further expansion of the atlas need to be

attempted from that chart. Charts out of the domain D
are also considered closed. When all charts are closed, the

connected component of M containing the initial point xs

gets fully covered. If a singularity path exists from xs to

xg , xg must be covered by one of the charts of the atlas

and, thus, a solution path can be determined by searching

the graph implicitly defined by the chart centers and their

neighborhood relations. If xg is not covered by any of the

charts of the atlas, path non-existence is established at the

considered value for r.

The cost of the algorithm at each step is dominated by the

cost of two searches among the set of charts: one to find the

potential neighbors of a new chart, and another one to find an

open chart from which to expand the atlas. The performace

of the first search can be increased using a k-d tree storing

the centers of the charts. To speed up the search for a solution

path we resort to an A* search strategy [21]. In this strategy,

the open charts are stored into a list sorted according to its

minimum distance to xs on the already explored part of the

atlas plus a heuristic estimation of its distance to xg . For the

heuristic estimation we use the Euclidean distance, which

is a lower bound of the actual distance on M. Therefore,

the heuristic is admissible and, consequently, the final path

will be the shortest possible over M, up to the resolution
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Fig. 7. The path computed by the proposed algorithm when neglecting and considering singularity avoidance (left and right, respectively). In the plots,
the singularity locus is highlighted in red, the charts explored to connect the two query configurations are shown as blue polygons, and the final path is
shown in green. While the path on the left figure crosses the singularity set twice, the path on the right figure is singularity-free.

used to define the atlas. If the sorted list of open charts is

implemented using a heap, both the removal of the next chart

to be expanded and the insertion of a new chart in the heap

are logarithmic in the number of open charts.

IV. ILLUSTRATIVE EXAMPLES

The performance of the path planner is next illustrated on

computing singularity-free paths in two situations: first on

a fictitious three-dimensional C-space, and then on a 3RPR

manipulator. The former case is chosen for its simplicity, to

illustrate and visualize the method in detail, and the latter

shows the method’s performance on a real application. All

results have been obtained on an implementation in C of

the method, run on a iMac equipped with a 2.93 GHz Intel

Core i7 processor.

A. A three-dimensional example

Consider the fictitious C-space defined implicitly by

Φ(q1, q2, q3) = q1 − σ cos(ω (q22 + q23)) = 0, (15)

with σ = 0.5 and ω = 0.25. It is not difficult to see that

this equation defines a sinusoidal surface in the space of

q = [q1, q2, q3]
T, as shown in Fig. 6 for q ∈ [−1, 1] ×

[−20, 20]× [−20, 20].
Let us assume for this example that the vector of actuated

degrees of freedom is v = [q1, q2]
T, so that y = [q3]. Then,

the singularities corresponding to such choice are given by

the equation

det(Φy) =
∂Φ

∂q3
= 2 σ ω q3 sin(ω (q22 + q23)) = 0, (16)

which holds whenever ω (q22 + q23) = n π with n ∈ Z, or

when q3 = 0. Thus the singularity locus is formed by a

family of concentric circles and a sinusoidal line, which are

shown in red in Fig. 6. Note that, in accordance to Fig. 2, the

points of such locus are those where the tangent plane to the

C-space projects vertically on a line, on the space defined

by v = [q1, q2]
T.

Fig. 7 shows the results obtained by the planner, when

trying to connect the configurations qs = [0, 4.33,−0.38]T

and qg = [0,−4.33,−0.38]T. To compare the results, the

figure shows the computed path, in green, when singularities

are not taken into account (left figure), and when their

avoidance is considered (right figure). In both cases, the

planner returns the shortest path up to the resolution of the

generated atlas. The charts of this atlas are shown in blue in

both figures, their shape becoming more clear when zooming

the electronic version of the paper.

Note that the path on the left figure crosses the singularity

locus twice, while the path on the right figure, although

longer, avoids crossing any singularity. While the latter path

approaches the singularity locus, we note that a certain

clearance is always guaranteed, because the value of |b| is

always kept below a given threshold bmax. In this case,

the value bmax = 12 was used, resulting in the shown

path, but alternative paths with a larger clearance can be

obtained if desired, by simply reducing bmax. In any case,

nevertheless, bmax should always be chosen larger than the

maximum of |b(qs)| and |b(qg)|, so as to guarantee that the

domain D within which the search is restricted (Section III-

A) includes xs and xg . The computation of the singularity-

free path took 0.04 seconds in this example, using the

continuation parameters r = 0.25 and ǫ = 0.25.

B. A 3RPR manipulator

Now, let us consider the planar 3RPR manipulator in

Fig. 8, consisting of a moving platform linked to the ground

by means of three legs, where each leg is a revolute-
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Fig. 8. A 3RPR parallel planar manipulator. Points A1, A2, and A3 are
fixed to the ground.

prismatic-revolute chain. The three prismatic joints are actu-

ated, allowing to control the three degrees of freedom of the

platform, and the remaining joints are passive.

It is well-known that, for a fixed value of the leg lengths l1,

l2, and l3, this manipulator can be assembled into a maximum

of six different configurations, also called assembly modes,

and that certain pairs of such modes allow singularity-

free transitions between them. Such transitions, which are

desirable from the point of view of controllability [22], were

thought to be impossible for a long time [23], but finally

proved to exist by Innocenti and Parenti-Castelli [24]. Al-

though they have been the object of further study [22, 25, 26],

no previous work has shown how to compute them on general

manipulators. In what follows, we show that our method

is able to establish the particular transition found manually

in [24].

To formulate (1), let ai and bi denote the position vectors

of the anchor points Ai and Bi of the ith leg, relative to

the fixed (OXY ) and moving (PX ′Y ′) reference frames

(Fig. 8). The leg lengths can be written in terms of the

platform pose as

l2i = |p+Rbi − ai|
2, i = 1, 2, 3 (17)

where p = [x, y]T is the position vector of P relative to the

fixed frame, and R is the 2×2 rotation matrix of angle θ. To

replicate the same setting assumed in [24], we fix l1 = 14.98
and assume the coordinates ai and bi given in Table I, so

that (1) is the system formed by equations (17), with

q = [x, y, θ, l2, l3]
T. (18)

This system implicitly defines a 2-dimensional C-space,

because d = nq − ne = 5 − 3 = 2. In this case, moreover,

since l2 and l3 are the actuated degrees of freedom, we have

v = [l2, l3]
T, and y = [x, y, θ]T.

Fig. 9 shows the results obtained by the planner, when

trying to connect the same two configurations considered

TABLE I

PARAMETERS OF THE CONSIDERED 3RPR MANIPULATOR.

i ai bi li
1 (0,0) (0,0) 14.98
2 (15.91,0) (17.04,0) [10,40]
3 (0,10) (13.33,16.10) [10,40]

in [24]. Namely,

qs = [14.674,−3.012, 2.132, 15.38, 12]T, (19)

qg = [−5.496,−13.935,−0.047, 15.38, 12]T, (20)

where the θ values are given in radians. As done in the

previous example, this figure allows comparing the obtained

paths when neglecting and considering singularity avoidance

(left and right, respectively), using bmax = 10−5. Such paths

are shown overlaid onto the partial atlas generated (shown in

blue), which in turn is plot onto the actual C-space (shown

discretized as a triangular mesh). The singularity locus is a

one-dimensional set in this case, drawn as a red curve in

the figure. Note that for this manipulator we are only able

to observe three-dimensional projections of the atlas and of

the computed path, since the C-space is defined in a five-

dimensional space Q. Fig. 9 shows the particular projection

obtained onto the coordinates l2, l3, and x. Note further how

the computed path on the left figure crosses the singularity

locus twice, while the path on the right figure maintains a

large clearance with respect to such locus, because of the

relatively low value of bmax employed. The computation of

the singularity-free path took 0.35 seconds in this example,

using r = 0.75 and ǫ = 0.25.

V. CONCLUSIONS

This paper has introduced a novel approach to compute

singularity-free paths on non-redundant closed-chain manip-

ulators. Due to the complexity of the involved C-spaces, and

of the associated singularity loci, previous attempts to solve

this problem have only considered closed-form parametriz-

able C-spaces, like those arising in parallel manipulators. In

contrast, the approach we present here makes no recourse

to such parametrizations, and, thus, it can be applied to any

non-redundant closed-chain manipulator in principle.

The problem has been tackled by defining a system

of equations implicitly characterizing the singularity-free

C-space of the manipulator, which avoids the need of repre-

senting the singularity locus explicitly as an obstacle. The so-

lution manifold of this system, thus, can be freely navigated

without fear of crossing any singularity of the manipulator.

Higher-dimensional continuation techniques are then used to

progressively construct an atlas of the component of this

manifold that contains the start configuration, until the goal

configuration is eventually reached, or path non-existence

is proved, at the resolution of the atlas. When the query

configurations cannot be connected, a complete atlas of the

singularity-free component of the C-space that is reachable

from the initial configuration is obtained. This atlas readily

allows solving other planning queries within such component

if desired.



Fig. 9. The path computed by the proposed method on the test case described in Section IV-B. The figures show the path obtained (in green) when
neglecting and considering singularity avoidance (left and right, respectively), together with the singularity curves (in red), the generated atlas (in blue)
and the underlying C-space (approximated by a triangular mesh). The two plots correspond to a projection on the l2, l3, and x coordinates.

The focus of the paper has been on avoiding forward sin-

gularities, because they are those potentially harmful to the

manipulator. In addition to forward singularities, however,

closed-chain manipulators also exhibit inverse singularities,

which give rise to dexterity losses of the end-effector. It is

worth noting that the avoidance of such singularities might

also be considered in our approach, since inverse singular-

ities can be characterized in a way analogous to forward

singularities, as certain configurations for which another Ja-

cobian matrix is rank-deficient. For the sake of conciseness,

moreover, we omitted the treatment of manipulator collisions

throughout the paper, but they can be incorporated to the

planner using the approach described in [9]. Finally, note

that the resolution completeness of the presented approach

comes at the expense of a computational cost that scales ex-

ponentially with the dimension of the C-space. To deal with

higher-dimensional problems, however, we could adopt the

approach in [10], which trades off resolution completeness by

efficiency and probabilistic completeness. The evaluation of

these two variants of the planner in the context of singularity-

free path planning will be part of our future work.
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