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Abstract

We present a simple local geometric characteriza-
tion of the configuration space of two polyhedra in con-
tact that provides a representation of all infinitesimal
motions that separate them. The considered polyhedra
are general in the sense that they possibly have non-
convez faces and arbitrary number of holes.

The approach presented herein has two main advan-
tages over former ones: (a) it only relies on the clas-
sical basic contacts between polyhedra, i.e. the vertex-
face and edge-edge contacts; and (b) it does not require
the local decomposition of non-convezities into conver
parts.

1 Introduction

This paper presents an algorithm for computing the
infinitesimal motions separating two polyhedra M and
S in contact, seen as a moving body and a static envi-
ronment, respectively. The algorithm is complete, in
the sense that it finds all feasible motions, and con-
ceptually simpler than previous approaches.

Our algorithm mainly operates in the 6-dimensional
configuration space of M, i.e. SO(3) x R®. First,
it considers the C-surfaces associated with the basic
contacts at a configuration Xo. Then, it computes
the arrangement of tangent hyperplanes to these sur-
faces in X, obtaining all 6-dimensional convex cones
it induces in R%. Finally, the output is a classification
of each of these cones into occupied or free, depend-
ing on whether the configurations it contains corre-
spond to intersecting or separated polyhedra. This
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classification is efficiently attained by evaluating sim-
ple boolean expressions that depend on the geometric
configurations of the basic contacts.

The problem at hand arises in the assembly parti-
tioning problem: given a collection of polyhedral parts
in contact, is there some infinitesimal motion that
rigidly removes some subset of the parts from the rest?
A negative answer means that the parts cannot be as-
sembled by a sequence of rigid motions that fit them
together. A positive answer, with the possible direc-
tions of motion, does not provide a plan on how to
disassemble the parts, since the subsets need to be
separated completely —and not only infinitesimally.
However, this constitutes a very useful information for
an assembly sequence planner [20].

The paper is structured as follows. Section 2 sum-
marizes the contributions of this work and its connec-
tions with previous research in the field. Section 3 in-
troduces several basic concepts needed throughout the
paper. Afterwards, section 4 gives a general descrip-
tion of the algorithm, which is followed by explana-
tions on the role of non-effective contacts (section 5),
and details on the main geometric constructions: the
computation of tangent hyperplanes (section 6) and
the construction of the resulting plane arrangement
(section 7). The characterization of free and occupied
cones follows in section 8. Finally, section 9 gives the
conclusions and points that deserve further attention.

2 Related work

Many different approaches to the motion planning
and related problems have been presented over the
years. A common topic of many of them is Configu-
ration Space, the space of position parameters of the
moving body, hereafter denoted by CS.

When using a configuration space description of
the motion planning problem, one of the most widely



Figure 1: Contacts inducing a non-convex set of sep-
arating motions (adapted from [20]).

used techniques in path planning is cell decomposition,
where the set of free configurations is decomposed into
simple non-overlapping regions called cells. In this
context, we can distinguish between topological and
geometrical local characterizations of CS. Roughly
speaking, while topological characterizations try to ef-
ficiently identify those cells neighbouring a given one
[19], geometric characterizations provide a linearized
description of the wall cells [5]. Our technique can
be classified into this latter group, and relates mainly
with the following research.

In {10}, Hirukawa et al. presented a technique
for automatically deriving the possible velocities and
applicable forces between two polyhedra in contact.
Their basic idea is to find separating planes between
two neighborhoods of the contact points and use them
to represent the possible motions of the moving object
in terms of a system of homogeneous linear inequali-
ties, which they efficiently solve. Although the overall
algorithm is complete in the same sense as ours —it
finds all feasible infinitesimal motions separating the
two polyhedra-— it lacks simplicity. Indeed, contrarily
to us, they do not represent contacts by a composi-
tion of the two basic ones (edge-edge and vertex-face)
but, instead, they introduce six types of contacts to
cover all situations. Moreover, if at a contact one of
the parts is non-convex, they must decompose it into
convex ones, a step that is not required in our case.

In [21], Wilson and Matsui studied the assembly
partitioning problem in its generality and found a
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polynomial-time algorithm to solve it. In the same
direction, Guibas et al. [8] provided a more efficient
refinement using a similar approach. Their key obser-
vation was to realise that whenever there is a motion
that infinitesimaly removes a subassembly from the
rest of the parts, then there is also a motion inside the
so-called mazimally covered cells. Hence, to decide
whether there is a solution they just focus the search
in these cells. Due to its generality, their method can
also be applied to our case of an assembly with just
two parts. However, they only consider types of con-
tact inducing a convex set of feasible motions, and are
not able to cope with the three situations depicted
in fig. 1. For these, the set of feasible solutions is
non-convex, but this poses no special difficulty in our
scheme, which also implicitly considers them. For ex-
ample, in the situation of fig. 2, the algorithm in [§]
would only provide part of the feasible separating mo-
tions.

Finally, it is important to mention that once we
know all infinitesimal motions between objects in con-
tact, one can derive the set of applicable forces on
them. This is a useful information when using force
control to assemble the parts. With this aim, in
[12], Mason described the feasible velocities of two ob-
jects in contact with a linear system of equations, and
showed that the orthogonal complement to its solu-
tion space is the set of applicable forces. Also in the
same line, but using Screw Theory, in [13] Ohwovo-
riole and Roth showed this dual relationship between
forces and velocities, and the way they can be com-
puted from each other.

Figure 2: The algorithm in [8] would not provide all
separating motions (adapted from [10]).
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Figure 3: Elements intervening in the C-functions
Ab.',fj (a')7 and Ce.',ej (b)

3 Basic contacts, C-functions,
C-surfaces and predicates

There are three basic contacts between a moving
polyhedron, say M, and a static polyhedral environ-
ment, say .S, in 3D euclidean space [2, 3]; namely:

Type-A A vertex of M is in contact with a face of S.
Type-B A face of M is in contact with a vertex of S.

Type-C An edge of M is intersecting an edge of S.

All other contacts can be expressed as a combina-
tion of these three basic contacts.

What follows is a brief summary of needed results.
The reader can find a detailed explanation in [18].

According to fig. 3, we define the following func-
tion for any possible type-A contact, called type-A
C-function,

Ab.',fj =< fj,bi —ag >,

where < -,- > denotes the standard dot product, and
ay is any vertex on face f;.
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If vertex b; meets the plane supporting face f;, then
Ay, 5; = 0. All configurations that satisfy this equa-
tion define a smooth manifold in the corresponding CS
called type-A C-surface.

We also use the predicate Ay, s;, associated with
the function A, f;, which is true when A, ;; > 0,
and false otherwise.

Likewise, a type-B C-function, By, ., a type-B
C-surface and the corresponding type-B predicate,
By, »; are defined. By, is true when By, 5. > 0,
that is, when vertex b; of S is over face f; of M, and
false otherwise.

According to fig. 3, we define a type-C function as:

Ce;,ej =< e; X e,-,a'e,- - 3+€i >,

where 8%e; and 9~ e¢; are the vertices defining edge e;
such that < 8%e; — 0™ e;, e; > is positive. Thus, if the
line supporting edge e; meets the line supporting edge
ej, then C¢, ., = 0. As above, the configurations that
satisfy this equation define a smooth manifold in CS
called type-C C-surface. We also define the predicate
C..c;, associated with the function C,; .;, which is
true when Ce, ., > 0, and false otherwise.

Surface intersection of two polyhedra occurs if and
only if an edge of one object intersects a face of the
other. Using the results in [18], it can be proved that
edge e of the moving polyhedron is piercing face f of
the static one if, and only if, the boolean expression

(Apte,r ® Ag-c )N

[@.;cor (Broore, ®Bryo-e,) 0
(Bfo,a‘ej ® Ceye:')]

1)

is true, where @ denotes the XOR boolean operator,
and fp is any of the two faces containing e.

Another similar boolean expression allows us to de-
tect the case in which a face of the moving object is
pierced by an edge of the static one.

The cases in which a vertex is effectively touching a
face (not just the supporting plane but the face itself)
or two edges are in contact (not just their supporting
lines) are called type-A and type-B effective contacts,
respectively, and non-effective otherwise. While the
detection of a type-A effective contact boils down to a
point-in-polygon problem [9], the detection of a type-
B effective contact amounts to a simple line segments
intersection problem [16]. In any case, these situations
can be detected, as above, using boolean expressions
combining basic predicates through XOR operators.
As a consequence, only sign changes are relevant to
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Figure 4: The C-surfaces intersecting at Xo (a) are ap-
proximated by their tangent hyperplane at. this point
(occupied cells and cones are shaded). The resulting
arrangement of hyperplanes (b) provides a one-to-one
assignment between resulting cones in ¢ and cells ad-
jacent to Xo in CS.

detect intersections and contacts, and hence edge di-
rections and face normals are not required to follow a
specific criterion.

4 Outlook of the algorithm

We assume that our polyhedra are in contact. In
other words, our configuration in the CS lies on a given
set of C-surfaces —those for which the corresponding
C-functions vanish.

The proposed algorithm acts in four steps.

First, the above boolean expressions are evaluated
for all faces of one polyhedron and all edges of the
other, and vice versa. All involved C-functions should
be evaluated and those that vanish, recorded. It
is important to realize that all possible C-functions
must be evaluated, which entails a O(ms) number of
C-functions, m and s being the number of vertices in
the moving and static polyhedron, respectively [18].

Second, the tangent hyperplanes of the C-surfaces
associated with the vanishing C-functions at the cur-
rent configuration, Xy, are computed. This leads to
an arrangement of hyperplanes in R6 intersecting at
Xo (fig. 4). In other words, we get a set of cones that
fully cover ¢ and whose apex is Xp.

At this point it should be clear that the arrange-
ment of hyperplanes in %8 is equivalent to the arrange-
ment of C-surfaces in SO(3) x R within an infinites-
imal neighborhood of Xp.
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Third, the assignment between cells and cones is
effectively computed. All cells adjacent to Xp can
be characterized by a combination of signs for the
C-functions vanishing at X¢. Nevertheless, not all sign
combinations correspond to one of these adjacent cells
and this can be easily detected by analyzing the ar-
rangement.

Fourth, each cone is classified into free or occupied
according to this circumstance for the corresponding
cell. To this end, the boolean expressions (1) are
reevaluated substituting the result of the vanishing
C-functions by 1 or -1 according to the sign sequence
for the cone. This allows us to classify the set of cones
into free or occupied, the free ones describing the in-
finitesimal motions that separate the polyhedra. This
step only requires evaluating boolean expressions.

5 The irrelevance of non-effective
contacts

There is a factor that introduces an unnecessary
complexity in our arrangement which is better seen
with an example. Let us consider the two cubes Cg
and C)y in fig. 5. The corresponding configuration of
C in CS lies on 24 different C-surfaces: 8 correspond
to vertex-face contacts and the other 16 to edge-edge
contacts. However, as seen in the figure, only six con-
tacts are effective.

If we consider all contacts, effective and non-
effective, the number of cones in the arrangement may
be huge. Fortunately, tangent planes associated with

* edge-edge effective

° edge-edge non-effective
= yvertez-face effective

o yertez-face non-effective

Figure 5: A configuration of two cubes lying on 24
C-surfaces.
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Figure 6: Infinitesimal motions that keep the basic
contacts.

non-effective contacts need not be considered in the
arrangement, because the adjacent cells they separate
are either both free, or both occupied. To prove this,
let us consider two adjacent cones separated by a tan-
gent plane associated with a non-effective contact at
Xo. Let us assume that one of the cones is occu-
pied and the other free. In other words, an infinites-
imal motion in CS from a point in the neighborhood
of X moving from the corresponding free cell to the
occupied one should provoke an intersection between
both polyhedra. Nevertheless, this is impossible since,
by construction, the trajectory only passes through a
non-effective contact configuration.

Since the result of the intersection test to classify a
cone as occupied or free is independent from the signs
associated with non-effective contacts, planes corre-
sponding to them are not strictly required to be con-
sidered in the arrangement.

Now, the following sections expand on each of the
steps of our algorithm.

6 Computing tangent hyperplanes

The normal to a C-surface at X, is the gradient
of the corresponding C-function evaluated at X, i.e.
Vf(Xoe). Then, the equation of the tangent hyper-
plane is

V§(Xo) - (X — Xo) =0.

The use of normals to C-surfaces is in general of
great importance for motion planning, as already rec-
ognized in the early eighties in [3, page 173].

The expressions for the required gradients can be
obtained mainly in two ways, either algebraically, as
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in [3], or geometrically, as in [13].

The former consists in first deriving the explicit ex-
pressions of the C-surfaces for arbitrary vertices, edges
and faces in terms of the position parameters of the
moving object, and then obtaining the required partial
derivatives using a symbolic manipulator. Note that,
at least using Euler angles, the general expression for
a type-C C-surface is almost two pages long [3, page
302].

The geometric approach consists in obtaining the
infinitesimal motions that separate or keep in contact
both polyhedra directly from the geometry of the ba-
sic contacts. For example, in fig. 6a any rotation w
around the axis R followed by a translation on the
plane II generated by v1 and vz keeps the contact be-
tween both polyhedra. The same holds for the edge-
edge contact of fig. 6b. These motions can be easily
recorded in terms of sets of screws, as described in [13]
which, in turn, when expressed in the chosen motion
parameters, provide the required tangent hyperplanes.
Other alternatives that avoid the explicit derivation
of position equations can be found in [7, Appendix B]
and [17].

Tangent hyperplanes have also been obtained from
discrete approximations of configuration spaces [5]
which can be a useful alternative in some applications.

In our case, we have generated the general alge-
braic expressions for normals to C-surfaces, and their
tangent hyperplanes, using Maple V.

7 The hyperplane arrangement

The n tangent hyperplanes to the C-surfaces on
which the current configuration lies define an arrange-
ment that partitions ¢ into several polyhedral cones,
all with coincident apexes in Xg (fig. 4).

As defined, every hyperplane receives the same ori-
entation as its corresponding C-surface, namely the
one induced by the gradient Vf(Xp). Thus, every
cone can be characterized by a sequence of signs, each
sign telling whether the cone is on one side or the other
of the corresponding hyperplane. However, note that
with n hyperplanes not all possible 2" sign sequences
correspond to existing cones. In order to enumerate
the cones generated by the hyperplane arrangement,
we employ the Reverse Search Algorithm due to Avis
and Fukuda [1, page 29)].

To explain the basic idea of this algorithm, let C'
be the set of cones to be listed and suppose we have
some objective function to be maximized over the el-
ements of C. The algorithm proceeds by applying a



local search on C that moves from any cone to a neigh-
boring one in which the objective function is greater,
until a local optimum is found. Now, let us imagine
the simple case in which there is only one optimum,
say the cone c*, and consider the directed graph D in
which each node represents a cone and there is an arc
linking two nodes if the associated cones are consecu-
tively found in the local search. It is easy to see that
D is a tree spanning all cones with ¢* as the only sink,
and therefore we can enumerate all its nodes by means
of, for example, a depth-first search. Then, the major
operation is crossing each edge against its orientation
that correspond to reversing the local search. Since D
is a tree, it is evident that we do not have to store any
information about the visited nodes.

The time complexity of this algorithm is propor-
tional to the number of cones times a polynomial in
the number of hyperplanes, and its space complexity
is polynomial in the number of hyperplanes.

The following considerations must be taken into ac-
count when implementing this enumeration.

e Every cone has a polar symmetric one with re-
spect to Xy, so that polar cones are character-
ized by opposite signs. Now, if we intersect our
arrangement with an external hyperplane ‘H not
through X, the induced arrangement on #H al-
lows to fully characterize all valid sign sequences.
In other words, we can reduce the dimensionality
of our arrangement from 6 in CS to 5 in #.

e According to theorem 6.4.1 in [14], the number
of existing cells in a 5-dimensional arrangement
is O(n®). This result assumes that the arrange-
ment is simple, i.e. all involved hyperplanes are
in general position. If not, the number of cones
is lower. Actually, this is what happens to our
arrangement: it is far from simple because many
hyperplanes intersect at the same subspaces. The
ultimate reason for this to happen is that many
vertices in our polyhedra are coplanar —faces are
not in general triangular.

e In practice, rounding errors in the computation
of normals make the arrangement to behave as
simple in . An example shows the situation:
if the normals to six hyperplanes of our arrange-
ment in CS are coplanar, these six hyperplanes
intersect in a line. Nevertheless, rounding errors
in the computation of their normals give rise to
a cone and its polar symmetric that, actually, do
not exist.

8 Free and occupied cones

Consider a configuration in €S, Xy = Xo + AX,
such that | AX |- 0, i.e. AX defines an infinitesimal
motion. Assume that no C-function vanishes at Xj.
Then, the signs of all C-functions evaluated at Xy
are the same as for Xy, the only difference being the
signs of the C-functions vanishing at Xy, and note
that these signs are the ones that characterize the cone
in which X; lies. Now, deciding if X; is free from
intersections —and hence the corresponding cone—, is
straightforward and perhaps is one of the key points
of our algorithm: it can be done solely based on the
evaluation of boolean expressions.

Then, deciding which cones of the arrangement en-
compass infinitesimal motions that separate or inter-
penetrate the polyhedra can be carried out by evaluat-
ing the predicates (1) at Xg substituting the values of
the vanishing C-surfaces by —1 or 1 according to the
signs for the cone. This should be repeated for each
cone to obtain the desired classification. Remind that
signs for non-effective contacts are irrelevant, leading
to the same result regardless of their value.

Neighboring free or occupied cones can be finally
grouped to obtain a more compact representation.
This can be carried out using, for example, the al-
gebraic technique described in [6].

9 Conclusions

We have presented an algorithm that computes the
separating motions between two general polyhedra in
contact. It relies on the study of the partition in-
duced by the arrangement of hyperplanes tangent to
the C-surfaces associated with effective contacts, at
the given configuration of the moving polyhedron.

The problem of finding separating motions has been
reduced to that of computing all occupied convex
cones of maximum dimension, induced by the hyper-
plane arrangement, by evaluating boolean expressions.

Our local characterization of the configuration
space only relies on the classical basic contacts be-
tween polyhedra, i.e. the vertex-face and edge-edge
contacts. Other contacts, such as vertex-edge or
vertex-vertex contacts, are not explicitly required.
Also, since the used boolean expressions are valid for
general polyhedra, no concavities have to be decom-
posed into convex parts. Thus, our algorithm is a
simpler alternative to the one presented in [10].

The presented algorithm is being implemented as a
utility within the PLASM package [15]. While the re-
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quired geometric routines (the computation of the tan-
gent hyperplanes and the resulting arrangement) is be-
ing implemented in C, PLASM provides the required
solid modeling capabilities. Although the implemen-
tation details are outside the scope of this paper, it is
worth to mention that the presented algorithm is sim-
ple to implement, its only complexity being the great
deal of indexing tables required.

The natural extension of the presented work is the
characterization of not only those motions that sepa-
rate two polyhedra, but also those that preserve their
contact. To this end, all cells in the hyperplane ar-
rangement must be computed, not only those of max-
imum dimension; i.e. those herein referred as cones.
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