
Collocation Methods for Second Order Systems
Siro Moreno-Martı́n, Lluı́s Ros, and Enric Celaya

Institut de Robòtica i Informàtica Industrial (CSIC-UPC), 08028 Barcelona
Emails:{smorenom,ros,ecelaya}@iri.upc.edu

Abstract—Collocation methods for numerical optimal control
commonly assume that the system dynamics is expressed as a
first order ODE of the form ẋ = f(x,u, t), where x is the state
and u the control vector. However, in many systems in robotics,
the dynamics adopts the second order form q̈ = g(q, q̇,u, t),
where q is the configuration. To preserve the first order form,
the usual procedure is to introduce the velocity variable v = q̇
and define the state as x = (q,v), where q and v are treated
as independent in the collocation method. As a consequence, the
resulting trajectories do not fulfill the mandatory relationship
v(t) = q̇(t) for all times, and even violate q̈ = g(q, q̇,u, t) at
the collocation points. This prevents the possibility of reaching a
correct solution for the problem, and makes the trajectories less
compliant with the system dynamics. In this paper we propose a
formulation for the trapezoidal and Hermite-Simpson collocation
methods that is able to deal with second order dynamics and
grants the mutual consistency of the trajectories for q and v
while ensuring q̈ = g(q, q̇,u, t) at the collocation points. As
a result, we obtain trajectories with a much smaller dynamical
error in similar computation times, so the robot will behave closer
to what is predicted by the solution. We illustrate these points
by way of examples, using well-established benchmark problems
from the literature.

I. INTRODUCTION

Direct collocation methods have proven to be powerful tools
for solving optimal control problems in robotics [11, 22, 15].
Initially developed for aeronautics and astrodynamics applica-
tions [10, 8], these methods have become very popular and
of widespread use in the context of trajectory optimization
and model predictive control, thanks to a few key advantages
over indirect approaches based on the Pontryagin conditions of
optimality: in general, they are easier to implement and show
larger regions of convergence, and do not require estimations
of the costate variables, which, very often, are difficult to ob-
tain accurately. Helpful tutorials and monographs like [11, 5],
as well as open-source packages like [11, 2, 3, 24], are also
contributing to the rapid dissemination of these methods.

Direct collocation methods involve the transcription of
the continuous-time optimal control problem into a finite-
dimensional nonlinear programming (NLP) problem [11]. The
transcription is based on partitioning the time history of the
control and state variables into a number of intervals delimited
by knot points. The system dynamics is then discretized in
each interval by imposing the differential constraints at a set of
collocation points, which may coincide, or not, with the chosen
knot points. The cost function is also approximated using the
values taken by the variables at such points, and the NLP
problem is formulated using them. Once the NLP problem is
solved for the discrete problem, a continuous solution is built

with an interpolating polynomial that satisfies the dynamics
equations at the collocation points.

The general formulation of most collocation methods as-
sumes that the system dynamics is governed by a first order
ODE of the form

ẋ = f(x,u, t), (1)

where x and u are the state and control vectors [22]. However,
in robotics, as in mechanics in general, the evolution of the
system is often determined by a second order ODE of the form

q̈ = g(q, q̇,u, t), (2)

where q is the configuration and q̇ is its time derivative.
To apply a general collocation method, therefore, the usual
procedure is to cast (2) into (1) by defining the state vector as
x = (q,v), where v = q̇, so (2) can be written as{

q̇ = v,

v̇ = g(q,v,u, t).

(3a)
(3b)

However, this raises a consistency issue. While the collocation
method imposes (3) at the collocation points, it approximates
q(t) and v(t) by polynomials of the same degree, so the
functional relationship

v(t) = q̇(t), (4)

is not granted over the continuous time horizon. Even more
striking, perhaps, is the fact that, as we demonstrate in this
paper, imposing (3) at the collocation points does not imply
the satisfaction of (2) at these points, which contributes to
increase the dynamic transcription error along the obtained
trajectories [5]. This hinders the possibility to reach a correct
solution since, even if the control function u(t) produces the
expected trajectory for v(t), its integration will rarely coincide
with the function obtained for q(t). In other words, the state
trajectory x(t) will be inconsistent in general.

In this work, we present modified versions of the trape-
zoidal and Hermite-Simpson collocation methods specifically
addressed to solve these issues for second order systems
with the dynamics in (2). The new formulations grant that
the collocation polynomials fulfill the condition in (4) while
satisfying the dynamics in (2) at the collocation points. We
call these methods second order, as opposed to classical ones
that only guarantee (1) at the collocation points, which we call
first order. We also use well-established benchmark problems
to show that our second order methods reduce substantially
the dynamic transcription error (in one order of magnitude or
even more depending on the number of knot points) without

noticeably increasing the computational time needed to solve
the transcribed NLP problems. As a result, the robot will
follow the optimized trajectories more closely, and with less
control effort, when they are tracked with the help of a
feedback controller.

The rest of the paper is structured as follows. Section II
formulates the optimal control to be solved and delimits the
specific transcription problem that we face in this paper. To
prepare the ground for later developments, Section III reviews
the conventional trapezoidal and Hermite-Simpson collocation
methods and pinpoints their limitations on transcribing second
order differential equations. Improved versions of these meth-
ods are then developed in Section IV, and the performance of
all methods is compared and discussed in detail in Section V
with the help of examples. Finally, Section VI concludes the
paper and enumerates a few points for future attention.

II. PROBLEM FORMULATION

Let x = (q,v) be a tuple describing the robot state, where
q ∈ Rnq gives the robot configuration and v = q̇. We
assume the robot dynamics is given by the ODE in (2), or
equivalently by (1), where u ∈ Rnu is the control vector of
motor forces and torques. Then, given an instantaneous cost
function L(x(t),u(t)), a path constraint h(x(t),u(t)) ≤ 0,
and a boundary constraint b(x(0),x(tf), tf) = 0, our optimal
control problem consists in finding state and action trajectories
x(t) and u(t), and a final time tf , that

minimize
x(·),u(·), tf

J(x(t),u(t)) =

∫ tf

0

L(x(t),u(t)) dt (5a)

subject to h(x(t),u(t)) ≤ 0, t ∈ [0, tf], (5b)
ẋ(t) = f(x(t),u(t), t), t ∈ [0, tf], (5c)
b(x(0),x(tf), tf) = 0, (5d)
tf ≥ 0, (5e)

Solving (5) via collocation involves partitioning the time
history of the control and state variables into N intervals de-
limited by N+1 knot points tk, k = 0 . . . N , then transcribing
(5a)-(5c) into appropriate discretizations expressed in terms of
the values xk = x(tk) and uk = u(tk), and finally solving
the constrained optimization problem that results.

The transcriptions of (5a) and (5b) are relatively straightfor-
ward and less relevant in the context of this paper. They can be
done, for example, by approximating the integral in (5a) using
some quadrature rule, and enforcing (5b) for all knot points
tk. The transcription of (5c), in contrast, is substantially more
involved, and will be the main subject of the rest of the paper.
In particular, we will seek to construct appropriate polynomial
approximations of the solutions x(t) of the ODE in (5c) for
each interval [tk, tk+1]. These approximations will be defined
as solutions of systems of equations which, when considered
together for all intervals, will form a proper transcription of
(5c) over the whole time horizon [0, tf].

III. FIRST ORDER METHODS

Two of the most widely used transcriptions of (5c) are
those of the trapezoidal and Hermite-Simpson methods. To
see where these transcriptions incur in dynamical error, and
ease the development of our second order methods, we briefly
explain how they approximate the dynamics equations and
obtain their approximation polynomials for the state. While
the results match those by Betts [5] or Kelly [11], we follow
a derivation process that is closer to the one used in numerical
analysis [9] and in [10], which facilitates the transition to our
new methods in Section IV.

A. Trapezoidal collocation

In trapezoidal collocation, the state trajectories are ap-
proximated by quadratic polynomials. If, for each interval
[tk, tk+1], we define τ = t− tk, we can write the polynomial
approximation for a component x of the state in this interval,
and its temporal derivative, as

x(τ) = a+ bτ + cτ2, (6a)
ẋ(τ) = b+ 2cτ, (6b)

where a, b, and c are real coefficients. To facilitate the
application of collocation constraints, however, we will rewrite
x(τ) using the three parameters

xk = x(0), (7)
ẋk = ẋ(0), (8)

ẋk+1 = ẋ(h), (9)

where h = tk+1−tk. Evaluating the right-hand sides of (7)-(9)
using (6) we obtain xk

ẋk
ẋk+1

 =

1 0 0
0 1 0
0 1 2h

ab
c

 , (10)

so solving for a, b, c and substituting the expressions in (6a),
we have

x(τ) = xk + ẋkτ +
τ2

2h
(ẋk+1 − ẋk). (11)

Equation (11) is known as the interpolation polynomial, as it
allows us to estimate the intermediate states for t ∈ [tk, tk+1],
once the NLP problem has been solved.

Now, following [9, page 30], we determine the three param-
eters of (11) by enforcing the initial value constraint x(0) = xk
and two collocation constraints of the form

ẋ(ti) = f(x(ti),u(ti), ti).

From (11) we see that x(0) = xk by construction. As for the
collocation constraints, the trapezoidal method imposes them
at the knot points tk and tk+1, so it must be

ẋk = fk, (12)
ẋk+1 = fk+1, (13)

where fk is a shorthand of f(xk,uk, tk). The value xk+1,
then, is obtained by evaluating (11) for τ = h. This results in
the constraint

xk+1 = xk +
h

2
(ẋk+1 + ẋk), (14)

which ensures the continuity of the trajectory across intervals
k and k + 1.

Note that equations (12)-(14) already form a transcription of
our ODE in the interval [tk, tk+1] since, if xk, uk, and uk+1

were known, these equations would suffice to determine the
three unknowns ẋk, ẋk+1, and xk+1. However, we can also
substitute (12) and (13) into (14) to obtain the more compact
expression

xk+1 = xk +
h

2
(fk+1 + fk), (15)

which we recognize as the common transcription rule in
trapezoidal collocation [11, 5]. Observe that the continuity
between the polynomials of intervals k and k + 1 is granted
for the first derivative as, by construction, they both satisfy
ẋk+1 = fk+1. However, second and higher order continuity is
not preserved in general.

B. Hermite-Simpson collocation

In Hermite-Simpson collocation, the state trajectories in
each interval are approximated by cubic polynomials:

x(τ) = a+ bτ + cτ2 + dτ3, (16a)

ẋ(τ) = b+ 2cτ + 3dτ2. (16b)

By analogy with the trapezoidal method, we first express the
polynomial coefficients in terms of the parameters

xk = x(0),

ẋk = ẋ(0),

ẋc = ẋ(h/2),

ẋk+1 = ẋ(h),

where the extra parameter ẋc is added since four parameters
are needed to determine a third degree polynomial. Evaluating
these identities using (16), solving for a, . . . , d, and substi-
tuting the expressions in (16a), we obtain the interpolation
polynomial

x(τ) = xk + ẋkτ −
τ2

2h
(3ẋk − 4ẋc + ẋk+1)+

+
τ3

3h2
(2ẋk − 4ẋc + 2ẋk+1).

(17)

In order to determine the four parameters of (17), four
conditions have to be imposed, and the Hermite-Simpson
method makes this by fixing x(0) = xk (which holds by
construction) and imposing the dynamics at the two bounding
knot points and the midpoint between them:

ẋk = fk, (18)
ẋk+1 = fk+1, (19)
ẋc = fc. (20)

In the latter equation, fc = f(xc,uc, tc), where xc = x(h/2),
uc = u(h/2), and tc = tk + h/2. Moreover, the values xc
that are needed in fc can be expressed in terms of the above
four parameters by evaluating (17) for τ = h/2, which yields

xc = xk +
h

24
(5ẋk + 8ẋc − ẋk+1). (21)

Finally, the continuity constraint between intervals k and k+1
is obtained by evaluating (17) for τ = h:

xk+1 = xk +
h

6
(ẋk + 4ẋc + ẋk+1). (22)

Equations (18)-(22) already form a transcription of our ODE
in [tk, tk+1], but a transcription involving less variables can
be obtained by substituting (18)-(20) in (22) and (21), which
gives

xk+1 = xk +
h

6
(fk + 4fc + fk+1), (23a)

xc = xk +
h

24
(5fk + 8fc − fk+1). (23b)

If preferred, we can also remove the dependence on fc
in (23b). This is achieved by isolating fc from (23a) and
substituting the result in (23b), which yields the alternative
transcription

xk+1 = xk +
h

6
(fk + 4fc + fk+1), (24a)

xc =
1

2
(xk + xk+1) +

h

8
(fk − fk+1). (24b)

Both transcriptions in (23) and (24) are called separated
forms of Hermite-Simpson collocation, in the sense they both
keep xc as a decision variable of the problem. They are
equivalent, but the one in (24) allows us to eliminate xc by
substituting (24b) in (24a), which results in a single equation
that is known as the compressed form of Hermite-Simpson
collocation [11, 5]. While the use of a separated form tends
to be better when working with a small number of intervals,
the compressed form is preferable when such a number is
large [11].

Note that, despite the polynomial approximation into each
interval between consecutive knot points is of third degree,
continuity through knot points is only granted for the state
trajectory and its first derivative.

C. Trajectory interpolation
After solving the NLP problem, values of the state and

control variables at all collocation points are available. A
continuous approximation to the optimal trajectory for the state
is then obtained by substituting (12)-(13), or (18)-(20), in the
corresponding interpolating polynomials (11) and (17), for the
trapezoidal and Hermite-Simpson methods, respectively. The
approximation of the control trajectory within each interval is
obtained, in the trapezoidal case, by linear interpolation of the
control values. In the case of Hermite-Simpson, different op-
tions are possible. Some authors use a quadratic interpolation
of the three control values available in each interval [11], while
others prefer a linear interpolation and enforce the midpoint
value to be the mean of the two bounding values [23].

D. Downsides of using first order methods

In a first order dynamic system, imposing (12)-(13) or (18)-
(20) grants that the system dynamics is effectively satisfied at
all collocation points. The same is not true when a second
order system is cast into a first order one via (3). To see why,
note that the constraint q̇(t) = v(t) is only imposed at the
collocation points, but not in between them, so that, even if
the curves q̇(t) and v(t) coincide at the collocation points, their
derivatives may be different at these points. Therefore, q̈(t) 6=
v̇(t) in general and, in particular, also at the collocation points.
As a consequence, even if q̇k = vk and v̇k = g(qk,vk,uk, tk)
are satisfied, this does not imply that q̈k = g(qk,vk,uk, tk),
what means that, with a transcription based on (3), the system
dynamics (2) is not granted, not even at the collocation points.
This problem is solved in the second order collocation methods
introduced in the next section.

A related problem of first order methods is that, when
the trajectories q(t) and v(t) are approximated with their
interpolation polynomials, the difference v(t) − q̇(t) 6= 0
makes the state trajectory inconsistent, so that, if we try to
follow it with a controller, since the configuration and velocity
trajectories are incompatible, both cannot be followed at the
same time. An attempt to solve this may consist in ignoring
the configuration trajectory and replacing it by the integral
of the velocity, but the resulting configuration trajectory may
violate the problem constraints, e.g., the final configuration
may be different from the expected one. Alternatively, one
can try to replace the velocity trajectory by the derivative of
q(t), but in this case, since the dynamic constraint satisfied at
collocation point k is v̇k = g(qk,vk,uk, tk), and vk = q̇k but
v̇k 6= q̈k, the dynamic constraint q̈k = g(qk, q̇k,uk, tk) will
not be satisfied with the computed uk.

IV. SECOND ORDER METHODS

To solve the inconsistency problems just explained, we pro-
pose alternative formulations for the trapezoidal and Hermite-
Simpson collocation methods in which the dynamic constraints
are directly imposed on the second derivative of the configu-
ration variables, instead of on the first derivative of the state
variables. By doing so, the velocity and configuration variables
are not treated as independent from each other, but explicitly
defined as v(t) = q̇(t). In this way, the discrepancy between
q(t) and v(t) is fully removed, and the second order dynamics
is satisfied at each collocation point.

A. The trapezoidal method for 2nd order systems

The essential feature characterizing trapezoidal collocation
is that the dynamics is imposed just at the knot points or,
otherwise said, that each interval bound is a collocation point.
When the dynamics is governed by the second order ODE in
(2), using the same strategy as the trapezoidal method will
consist in imposing (2) at each interval bound. This means
that, for each interval, two constraints have to be imposed
on the second derivative of the polynomial approximating
each component q of the configuration. But, since the second
derivative of a quadratic polynomial is constant, only one

constraint could be imposed on it. This implies that the
interpolating polynomial q(τ) must be of degree three at least.
So, we will have, for a given interval

q(τ) = a+ bτ + cτ2 + dτ3, (25a)

q̇(τ) = b+ 2cτ + 3dτ2, (25b)
q̈(τ) = 2c+ 6dτ. (25c)

To determine the coefficients a, b, c, d, we need to impose
four conditions. While in the trapezoidal method three con-
ditions were used (the value xk at the initial bound and the
derivatives ẋk and ẋk+1 at the two bounds), here we will
impose, in addition to the initial value qk and the second
derivative at the interval bounds q̈k and q̈k+1, the value vk of
the first derivative at the initial bound. Note that, for a cubic
polynomial, no more than two independent conditions can be
fulfilled by its second derivative, so imposing the dynamics at
the midpoint of the interval as in the Hermite-Simpson method
is not possible here. Thus we will use as parameters:

qk = q(0)

vk = q̇(0)

q̈k = q̈(0)

q̈k+1 = q̈(h).

Evaluating these identities using (25) and solving for a, b, c, d,
we can write the interpolation polynomial q(τ) as:

q(τ) = qk + vkτ + q̈k
τ2

2
+
τ3

6h
(q̈k+1 − q̈k). (26)

The evaluation of this polynomial and its derivative q̇(τ) for
τ = h yields

qk+1 = qk + vkh+
h2

6
(q̈k+1 + 2q̈k), (27a)

vk+1 = vk +
h

2
(q̈k+1 + q̈k), (27b)

and imposing the collocation constraints

q̈k = gk, (28a)
q̈k+1 = gk+1, (28b)

where gk = g(qk,vk,uk, tk), we finally obtain the trapezoidal
method for second order systems:

qk+1 = qk + vkh+
h2

6
(gk+1 + 2gk), (29a)

vk+1 = vk +
h

2
(gk+1 + gk). (29b)

Note that, in this case, the trapezoidal rule only applies for the
velocity, but not for the configuration itself, which is given by
equation (29a).

It is worth observing that, as opposed to the trapezoidal
method for first order systems, the continuity between neigh-
boring polynomials at the knot points is of second order in this
case, since the collocation constraints impose the coincidence
of the second derivative of q(t). Second order continuity for
the configuration trajectory implies smooth velocity profiles
and continuous accelerations, which are desirable properties
in many robotics applications [7, 12, 4].

Method Collocation equations N. col. pts. Num. vars. Num. eqs. Num. DOF

Trapezoidal
(1st order) xk+1 = xk +

h

2
(fk+1 + fk)

N + 1 (N + 1)(2nq + nu) 2Nnq 2nq + (N + 1)nu

Trapezoidal
(2nd order)

qk+1 = qk + vkh+
h2

6
(gk+1 + 2gk)

vk+1 = vk +
h

2
(gk+1 + gk)

Hermite-Simpson
(1st order)

xk+1 = xk + h
6
(fk + 4fc + fk+1)

xc = 1
2
(xk + xk+1) +

h
8
(fk − fk+1)

2N + 1 (2N + 1)(2nq + nu) 4Nnq 2nq + (2N + 1)nu

Hermite-Simpson
(2nd order)

qk+1 = qk + vkh+
h2

6
(gk + 2gc)

vk+1 = vk + h
6
(gk + 4gc + gk+1)

qc = qk + h
32

(13vk + 3vk+1) +
h2

192
(11gk − 5gk+1)

vc = 1
2
(vk + vk+1) +

h
8
(gk − gk+1)

TABLE I
COLLOCATION EQUATIONS AND PROBLEM SIZE INDICATORS FOR ALL METHODS IN TERMS OF THE NUMBER N OF INTERVALS

B. The Hermite-Simpson method for 2nd order systems

Our purpose now is to impose the second order dynamics on
the two bounds and the midpoint of each interval, in similarity
with the conventional Hermite-Simpson method. Clearly, if
we want to impose three conditions to the second derivative
of a polynomial q(τ), such a derivative must be quadratic at
least, what implies that the polynomial must have degree four
at least. Thus, we propose to approximate the configuration
trajectory, and its derivatives, by

q(τ) = a+ bτ + cτ2 + dτ3 + eτ4, (30)

q̇(τ) = b+ 2cτ + 3dτ2 + 4eτ3, (31)

q̈(τ) = 2c+ 6dτ + 12eτ2. (32)

Since five parameters are needed to determine the five coef-
ficients of q(τ), we will use, in addition to the three acceler-
ations q̈k, q̈c, q̈k+1, the values of the configuration coordinate
qk and its derivative vk at the initial point:

qk = q(0)

vk = q̇(0)

q̈k = q̈(0)

q̈c = q̈(h/2)

q̈k+1 = q̈(h).

Solving for the coefficients a, . . . , e, we obtain the following
expression for the interpolating polynomial:

q(τ) = qk + vkτ +
τ2

2
q̈k −

τ3

6h
(3q̈k − 4q̈c + q̈k+1)+

+
τ4

6h2
(q̈k − 2q̈c + q̈k+1).

(33)

Evaluating (33) and its derivative for τ = h we get

qk+1 = qk + vkh+
h2

6
(q̈k + 2q̈c), (34a)

vk+1 = vk +
h

6
(q̈k + 4q̈c + q̈k+1), (34b)

and imposing the collocation constraints

q̈k = gk, (35a)
q̈c = gc, (35b)

q̈k+1 = gk+1, (35c)

yields

qk+1 = qk + vkh+
h2

6
(gk + 2gc), (36a)

vk+1 = vk +
h

6
(gk + 4gc + gk+1), (36b)

where we recognize that (36b) is the Simpson quadrature for
the velocity. The terms gc in these equations involve the mid-
point coordinate qc = q(h/2), and the velocity vc = q̇(h/2),
but these can be obtained by evaluating (33) and its derivative
for τ = h/2, and imposing (35), which yields

qc = qk +
h

2
vk +

h2

96
(7gk + 6gc − gk+1), (37a)

vc = vk +
h

24
(5gk + 8gc − gk+1). (37b)

The equations in (36) and (37) together constitute the separated
form of the second order Hermite-Simpson method. Note
however that, since qc and vc are to be used in the evaluation
of gc, we may prefer not to express them in terms of gc itself.
For this we simply isolate gc from (36b) and substitute the
result in (37) to yield:

qc = qk +
h

32
(13vk + 3vk+1) +

h2

192
(11gk − 5gk+1), (38a)

vc =
1

2
(vk + vk+1) +

h

8
(gk − gk+1). (38b)

Written in this way, qc and vc can be replaced in the expression
of gc in (36) to transcribe the problem in compressed form, i.e.,
eliminating the need to treat qc and vc as decision variables.

In this collocation scheme, the continuity across knot points
is also of second order due to the coincidence of the second

q1

q2

l

mp

mc

Actuated

slider

u

Toe
off

Ankle joint

Heel
strike

D D

Step in

 secondstf

Swing

leg

Stance
leg

Fig. 1. Test cases. Left: A cart-pole system that has to perform a swing-up motion. Right: a five-link biped walking under a periodic gait. The three snapshots
illustrate the motion that occurs between the toe off and heel strike events defining a period of the gait.

derivative imposed by the collocation constraints, what gives
rise to smooth, continuous acceleration trajectories just like in
the second order trapezoidal method.

Table I provides a summary of the equations for each collo-
cation scheme, together with the number of collocation points,
variables, equations and degrees of freedom they introduce in
the NLP problem, in terms of N (the number of intervals of
the discretization).

V. TEST CASES

The performance of the first and second order methods is
next evaluated and compared using two trajectory optimization
problems documented in detail in [11], namely, the cart-pole
swing-up and the five-link bipedal walking problems (Fig. 1).
Analytical solutions for these problems are not available, so in
order to compare the performance of the different collocation
methods, we will compute the dynamic transcription error
produced by each of them. To this end, we define the errors
of the dynamics constraints as follows.

The first order dynamic error of the qi coordinate is

ε[1]qi (t) = q̇i(t)− vi(t). (39)

In general, this error is non-null in first order methods, as they
do not enforce vi(t) = q̇i(t) for all t. For the same coordinate,
the second order dynamic error is

ε[2]qi (t) = q̈i(t)− gi(q, q̇,u, t). (40)

We found this error more meaningful than the ε
[1]
qi (t) error

reported in [11], since it reflects the deviation from the actual
system dynamics, which is expected to be minimized with the
optimization process. When all coordinates in q have the same

units, it also makes sense to define corresponding joint errors
for all coordinates. A plausible definition for these errors is

ε[r](t) = |ε[r]q1 (t)|+ . . .+ |ε[r]qnq
(t)|, r = 1, 2. (41)

Finally, to summarize the error functions in just one number,
we compute their integrals over [0, tf]:

E[r]
qi =

∫ tf

0

|ε[r]qi (t)| dt, r = 1, 2, (42)

E[r] =

∫ tf

0

ε[r](t) dt, r = 1, 2. (43)

To perform the comparisons of the four collocation methods,
we have implemented them in Python, using the symbolic
package SymPy [13] to model the systems, and the toolbox
CasADi [2] to solve the constrained optimization problems
that result. CasADi provides the necessary means to formulate
such problems and to compute the gradients and Hessians
of the transcribed equations using automatic differentiation.
These are necessary to solve the optimization problems, a task
for which we rely on the interior-point solver IPOPT [24] in
conjunction with the linear solver MUMPS [1]. The reader can
interactively reproduce our results through the online Jupyter
notebooks [19, 18]. The execution times we report in this paper
have been obtained on a single-thread implementation running
on an iMac computer with an Intel i7, 8-core 10th generation
processor at 3.8 GHz.

In what follows, and in order to simplify the explanations,
we use the shorthands Tz1 and HS1 for the first order trape-
zoidal and Hermite-Simpson methods, and Tz2 and HS2 for
the corresponding second order ones.

N tc E
[1]
q1 E

[1]
q2 E

[2]
q1 E

[2]
q2

(s) (m) (rad) (m/s) (rad/s)

Tz1 50 0.025 0.0066 0.0167 0.504 1.281
Tz2 50 0.025 0 0 0.052 0.170
HS1 25 0.020 0.0014 0.0043 0.113 0.338
HS2 25 0.023 0 0 0.016 0.052

TABLE II
PERFORMANCE VALUES FOR THE CART-POLE SWING-UP PROBLEM.

A. The cart-pole swing-up problem

The cart-pole system comprises a cart that travels along a
horizontal track and a pendulum that hangs freely from the
cart. A motor drives the cart forward and backward along the
track. Starting with the pendulum hanging below the cart at
rest at a given position, the goal is to reach a final configuration
in a given time tf , with the pendulum stabilized at a point of
inverted balance and the cart staying at rest at a distance d
from the initial position. The cost to be minimized is

J(u(t)) =

∫ tf

0

u2(t)dt, (44)

where u is the force applied to the cart, and we adopt the
same dynamic equations and problem parameters as in [11].
An animation of the solution obtained with HS2 and N = 25
can be seen in [21].

Figure 2 compares the errors ε[1]qi (t) and ε[2]qi (t) obtained by
all methods for the variables q1 and q2 shown in Fig. 1. The
number of intervals used in the comparison is N = 50 for the
trapezoidal scheme and N = 25 for Hermite-Simpson. This
yields a fair comparison, as then the number of collocation
points, variables, and degrees of freedom of the optimization
are the same for the four problems (cf. Table I). The plots
corresponding to the first order error ε[1]qi (t) of Fig. 2, in the
first and third row respectively, confirm that Tz1 and HS1
present a non-negligible first order error, while in Tz2 and
HS2 this error is exactly zero as expected.

The plots in the second and fourth rows clearly show a
discontinuity at the knot points of the second order error ε[2]qi (t)
for Tz1 and HS1, reflecting the discontinuity of q̈(t) at these
points. In contrast, for Tz2 and HS2, the error functions are
continuous and vanish at the collocation points, evidencing
that, as anticipated in Section III-D, the system dynamics is
exactly satisfied at all collocation points for the second order
methods, but not for the first order ones.

The figure also shows the dramatic reductions of ε[2]qi (t)
for the second order methods when compared with the cor-
responding first order ones. The numerical evaluation of the
results appears in Table II, which provides the computation
times tc and the integral errors E[2]

qi for this problem. It can
be seen that the errors E[2]

qi are almost one order of magnitude
lower for the second order methods than for their first order
counterparts, despite using a very similar computation time.
It is interesting to see that the errors E[2]

qi achieved by Tz2
are about a half of those of HS1 for the same number of

collocation points. The comparison is relevant since both
methods use polynomials of the same degree to approximate
qi(t).

B. The 5-link bipedal walking problem

We next apply the four methods to optimize a periodic gait
for the planar biped robot shown in Fig. 1. The robot involves
five links pairwise connected with revolute joints, forming two
legs and a torso. All joints are powered by torque motors, with
the exception of the ankle joint, which is passive. Like the
cart pole system, therefore, this robot is underactuated, but it
is substantially more complex. The system is commonly used
as a testbed when studying bipedal walking [25, 26, 14, 17].

For this example we use the dynamic model given by
Kelly [11], which matches the one in [25] with parameters
corresponding to the RABBIT prototype [6]. We assume the
robot is left-right symmetric, so we can search for a periodic
gait using a single step, as opposed to a stride, which involves
two steps. This means that the state and torque trajectories
will be the same on each successive step.

As in [11], we define q as the vector that contains the abso-
lute angles of all links relative to ground, while u encompasses
all motor torques. Also as in [11], and similarly to the cart-
pole problem, our goal is to find state and action trajectories
x(t) and u(t) that define an optimal gait under the cost

J(u(t)) =

∫ tf

0

u(t)Tu(t) dt. (45)

Several constraints are added to ensure a feasible gait. First
of all we require the gait to be periodic, so

x0 = fH(xf), (46)

where x0 and xf are the initial and final states of the robot,
and fH is the heel-strike map. The states x0 and xf are
unknown a priori, but constrained by (46), which is the
particular form of the boundary constraint (5d) in this case. To
construct fH it is assumed that, at heel strike, an impulsive
collision occurs that changes the joint velocities but not their
angles, and that, as soon as the leading foot impacts the
ground, the trailing foot loses contact with it. The collision
conserves angular momentum but introduces an instantaneous
drop of kinetic energy in the system [11]. Next, we require
the robot to march at a certain speed, which is achieved by
setting the final time of the period to tf = 0.7s, and the length
D in Fig. 1 to 0.5m. We also constrain the vertical velocity
component of the trailing foot to be positive at t = 0, and
negative when it touches the ground for t = tf . Finally, we
require the swing foot to be above the ground at all times. An
animation of the solution we obtain can be seen in [20].

Figure 3 shows the second order joint errors ε[2] for the
different collocation methods. As before, the number of in-
tervals used in the trapezoidal cases is twice those used in
Hermite-Simpson so as to have identical number of colloca-
tion points and have balanced comparisons. The results are
qualitatively similar to those of the cart-pole, though here the
error diminution obtained by the second order methods is even

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−0.01

0.00

0.01

0.02

0.03

Dy
na

m
ic

er
ro

r (
m

/s
)

First order dynamic error ε[1]
q1 , Trapezoidal schemes, N = 50

Trapezoidal
2nd order Trapezoidal
knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Dy
na

m
ic

er
ro

r (
ra
d/
s)

First order dynamic error ε[1]
q2 , Trapezoidal schemes, N = 50

Trapezoidal
2nd order Trapezoidal
knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−3

−2

−1

0

1

2

3

Dy
na

m
ic

er
ro

r (
m

/s
2)

Second order dynamic error ε[2]
q1 , Trapezoidal schemes, N = 50

Trapezoidal
2nd order Trapezoidal
knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Dy
na

m
ic

er
ro

r (
ra
d/
s2

)

Second order dynamic error ε[2]
q2 , Trapezoidal schemes, N = 50

Trapezoidal
2nd order Trapezoidal
knot & collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Dy
na

m
ic

er
ro

r (
m

/s
)

First order dynamic error ε[1]
q1 , Hermite Simpson schemes, N = 25

Hermite Simpson
2nd order Hermite Simpson
knot & collocation points
collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−0.02

−0.01

0.00

0.01

0.02

Dy
na

m
ic

er
ro

r (
ra
d/
s)

First order dynamic error ε[1]
q2 , Hermite Simpson schemes, N = 25

Hermite Simpson
2nd order Hermite Simpson
knot & collocation points
collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Dy
na

m
ic

er
ro

r (
m

/s
2)

Second order dynamic error ε[2]
q1 , Hermite Simpson schemes, N = 25

Hermite Simpson
2nd order Hermite Simpson
knot & collocation points
collocation points

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

−2

−1

0

1

2

3

Dy
na

m
ic

er
ro

r (
ra
d/
s2

)

Second order dynamic error ε[2]
q2 , Hermite Simpson schemes, N = 25

Hermite Simpson
2nd order Hermite Simpson
knot & collocation points
collocation points

Fig. 2. Cart-pole problem: Plots of the first and second order dynamic errors ε
[1]
qi (t) and ε

[2]
qi (t) for q1 and q2 (left and right columns, respectively), using

the trapezoidal and Hermite-Simpson methods. To compare the results with those in [11], note that [11] actually provides the plots of −ε
[1]
qi (t) for HS1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time(s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Dy
na

m
ic

er
ro

r (
ra
d/
s2

)
Second order dynamic error ε[2], N = 50

Trapezoidal
2nd order Trapezoidal
knot & collocation points

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time(s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Dy
na

m
ic

er
ro

r (
ra
d/
s2

)

Second order dynamic error ε[2], N = 25
Hermite Simpson
2nd order Hermite Simpson
knot & collocation points
collocation points

Fig. 3. Second order dynamic errors for the biped problem.

N tc E[1] E[2]

(s) (rad) (rad/s)

Tz1 50 0.122 0.0025 0.5328
Tz2 50 0.125 0 0.0081
HS1 25 0.131 8.2×10−5 0.0182
HS2 25 0.127 0 0.0011

TABLE III
PERFORMANCE VALUES FOR THE BIPEDAL WALKING PROBLEM.

more accentuated. As can be seen in Table III, the integral joint
second order error E[2] of HS2 improves in more than one
order of magnitude that of HS1 even using a slightly lower
computation time. In the case of Tz2, its improvement over
Tz1 is still higher, reaching a reduction factor near 66, and
using a computation time only slightly longer.

C. Performance scaling with the number of intervals

To evaluate the evolution of the performance of the different
methods when the number of intervals increases, a series of
experiments have been conducted by progressively rising N
from 20 to 200. Each experiment has been launched 100 times
and the average of the computation times and integral second
order errors E[2] obtained are represented in Figures 4 and 5
(note the logarithmic scale in the plots of E[2]). In both test
problems, the best results for E[2] are those of HS2, which
improves the results of HS1 in about one order of magnitude in
all cases, and the improvement rate tends to increase with the
number of intervals N . The same behavior is observed for Tz2
with respect to Tz1. Interestingly, in all cases the performance
of Tz2 produces, for the same number of intervals N , only
about twice the error of HS1, and this rate is kept rather
constant with N . However, a more balanced comparison would
be to look at experiments with equal number of collocation
points, what means to compare each N value of HS1 with the
2N value of Tz2. A close look at the plots will convince the
reader that the result of this comparison is favorable for Tz2
over HS1 in all cases.

The bottom plots in Figs. 4 and 5 show the growth of
the computation times with the number of intervals N . The
higher complexity of the five link biped problem (the HS
methods involve 14(2N +1) variables and 20N equations) is
reflected into computation times which are about one order
of magnitude longer that those of the cart-pole (involving
5(2N + 1) variables and 8N equations). The comparison of
the costs of the four methods shows that HS2 is the most time-
expensive, but comparable to HS1, while Tz1 and Tz2 are very
close together and less expensive than the Hermite-Simpson
methods for the same N .

In both test cases, the computation times when N is
increased grow faster for the Hermite-Simpson than for the
trapezoidal methods, but the increasing rate is not so different,
and even gets inverted, when comparing the computation times
for the same number of collocation points.

VI. CONCLUSIONS

Trapezoidal and Hermite-Simpson collocation methods are
very popular in the robotics community. However, they are
conceived for dynamic systems of first order, while the dy-
namics of the systems found in robotics are very often second
order. The transcription of a second order system as a first
order one has the unexpected effect that the second order
dynamic equations are not actually imposed at the collocation
points. Directly imposing the second order constraints at the
same such points as the original algorithms requires increasing
the degree of the polynomials approximating the configuration
trajectory, while keeping the same degree for those of the
velocity and control trajectories. This is achieved with the
second order methods we propose, which grant the functional
consistency between the configuration and velocity trajectories
not only at the collocation points, but also along the computed
trajectory. We have also shown, using benchmark problems
from the literature, that the new methods provide trajectories
with a much smaller dynamic error than traditional methods,
despite they require a comparable amount of computation
time. This implies that the obtained trajectories will be more

25 50 75 100 125 150 175 200
Number of intervals

10−4

10−3

10−2

10−1

100

Dy
na

m
ic

er
ro

r (
m

/s
)

Cart-pole second order dynamic error E[2]
q1

Trapezoidal
2nd order Trapezoidal
Hermite Simpson
2nd order Hermite Simpson

25 50 75 100 125 150 175 200
Number of intervals

10−4

10−3

10−2

10−1

100

Dy
na

m
ic

er
ro

r (
ra
d/
s)

Cart-pole second order dynamic error E[2]
q2

Trapezoidal
2nd order Trapezoidal
Hermite Simpson
2nd order Hermite Simpson

25 50 75 100 125 150 175 200
Number of intervals

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(s

)

Cart-pole optimization time
Trapezoidal
2nd order Trapezoidal
Hermite Simpson
2nd order Hermite Simpson

Fig. 4. Cart-pole problem: performance for increasing values of N .

compliant with the system dynamics, so they will use less
control effort when they are tracked in practice with the help
of a controller. Moreover, the trajectories of the new methods
are twice differentiable, so in addition to enjoying smooth
velocities, their accelerations will be continuous, which are
very desirable properties from a control perspective.

Points that deserve further attention are the extension of
these ideas to pseudospectral collocation methods [16], which
allow approximations of arbitrary degree, the inclusion of
constraints to limit the jerk and higher-order derivatives of the
trajectories, and the theoretical analysis of the approximation
error of the second order methods to see how they compare
to first order ones.

25 50 75 100 125 150 175 200
Number of intervals

10−5

10−4

10−3

10−2

10−1

100

Dy
na

m
ic

er
ro

r (
ra
d/
s)

5-link biped second order dynamic error E[2]

Trapezoidal
2nd order Trapezoidal
Hermite Simpson
2nd order Hermite Simpson

25 50 75 100 125 150 175 200
Number of intervals

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

5-link biped optimization time
Trapezoidal
2nd order Trapezoidal
Hermite Simpson
2nd order Hermite Simpson

Fig. 5. Biped problem: performance for increasing values of N .

ACKNOWLEDGEMENTS

This work has been partially supported by Agencia Es-
tatal de Investigación under project Kinodyn+, with reference
PID2020-117509GB-I00 / AEI / 10.13039/50110001103.

REFERENCES

[1] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and
Jacko Koster. A Fully Asynchronous Multifrontal Solver Using
Distributed Dynamic Scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41, 2001.

[2] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B.
Rawlings, and Moritz Diehl. CasADi – A software framework
for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1):1–36, 2019.

[3] Victor M. Becerra. Solving complex optimal control problems
at no cost with PSOPT. In 2010 IEEE International Symposium
on Computer-Aided Control System Design, pages 1391–1396,
2010.

[4] Lars Berscheid and Torsten Kröger. Jerk-limited Real-time
Trajectory Generation with Arbitrary Target States. In Robotics:
Science and Systems, 2021.

[5] John T. Betts. Practical Methods for Optimal Control and
Estimation Using Nonlinear Programming. SIAM, jan 2010.

[6] Christine Chevallereau, Gabriel Abba, Yannick Aoustin, Franck
Plestan, Eric R. Westervelt, Carlos Canudas De Wit, and Jessy
Grizzle. RABBIT: a testbed for advanced control theory. IEEE
Control Systems Magazine, 23(5):57–79, 2003.

[7] Daniela Constantinescu and Elizabeth A. Croft. Smooth and
time-optimal trajectory planning for industrial manipulators
along specified paths. Journal of Robotic Systems, 17(5):233–
249, 2000.

https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
http://www.optimization-online.org/DB_FILE/2018/01/6420.pdf
http://www.optimization-online.org/DB_FILE/2018/01/6420.pdf
https://ieeexplore.ieee.org/document/5612676
https://ieeexplore.ieee.org/document/5612676
http://www.roboticsproceedings.org/rss17/p015.html
http://www.roboticsproceedings.org/rss17/p015.html
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1137/1.9780898718577
https://ieeexplore.ieee.org/document/1234651
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.618.3324&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.618.3324&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.618.3324&rep=rep1&type=pdf

[8] Bruce A. Conway and Stephen W. Paris. Spacecraft Trajec-
tory Optimization Using Direct Transcription and Nonlinear
Programming. In Bruce Conway, editor, Spacecraft Trajectory
Optimization, pages 37–78. Cambridge University Press, 2010.

[9] Ernst Hairer, Gerhard Wanner, and Christian Lubich. Geometric
Numerical Integration. Springer Berlin Heidelberg, 2002.

[10] Charles R. Hargraves and Stephen W. Paris. Direct trajectory
optimization using nonlinear programming and collocation.
Journal of guidance, control, and dynamics, 10(4):338–342,
1987.

[11] Matthew Kelly. An Introduction to Trajectory Optimization:
How to Do Your Own Direct Collocation. SIAM Review, 59(4):
849–904, 2017.

[12] Sonja Macfarlane and Elizabeth A. Croft. Jerk-bounded ma-
nipulator trajectory planning: design for real-time applications.
IEEE Transactions on Robotics and Automation, 19(1):42–52,
2003.

[13] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej
Čertı́k, Sergey B. Kirpichev, Matthew Rocklin, Amit Ku-
mar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina
Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Jo-
hansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel,
Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. SymPy: symbolic
computing in Python. PeerJ Computer Science, 3:e103, January
2017.

[14] Hae-Won Park, Koushil Sreenath, Alireza Ramezani, and
Jessy W. Grizzle. Switching control design for accommodating
large step-down disturbances in bipedal robot walking. In 2012
IEEE International Conference on Robotics and Automation,
pages 45–50. IEEE, 2012.

[15] Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimiza-
tion and stabilization of trajectories for constrained dynamical
systems. In IEEE International Conference on Robotics and
Automation, pages 1366–1373, 2016.

[16] Isaac M. Ross and Mark Karpenko. A review of pseudospectral
optimal control: From theory to flight. Annual Reviews in
Control, 36(2):182–197, 2012.

[17] Cenk Oguz Saglam and Katie Byl. Robust Policies via Meshing
for Metastable Rough Terrain Walking. In Robotics: Science
and Systems, 2014.

[18] Siro Moreno-Martı́n. Online Jupyter notebook
for the bipedal walking problem, 2022. URL
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/
HEAD?labpath=Five-Link-Biped-demo.ipynb.

[19] Siro Moreno-Martı́n. Online Jupyter notebook to reproduce
the results of the cart-pole swing-up problem, 2022. URL
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/
HEAD?labpath=Cartpole-demo.ipynb.

[20] Siro Moreno-Martı́n. Animation of the solution obtained
for the biped walking problem, 2022. URL https://youtu.be/
dtS-WbESiW0.

[21] Siro Moreno-Martı́n. Animation of the solution obtained for the
cart-pole problem, 2022. URL https://youtu.be/M0ivg 8s-I8.

[22] R. Tedrake. Underactuated Robotics: Algorithms for Walking,
Running, Swimming, Flying, and Manipulation (Course Notes
for MIT 6.832). MIT, 2022. Downloaded on 13 January 2022
from http://underactuated.mit.edu/.

[23] Francesco Topputo and Chen Zhang. Survey of Direct Tran-
scription for Low-Thrust Space Trajectory Optimization with
Applications. Abstract and Applied Analysis, 2014:1–15, 2014.

[24] Andreas Wächter and Lorenz T. Biegler. On the implementation
of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical programming, 106(1):
25–57, 2006.

[25] Eric R. Westervelt, Jessy W. Grizzle, and Daniel E. Koditschek.
Hybrid zero dynamics of planar biped walkers. IEEE Transac-
tions on Automatic Control, 48(1):42–56, 2003.

[26] Tao Yang, Eric. R. Westervelt, Andrea Serrani, and James P.
Schmiedeler. A framework for the control of stable aperiodic
walking in underactuated planar bipeds. Autonomous Robots,
27(3):277–290, 2009.

https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1017/cbo9780511778025.004
https://doi.org/10.1007/978-3-662-05018-7
https://doi.org/10.1007/978-3-662-05018-7
https://www.researchgate.net/publication/230872953_Direct_Trajectory_Optimization_Using_Nonlinear_Programming_and_Collocation
https://www.researchgate.net/publication/230872953_Direct_Trajectory_Optimization_Using_Nonlinear_Programming_and_Collocation
https://epubs.siam.org/doi/pdf/10.1137/16M1062569
https://epubs.siam.org/doi/pdf/10.1137/16M1062569
https://ieeexplore.ieee.org/document/1177163
https://ieeexplore.ieee.org/document/1177163
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/ICRA.2012.6225056
https://doi.org/10.1109/ICRA.2012.6225056
https://ieeexplore.ieee.org/abstract/document/7487270
https://ieeexplore.ieee.org/abstract/document/7487270
https://ieeexplore.ieee.org/abstract/document/7487270
https://www.sciencedirect.com/science/article/abs/pii/S1367578812000375
https://www.sciencedirect.com/science/article/abs/pii/S1367578812000375
https://doi.org/10.15607/RSS.2014.X.049
https://doi.org/10.15607/RSS.2014.X.049
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Five-Link-Biped-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://mybinder.org/v2/gh/AunSiro/Second-Order-Schemes/HEAD?labpath=Cartpole-demo.ipynb
https://youtu.be/dtS-WbESiW0
https://youtu.be/dtS-WbESiW0
https://youtu.be/dtS-WbESiW0
https://youtu.be/dtS-WbESiW0
https://youtu.be/M0ivg_8s-I8
https://youtu.be/M0ivg_8s-I8
https://youtu.be/M0ivg_8s-I8
https://underactuated.mit.edu/
https://underactuated.mit.edu/
https://underactuated.mit.edu/
https://doi.org/10.1155/2014/851720
https://doi.org/10.1155/2014/851720
https://doi.org/10.1155/2014/851720
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://ieeexplore.ieee.org/document/1166523
https://doi.org/10.1007/s10514-009-9126-y
https://doi.org/10.1007/s10514-009-9126-y

	Introduction
	Problem formulation
	First order methods
	Trapezoidal collocation
	Hermite-Simpson collocation
	Trajectory interpolation
	Downsides of using first order methods

	Second order methods
	The trapezoidal method for 2nd order systems
	The Hermite-Simpson method for 2nd order systems

	Test Cases
	The cart-pole swing-up problem
	The 5-link bipedal walking problem
	Performance scaling with the number of intervals

	Conclusions

