Usual methods

(for 1st order systems)

Trapezoidal

 $x_{k+1} = x_k + \frac{h}{2}(f_{k+1} + f_k)$ $\bar{x}_{k+1} = x_k + \frac{h}{6}(f_k + 4f_c + f_{k+1})$

Hermite Simpson

Meant for 1st order systems

$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t),$

but in robotics we have

$\ddot{\mathbf{q}} = \mathbf{g}(\mathbf{q}, \dot{\mathbf{q}}, \mathbf{u}, t)$

Usual workaround:

Define $\longrightarrow \mathbf{x} = (\mathbf{q}, \mathbf{v})$ Add $\rightarrow \mathbf{v} = \dot{\mathbf{q}}$

to convert to 1st order form

$\begin{cases} \dot{\mathbf{q}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{g}(\mathbf{q}, \mathbf{v}, \mathbf{u}, t) \end{cases}$

But since

are approximated $\mathbf{q}(t)$ + by polynomials of $\mathbf{v}(t)$ the same degree,

yields

in these polynomials it will be

 $\dot{\mathbf{q}}(t) \neq \mathbf{v}(t)$ (except at coll. points)

 $\ddot{\mathbf{q}}(t) \neq \dot{\mathbf{v}}(t)$ (even at coll. points)

then

New methods

(for 2nd order systems)

dal	$\begin{bmatrix} q_{k+1} = q_k + v_k h + \frac{h^2}{6}(g_{k+1} + 2g_k) \\ v_{k+1} = v_k + \frac{h}{2}(g_{k+1} + g_k) \end{bmatrix}$
e on	$q_{k+1} = q_k + v_k h + \frac{h^2}{6}(g_k + 2g_c)$ $v_{k+1} = v_k + \frac{h}{6}(g_k + 4g_c + g_{k+1})$

Advantages

Guarantee $\dot{\mathbf{q}}(t) = \mathbf{v}(t) \quad \forall t$

Impose actual 2nd order dynamics

$\ddot{\mathbf{q}} = \mathbf{g}(\mathbf{q}, \dot{\mathbf{q}}, \mathbf{u}, t)$

at the collocation points

Reduce dynamic error in more than one order of magnitude

Do not increase the computation time significantly

Trajectories will be tracked with less control effort

Yield twice differentiable trajectories