
Collocation methods for second order systems
Lluís Ros, May 2022

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)

https://www.iri.upc.edu/people/ros/

This MATLAB livescript contains the symbolic derivations of the trapezoidal
and Hermite-Simpson methods explained in the paper "Collocation methods
for second order systems" by Siro Moreno-Martín, Lluís Ros, and Enric
Celaya, presented in Robotics: Science and Systems XVIII (New York, 2022).

You can download the paper and the livescript from:

http://www.roboticsproceedings.org/rss18/p038.html

https://www.iri.upc.edu/people/ros/Separates/rss2022_derivations.mlx

See also the RSS’22 presentation and poster:

https://youtu.be/yxnbhNxOLLk?t=3039

https://bit.ly/3Pmqc5k

Warning: unfortunately, the published paper from the previous link has a
typo that must be attributed to ourselves. The first h in Eq. (24b) should be
a 1. The same happens in the copy of this equation in Table I.

In the derivations that follow, we include both the classical and modified
versions of the methods (for first and second order systems respectively). We
closely follow the paper notation and explanations except for the subindices k
and k + 1, which are replaced by 0 and 1 in this livescript. This is because
Matlab cannot work symbolically with a subindex like k + 1 in the 2022a
release. Equation numbers cannot be managed either, but we have found a
workaround to label the main equations as they appear in the paper.

We recall that, as in the paper, the terminology "first order methods" refers to
collocation methods that guarantee

ẋ = f(x, u, t)

at the collocation points, whereas "second order methods" are those that
guarantee

q̈ = g(q, q̇, u, t)

at such points.

1

https://www.iri.upc.edu/people/ros/
http://www.roboticsproceedings.org/rss18/p038.html
https://www.iri.upc.edu/people/ros/Separates/rss2022_derivations.mlx
https://youtu.be/yxnbhNxOLLk?t=3039
https://bit.ly/3Pmqc5k

Table of Contents
First order methods . 2

The trapezoidal method . 2
The Hermite-Simpson method . 4

Second order methods . 7
The trapezoidal method for 2nd order systems 8
The Hermite-Simpson method for 2nd order systems 10

Print execution time . 14
References . 15

% Clear all vars, close all figs, and clear command window
clearvars
close all
clc

% Start stopwatch
tic

% Symbolic variables
syms h % Time step
syms x_0 x_1 x_c % Initial, final, and midpoint states
syms x_dot_0 % Initial state derivative
syms x_dot_c % Midpoint state derivative
syms x_dot_1 % Final state derivative
syms tau % Modified time parameter tau
syms f_0 f_1 f_c % 1st order dynamics at x0, x1, and xc
syms x(tau) % Polynomial for x(tau)
syms q(tau) q_dot(tau) % Polynomials for q(tau) and q_dot(tau)
syms q_0 q_1 q_c % Configurations at t_0, t_1, t_c
syms v_0 v_1 v_c % Velocities at t_0, t_1, t_c
syms q_ddot_0 q_ddot_1 % Accelerations at t_0 and t_1
syms g_0 g_1 g_c % 2nd order dynamics at t_0, t_1, t_c
syms q_ddot_c % Midpoint acceleration ddq/ddt

First order methods
The trapezoidal method

In trapezoidal collocation, the state trajectories are approximated by
quadratic polynomials. If, for each interval [t0, t1], we define τ = t− t0, we can
write the polynomial approximation for a component x of the state in this
interval, and its temporal derivative, as

2

x(τ) = a+ bτ + cτ2,
ẋ(τ) = b+ 2cτ,

where a, b, and c are real coefficients. To facilitate the application of
collocation constraints, however, we will rewrite x(τ) using the three
parameters

x0 = x(0),
ẋ0 = ẋ(0),
ẋ1 = ẋ(h),

where h = t1 − t0. Evaluating the right-hand sides of the latter equations
using the previous expressions of x(τ) and ẋ(τ) we obtain x0
ẋ0
ẋ1

 =

 1 0 0
0 1 0
0 1 2h

 a
b
c

,
so solving for a, b, c we have

N = [x_0; x_dot_0; x_dot_1];
A = [1 0 0; 0 1 0; 0 1 2*h];
soln = A\N;
a = soln(1); b = soln(2); c = soln(3);
display(a); display(b); display(c);

a = x0

b = ẋ0

c = − ẋ0 − ẋ1

2h

Substituting these expressions in x(τ) = a+ bτ + cτ2 we have

x(tau) = symfun(a + b * tau + c * tau^2,tau)

x(tau) = x0 + τ ẋ0 −
τ2 (ẋ0 − ẋ1)

2h

This expression is known as the interpolation polynomial, as it allows us to
estimate the intermediate states for t ∈ [t0, t1], once the NLP problem has
been solved.

3

Following (Hairer 2002), we determine the three parameters of this polynomial
by enforcing the initial value constraint x(0) = x0 and two collocation
constraints of the form

ẋ(ti) = f(x(ti), u(ti), ti).

From the expression of x(τ) we see that x(0) = x0 by construction. As for the
collocation constraints, the trapezoidal method imposes them at the knot
points t0 and t1 so it must be

ẋ0 = f0,
ẋ1 = f1,

where fk is a shorthand of f(xk, uk, tk). The value x1, then, is obtained by
evaluating x(τ) for τ = h. This results in the constraint

Eq_14 = (x_1 == simplify(x(h)));
disp(Eq_14); disp('(Eq. 14)');

x1 = x0 + h ẋ0

2 + h ẋ1

2

(Eq. 14)

which ensures the continuity of the trajectory across the consecutive intervals
[t0, t1] and [t1, t2].

The last three equations already form a transcription of our ODE in the
interval [t0, t1] since, if x0, u0, and u1 were known, they would suffice to
determine their unknowns ẋ0, ẋ1, and x1. However, to avoid treating ẋ0 and
ẋ1 as decision variables, we can apply the substitutions ẋ0 = f0 and ẋ1 = f1 to
the last equation, to obtain

Eq_15 = subs(Eq_14,[x_dot_0 x_dot_1],[f_0 f_1]);
disp(Eq_15); disp('(Eq. 15)');

x1 = x0 + f0 h

2 + f1 h

2

(Eq. 15)

Eq. (15) is the common transcription rule from trapezoidal collocation (Kelly
2017, Betts 2010).

4

The Hermite-Simpson method

In Hermite-Simpson collocation, the state trajectories x(τ) in each interval are
approximated by cubic polynomials:

x(τ) = a+ bτ + cτ2 + dτ3

ẋ(τ) = b+ 2cτ + 3dτ2

By analogy with the trapezoidal method, we first express the coefficients
a, b, c, and d in terms of the parameters

x0 = x(0)
ẋ0 = ẋ(0)
ẋc = ẋ(h/2)
ẋ1 = ẋ(h)

where the extra parameter ẋc is added since four parameters are needed to
determine a third degree polynomial. Evaluating the right hand sides of these
identities using the above expressions for x(τ) and ẋ(τ), we obtain the system
of equations
x0
ẋ0
ẋc

ẋ1

 =

1 0 0 0
0 1 0 0
0 1 h 3h2

4
0 1 2h 3h2

a
b
c
d

.
Solving for a, . . . , d we get:

N = [x_0; x_dot_0; x_dot_c; x_dot_1];
A = [1 0 0 0; 0 1 0 0; 0 1 h 3*h^2/4; 0 1 2*h 3*h^2];
soln = A\N;

a = soln(1); b = soln(2); c = soln(3); d = soln(4);
display(a); display(b); display(c); display(d);

a = x0

b = ẋ0

c = −3 ẋ0 + ẋ1 − 4 ẋc

2h

d =
2 (ẋ0 + ẋ1 − 2 ẋc)

3h2

5

Thus, in terms of x0, , ẋ0, ẋc, ẋ1, the interpolation polynomial x(τ) can be
written as:

x(tau) = symfun(a + b*tau + c*tau^2 + d*tau^3,tau)

x(tau) = x0 + τ ẋ0 + 2 τ3 (ẋ0 + ẋ1 − 2 ẋc)
3h2 − τ2 (3 ẋ0 + ẋ1 − 4 ẋc)

2h

In order to determine the four parameters of this polynomial, four conditions
have to be imposed, and the Hermite-Simpson method makes this by fixing
x(0) = x0 (which holds by construction) and imposing the dynamics at the
two bounding knot points and the midpoint between them:

ẋ0 = f0,
ẋ1 = f1,
ẋc = fc.

In the latter equation, fc = f(xc, uc, tc), where xc = x(h/2), uc = u(h/2), and
tc = t0 + h/2. Moreover, the values xc that are needed in fc can be expressed
in terms of the above four parameters by evaluating x(τ) for τ = h/2, which
yields

Eq_21 = (x_c == simplify(x(h/2)));
disp(Eq_21); disp('(Eq. 21)');

xc = x0 + 5h ẋ0

24 − h ẋ1

24 + h ẋc

3

(Eq. 21)

Finally, the continuity constraint between consecutive intervals [t0, t1] and
[t1, t2] is obtained by evaluating the interpolation polynomial for τ = h:

Eq_22 = (x_1 == simplify(x(h)));
disp(Eq_22); disp('(Eq. 22)');

x1 = x0 + h ẋ0

6 + h ẋ1

6 + 2h ẋc

3

(Eq. 22)

The last five equations already form a transcription of our ODE in [t0, t1], but
a transcription involving less variables can be obtained by applying the
substitutions ẋ0 = f0, ẋ1 = f1, and ẋc = fc to the last two equations. This
gives

6

Eq_23a = subs(Eq_22,[x_dot_0,x_dot_1,x_dot_c],[f_0,f_1,f_c]);
Eq_23b = subs(Eq_21,[x_dot_0,x_dot_1,x_dot_c],[f_0,f_1,f_c]);

disp(Eq_23a); disp('(Eq. 23a)'); disp(' '); ...
disp(Eq_23b); disp('(Eq. 23b)');

x1 = x0 + f0 h

6 + f1 h

6 + 2 fc h

3

(Eq. 23a)

xc = x0 + 5 f0 h

24 − f1 h

24 + fc h

3

(Eq. 23b)

If preferred, we can also remove the dependence on fc in Eq. 23b. This is
achieved by isolating fc from Eq. (23a) and substituting the result in Eq.
(23b), which yields the alternative transcription

Eq_24b = subs(Eq_23b,f_c,solve(Eq_23a,f_c));
disp(Eq_23a); disp('(Eq. 24a)'); ...
disp(' '); disp(Eq_24b); disp('(Eq. 24b)');

x1 = x0 + f0 h

6 + f1 h

6 + 2 fc h

3

(Eq. 24a)

xc = x0

2 + x1

2 + f0 h

8 − f1 h

8

(Eq. 24b)

Both transcriptions in Eqs. (23) and (24) are called separated forms of
Hermite-Simpson collocation, in the sense they both keep xc as a decision
variable of the problem. They are equivalent, but the one in (24) allows us to
eliminate xc by substituting Eq. 24b in the expression of fc in 24a, which
results in a single equation that is known as the compressed form of
Hermite-Simpson collocation (Kelly 2017, Betts 2010). While the use of a
separated form tends to be better when working with a small number of
intervals, the compressed form is preferable when such a number is large
(Kelly 2017).

7

Second order methods
The trapezoidal method for 2nd order systems

The essential feature characterizing trapezoidal collocation is that the
dynamics is imposed just at the knot points or, otherwise said, that each
interval bound is a collocation point. When the dynamics is governed by a
second order ODE

q̈ = g(q, q̇, u, t),

using the same strategy as the trapezoidal method will consist in imposing
q̈ = g(q, q̇, u, t), at each interval bound. This means that, for each interval, two
constraints have to be imposed on the second derivative of the polynomial
approximating each component q of the configuration. But, since the second
derivative of a quadratic polynomial is constant, only one constraint could be
imposed on it. This implies that the interpolating polynomial q(τ) must be of
degree three at least. So we will have, for a given interval,

q(τ) = a+ bτ + cτ2 + dτ3,
q̇(τ) = b+ 2cτ + 3dτ2,
q̈(τ) = 2c+ 6dτ

To determine the coefficients a, b, c, d, we need to impose four conditions.
While in the trapezoidal method three conditions were used (the value x0 at
the initial bound and the derivatives ẋ0 and ẋ1 at the two bounds), here we
will impose, in addition to the initial value q0 and the second derivative at the
interval bounds q̈0 and q̈1, the value v0 of the first derivative at the initial
bound. Note that, for a cubic polynomial, no more than two independent
conditions can be fulfilled by its second derivative, so imposing the dynamics
at the midpoint of the interval as in the Hermite-Simpson method is not
possible here. Thus we will use the parameters

q0 = q(0)
v0 = q̇(0)
q̈0 = q̈(0)
q̈1 = q̈(h).

Evaluating these identities using the previous expressions for q(τ) and its
derivatives, we obtain the system

8

q0
v0
q̈0
q̈1

 =

1 0 0 0
0 1 0 0
0 0 2 0
0 0 2 6h

a
b
c
d

so solving for a, b, c, d, e, we have

N = [q_0; v_0; q_ddot_0; q_ddot_1];
A = [1 0 0 0; 0 1 0 0; 0 0 2 0; 0 0 2 6*h];
soln = A\N;

a = soln(1); b = soln(2); c = soln(3); d = soln(4);
display(a); display(b); display(c); display(d);

a = q0

b = v0

c =
q̈0

2

d = − q̈0 − q̈1

6h

Thus, we can write the interpolation polynomial q(τ) and its derivative as:

q(tau) = symfun(a + b*tau + c*tau^2 + d*tau^3,tau)

q(tau) = q0 + τ v0 + q̈0 τ
2

2 − τ3 (q̈0 − q̈1)
6h

q_dot(tau) = symfun(b + 2*c*tau + 3*d*tau^2,tau)

q_dot(tau) = v0 + q̈0 τ −
τ2 (q̈0 − q̈1)

2h

The evaluation of this polynomial and its derivative q̇(τ) for τ = h yields

Eq_27a = (q_1 == simplify(q(h)));
Eq_27b = (v_1 == simplify(q_dot(h)));
disp(Eq_27a); disp('(Eq. 27a)'); disp(' '); ...
disp(Eq_27b); disp('(Eq. 27b)');

9

q1 = q0 + h v0 + h2 q̈0

3 + h2 q̈1

6

(Eq. 27a)

v1 = v0 + h q̈0

2 + h q̈1

2

(Eq. 27b)

Imposing the collocation constraints

q̈0 = g0,
q̈1 = g1,

where gk = g(qk, vk, uk, tk), we finally obtain the trapezoidal method for
second order systems:

Eq_29a = subs(Eq_27a,[q_ddot_0, q_ddot_1],[g_0, g_1]);
Eq_29b = subs(Eq_27b,[q_ddot_0, q_ddot_1],[g_0, g_1]);

disp(Eq_29a); disp('(Eq. 29a)'); disp(' '); ...
disp(Eq_29b); disp('(Eq. 29b)');

q1 = q0 + h v0 + g0 h
2

3 + g1 h
2

6

(Eq. 29a)

v1 = v0 + g0 h

2 + g1 h

2

(Eq. 29b)

Note that, in this case, the trapezoidal rule only applies for the velocity, but
not for the configuration itself, which is given by Eq. (29a).

It is worth observing that, as opposed to the trapezoidal method for first order
systems, the continuity between neighboring polynomials at the knot points is
of second order in this case, since the collocation constraints impose the
coincidence of the second derivative of q(t). Second order continuity for the
configuration trajectory implies smooth velocity profiles and continuous
accelerations, which are desirable properties in many robotics applications.

10

The Hermite-Simpson method for 2nd order systems

Our purpose now is to impose the second order dynamics on the two bounds
and the midpoint of each interval, in similarity with the conventional
Hermite-Simpson method. Clearly, if we want to impose three conditions to
the second derivative of a polynomial q(τ), such a derivative must be
quadratic at least, what implies that the polynomial must have degree four at
least. Thus, we propose to approximate the configuration trajectory, and its
derivatives, by

q(τ) = a+ bτ + cτ2 + dτ3 + eτ4,
q̇(τ) = b+ 2cτ + 3dτ2 + 4eτ3,
q̇(τ) = 2c+ 6dτ + 12eτ2.

Since five parameters are needed to determine the five coefficients of q(τ), we
will use, in addition to the three accelerations q̈0, q̈c, q̈1, the values of the
configuration coordinate q0 and its derivative v0 at the initial point:

q0 = q(0)
v0 = q̇(0)
q̈0 = q̈(0)
q̈c = q̈(h/2)
q̈1 = q̈(h).

Evaluating the right hand sides we obtain the following system of equations

q0
v0
q̈0
q̈c

q̈1

 =

1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 2 3h 3h2

0 0 2 6h 12h2

a
b
c
d
e

Solving for a, . . . , e we get

N = [q_0; v_0; q_ddot_0; q_ddot_c; q_ddot_1];
A = [1 0 0 0 0;

0 1 0 0 0;
0 0 2 0 0;
0 0 2 3*h 3*h^2; 0 0 2 6*h 12*h^2];

soln = A\N;
a = soln(1); b = soln(2); c = soln(3); d = soln(4); e = soln(5);

11

display(a); display(b); display(c); display(d); display(e);

a = q0

b = v0

c =
q̈0

2

d = −3 q̈0 + q̈1 − 4 q̈c

6h

e =
q̈0 + q̈1 − 2 q̈c

6h2

Thus, we can write the interpolation polynomial q(τ) and its derivative as:

q(tau) = symfun(a + b*tau + c*tau^2 + d*tau^3 + e*tau^4,tau)

q(tau) = q0 + τ v0 + q̈0 τ
2

2 + τ4 (q̈0 + q̈1 − 2 q̈c)
6h2 − τ3 (3 q̈0 + q̈1 − 4 q̈c)

6h

q_dot(tau) = symfun(b + 2*c*tau + 3*d*tau^2 + 4*e*tau^3,tau)

q_dot(tau) = v0 + q̈0 τ + 2 τ3 (q̈0 + q̈1 − 2 q̈c)
3h2 − τ2 (3 q̈0 + q̈1 − 4 q̈c)

2h

Evaluating q(τ) and its derivative for τ = h we get

Eq_34a = (q_1 == simplify(q(h)));
Eq_34b = (v_1 == simplify(q_dot(h)));
disp(Eq_34a); disp('(Eq. 34a)'); disp(' '); ...
disp(Eq_34b); disp('(Eq. 34b)');

q1 = q0 + h v0 + h2 q̈0

6 + h2 q̈c

3

(Eq. 34a)

v1 = v0 + h q̈0

6 + h q̈1

6 + 2h q̈c

3

(Eq. 34b)

12

and imposing the collocation constraints

q̈0 = g0,
q̈c = gc,
q̈1 = g1,

yields

Eq_36a=subs(Eq_34a,[q_ddot_0,q_ddot_1,q_ddot_c],[g_0,g_1,g_c]);
Eq_36b=subs(Eq_34b,[q_ddot_0,q_ddot_1,q_ddot_c],[g_0,g_1,g_c]);

disp(Eq_36a); disp('(Eq. 36a)'); disp(' '); ...
disp(Eq_36b); disp('(Eq. 36b)');

q1 = q0 + h v0 + g0 h
2

6 + gc h
2

3

(Eq. 36a)

v1 = v0 + g0 h

6 + g1 h

6 + 2 gc h

3

(Eq. 36b)

where we recognize that Eq. (36b) is the Simpson quadrature for the velocity.
The terms gc in these equations involve the midpoint coordinate qc = q(h/2),
and the velocity vc = q̇(h/2), but these can be obtained by evaluating the
interpolation polynomial and its derivative for τ = h/2, and imposing the
collocation constraints, which yields

q_hhalf = simplify(q(h/2)); v_hhalf = simplify(q_dot(h/2));
Eq_37a = ...

(q_c == subs(q_hhalf,[q_ddot_0 q_ddot_1 q_ddot_c],...
[g_0 g_1 g_c]));

Eq_37b = ...
(v_c == subs(v_hhalf,[q_ddot_0 q_ddot_1 q_ddot_c],...
[g_0 g_1 g_c]));

disp(Eq_37a); disp('(Eq. 37a)'); disp(' '); ...
disp(Eq_37b); disp('(Eq. 37b)');

13

qc = q0 + h v0

2 + 7 g0 h
2

96 − g1 h
2

96 + gc h
2

16

(Eq. 37a)

vc = v0 + 5 g0 h

24 − g1 h

24 + gc h

3

(Eq. 37b)

Eqs. (36a) to (37b) together constitute the separated form of the second
order Hermite-Simpson method. Note however that, since qc and vc are to be
used in the evaluation of gc, we may prefer not to express them in terms of gc

itself. For this we simply isolate gc from Eq. (36b) and substitute the result in
Eqs. (37a) and (37b) to yield:

g_csolved = solve(Eq_36b,g_c);
Eq_38a = (q_c == simplify(subs(rhs(Eq_37a),g_c,g_csolved)));
Eq_38b = (v_c == simplify(subs(rhs(Eq_37b),g_c,g_csolved)));

disp(Eq_38a); disp('(Eq. 38a)'); disp(' '); ...
disp(Eq_38b); disp('(Eq. 38b)');

qc = q0 + 13h v0

32 + 3h v1

32 + 11 g0 h
2

192 − 5 g1 h
2

192

(Eq. 38a)

vc = v0

2 + v1

2 + g0 h

8 − g1 h

8

(Eq. 38b)

Written in this way, qc and vc can be replaced in the expression of gc in Eqs.
(36a) and (36b) to transcribe the problem in compressed form, i.e.,
eliminating the need to treat qc and vc as decision variables of the NLP
problem.

In this collocation scheme, the continuity across knot points is also of second
order due to the coincidence of the second derivative imposed by the
collocation constraints, what gives rise to smooth, continuous acceleration
trajectories just like in the second order trapezoidal method.

14

Print execution time
toc;

Elapsed time is 3.199847 seconds.

References
Hairer, Ernst, Christian Lubich, and Gerhard Wanner. Geometric Numerical
integration: structure-preserving algorithms for ordinary differential equations.
Springer, 2006.

Hargraves, Charles R., and Stephen W. Paris. "Direct trajectory optimization
using nonlinear programming and collocation." Journal of guidance, control,
and dynamics 10.4 (1987): 338-342.

Kelly, Matthew. "An introduction to trajectory optimization: How to do your
own direct collocation." SIAM Review 59.4 (2017): 849-904.

Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming. SIAM.

15

	First order methods
	The trapezoidal method
	The Hermite-Simpson method

	Second order methods
	The trapezoidal method for 2nd order systems
	The Hermite-Simpson method for 2nd order systems

	Print execution time
	References

