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Planning Singularity-free Paths

on Closed-Chain Manipulators
Oriol Bohigas, Michael E. Henderson, Lluı́s Ros, Montserrat Manubens, and Josep M. Porta

Abstract—This paper provides an algorithm for computing
singularity-free paths on closed-chain manipulators. Given two
non-singular configurations of the manipulator, the method
attempts to connect them through a path that maintains a
minimum clearance with respect to the singularity locus at all
points, which guarantees the controllability of the manipulator
everywhere along the path. The method can be applied to
non-redundant manipulators of general architecture, and it is
resolution-complete. It always returns a path whenever one
exists at a given resolution, or determines path non-existence
otherwise. The strategy relies on defining a smooth manifold that
maintains a one-to-one correspondence with the singularity-free
C-space of the manipulator, and on using a higher-dimensional
continuation technique to explore this manifold systematically
from one configuration, until the second configuration is found.
If desired, the method can also be used to compute an exhaustive
atlas of the whole singularity-free component reachable from a
given configuration, which is useful to rapidly resolve subsequent
planning queries within such component, or to visualize the
singularity-free workspace of any of the manipulator coordinates.
Examples are included that demonstrate the performance of the
method on illustrative situations.

Index Terms—Closed-chain motion planning, singularity avoid-
ance, singularity-free path or workspace, higher-dimensional
continuation, assembly-mode changing.

I. INTRODUCTION

AFundamental task in Robotics is the computation of

feasible C-space paths between two configurations of a

manipulator [1]. The subject has received substantial attention,

and efficient algorithms exist that solve hard instances of

the problem on open chains, even in cluttered environments

and highly-dimensional situations [2, 3]. However, when the

manipulator involves closed kinematic chains, —as it oc-

curs in parallel robots, multi-arm manipulation systems, or

reconfigurable mechanisms, for instance—, the problem is

much harder. A number of kinematic loop-closure constraints

relate configuration parameters by non-linear equations, giving

rise to C-spaces of a complex topological structure. Such

spaces may have several connected components and lower-

dimensional singularity sets, and may not even admit a global
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parameterization [4], which complicates the extension of open-

chain path planning methods to also deal with the closed-chain

case.

A few strategies have been given to plan feasible C-space

paths on general closed-chain manipulators [5]–[10], but none

of them accounts for the so-called singular configurations,

where the kinetostatic performance of the manipulator dra-

matically degrades. Many types of singularities can be dis-

tinguished [11], but those of primary interest in this paper

are the direct or forward singularities, which compromise the

velocity control of a manipulator, leading to malfunction or a

breakage of the structure. Unless the use of involved control

strategies would be affordable [12, 13], any path connecting

two configurations should avoid crossing such critical config-

urations. In many contexts, moreover, a minimum clearance

with respect to the singularity locus should be maintained, to

avoid the negative effects of the increased shakiness in the

vicinity of such locus. While it is true that many commercial

manipulators are designed not to include singularities in their

workspace, this is not always possible, and the availability of

a singularity-free path planner would broaden the range of

possibilities of the robot designer.

Several works confront the problem of on-line singularity

avoidance [14], but only a few tackle the more general prob-

lem of planning paths between distant configurations. They

include an algorithm based on deforming a parametrized path

between the query configurations [15], a variational approach

that reduces the problem to a boundary value problem [16],

and a numerical technique based on treating the singularity

locus as a collection of obstacles [17]. All of these methods

work well in favorable situations, but [15] and [16] mention

limitations relative to proving path existence in some cases,

and the one in [17] is computationally intensive, as it requires

constructing polytope approximations of the entire singularity

set before searching for a feasible path. In some way or

another, also, the methods in [15]–[17] exploit the fact that

the considered C-spaces have closed-form parameterizations,

so that it is difficult to extend them to tackle manipulators

with a more complex architecture. The method provided in

this paper, in contrast, makes no recourse to closed-form

parameterizations, and can be applied to any non-redundant

closed-chain manipulator, with the sole limitations imposed

by the curse of dimensionality. As opposed to [17], it treats

singularities implicitly, not explicitly as obstacles, resulting in

a computationally less intensive approach.

The method was preliminary introduced in [18] and is now

presented and demonstrated with thorough detail. It relies

on defining a system of equations whose solution manifold
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corresponds to the singularity-free subset of the C-space, so

that maneuvering through such manifold guarantees singularity

avoidance at all times. Then, an extension of the higher-

dimensional continuation strategy given in [19] is defined,

which allows exploring this manifold systematically until a

path joining the start and goal configurations is found, or path

non-existence is determined by exhaustion of the search.

The rest of the paper is organized as follows. Section II

prepares the ground for the paper and describes the conditions

that characterize the forward singularities of a manipulator,

explaining their significance from the physical and geometrical

standpoints. Based on such background, then, Section III

describes the proposed singularity-free path planning method.

Section IV shows the performance of the method on illustrative

situations. Section V finally provides the paper’s conclusions,

and highlights points deserving further attention.

II. PRELIMINARIES

The allowable positions and orientations of all links in

a manipulator can always be encoded in a vector q of nq

generalized coordinates, subject to a system of ne equations

Φ(q) = 0, (1)

expressing the assembly constraints imposed by the

joints [20]–[22]. Here, Φ(q) : Q → E is a differentiable

map, and Q and E are nq- and ne-dimensional manifolds,

respectively. Note that no particular choice of generalized

coordinates is assumed, because the method is equally

applicable under any such choice, as long as Φ(q) satisfies

the previous condition.

Let C denote the C-space of the manipulator. That is,

C = {q ∈ Q : Φ(q) = 0}.

In the usual setting, the differential Φq = [∂Φi/∂qj ] is full

rank at all points q ∈ C, except on a subset G of points

where C may lose the manifold structure. Thus, C \ G is a

smooth manifold of dimension d = nq − ne, with a well-

defined tangent space. The points of G can arise even if Φ(q)
is differentiable and are called C-space singularities [11].

They typically correspond to bifurcations, ridges, or dimension

changes of C (Fig. 1).

The vector q will be assumed to contain a subvector v

of nv coordinates, corresponding to the actuated degrees of

freedom, or inputs, of the manipulator. This allows considering

the partition q = [yT,vT]T, where y encompasses the ny

coordinates of q not present in v, and to write (1) as

Φ(y,v) = 0. (2)

It will be further assumed that the manipulator is non-

redundant, meaning that the number of inputs is the lowest

required to fix a configuration. Thus, nv = d, and ny =
nq − nv = nq − d = ne.

To see the role played by singular configurations, consider

the time derivative of (2),

Φyẏ +Φvv̇ = 0. (3)

C
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Fig. 1. Examples of C-space singularities.

C
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Fig. 2. Interpretation of points q ∈ C \ G where det(Φy) = 0.

Note that for configurations q for which Φy is full rank we

can write (3) in the equivalent form

ẏ = −Φ
−1

y Φvv̇, (4)

which provides the time rates of the y coordinates in terms

of the time rates of the input coordinates v, i.e., the solution

to the forward instantaneous kinematic problem. However, (4)

only holds whenever the matrix Φy is full rank, and only in

this case the input rates v̇ will determine a single value for

the vector ẏ. This must be so because, if Φy is rank-deficient

in q, then, for a given value of v̇, (3) yields either no solution

or infinitely-many solutions for ẏ, and it is not possible to

uniquely determine the velocity of the manipulator by specify-

ing the velocities of the actuators. On the other hand, if Φy is

full rank along a time-parametric path q(t) = [y(t),v(t)] ∈ C,

the Implicit Function Theorem [23] guarantees a one-to-one

correspondence between the path v(t) and the path q(t), so

that the motion of the manipulator will be controllable through

the inputs along the path, even under slight perturbations of

v(t). Following these observations, a configuration q ∈ C is

said to be a forward singularity if det(Φy) = 0.

Geometrically, the matrix Φy may be rank deficient either

because Φq itself is rank deficient, or because only Φy is. In

the first case, q is in G, and in the second case, the tangent

space to C at q projects onto the v-space as a linear variety

of dimension lower than nv (Fig. 2). Nevertheless, both kinds

of situations need to be avoided if a safe and accurate motion

path for the manipulator is desired.

Inverse singularities that give rise to dexterity losses of

the end-effector might also be of interest in some cases.

Such singularities can be characterized in a way analogous

to forward singularities, as certain configurations for which

another Jacobian matrix is rank-deficient [24, 25].
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III. THE METHOD

Let Cs denote the set of forward singularities of C, and define

Csfree = C \ Cs. We call these sets the singularity locus and

the singularity-free C-space of the manipulator, respectively.

A singularity-free path joining two configurations of Csfree, qs

and qg , is a continuous map τ : [0, 1] → Csfree, such that

τ (0) = qs and τ (1) = qg . The planning problem we deal

with, thus, boils down to computing such paths between two

predefined configurations, qs and qg . The solution method

proposed is based on defining a proper system of equations

characterizing Csfree (Section III-A), and then resorting to a

continuation method that uses these equations to trace Csfree

from qs, until qg is eventually found (Section III-B).

A. A system of equations defining Csfree

In our case, Csfree is the set of points q = [yT,vT]T ∈ C
for which det(Φy) 6= 0. However, to be able to apply a

continuation method, it is necessary to turn the latter condition

into equality form. To this end, we introduce an auxiliary

variable b and note that det(Φy) 6= 0 if, and only if,

det(Φy) · b = 1 for some value of b. Thus, a system of

equations characterizing Csfree is given by

Φ(q) = 0

det(Φy) · b = 1

}

(5)

If other singularities need to be avoided [24, 25], the deter-

minant of the Jacobian matrix defining them can be added

as an additional factor in the second equation of this system.

For ease of explanation, however, this extension will not be

considered in this paper.

For convenience, the system in (5) will be written as

F (x) = 0 (6)

hereafter, where

x = [qT, b]T,

and

F (x) =

[

Φ(q)
det(Φy) · b− 1

]

.

Let M be the set of points x that satisfy (6), and define the

function

b(q) =
1

det(Φy(q))
. (7)

Note that the points x ∈ M are in one-to-one correspondence

with the points q ∈ Csfree, because q ∈ Csfree if, and only if,

x = [q, b(q)]T satisfies (5). Accordingly, all paths in Csfree are

uniquely represented in M, and viceversa. Thus, the original

problem of computing a singularity-free path in C from qs

to qg can be reduced to that of connecting

xs = [qT

s , b(qs)]
T

and

xg = [qT

g , b(qg)]
T

through some path in M. This reduction is advantageous

because, by letting the path planner operate in M, instead

of in C directly, guarantees that any computed path in M
will have a corresponding path in C lying entirely in Csfree.

C = Q

M

Cs

Cs

qs

qg

xs

xg

b

Fig. 3. The original problem of computing a singularity-free path in C
connecting qs and qg is transformed into one of finding an arbitrary path in
M connecting xs and xg .

This eliminates the need of checking singularity crossings in

the planner, which may be rather difficult due to the intricate

structure of the singularity locus [15].

The correspondence of the two problems is schematically

illustrated in Fig. 3. The horizontal plane in the bottom

represents C, which in this example coincides with the ambient

space Q for simplicity, and the singularity locus Cs is repre-

sented by two red parabolas in this plane. To construct M, we

add a new dimension b to Q (the vertical axis in the figure),

and we lift every point q ∈ C to the point x = [qT, b(q)]T.

Then, M can be thought of as a new manifold extending

infinitely in the direction b, as the projection q of a point

x ∈ M approaches Cs.

Two important observations are in order regarding the search

for a path. On the one hand, note that the differential Fx has

the block structure

Fx =







Φq 0

∗ det(Φy)






,

from which we see that Fx is full rank at all points x ∈ M,

because Φy (and hence Φq) is full rank at such points.

By the Implicit Function Theorem, this implies that M has

the structure of a smooth manifold everywhere [23], which

is beneficial from the point of view of applying a contin-

uation method to explore M [26], because no bifurcations,

ridges, or dimension changes are to be found during such

exploration, and no recourse to branch-switching operations

will be necessary [27]. On the other hand, observe that, in

practice, all the q coordinates have known bounds [22], like

those derived from mechanical limits on the joints which, if

necessary, can be taken into account by adding extra equations

to the system [25]. Moreover, |b| should be maintained below

a given threshold bmax to guarantee some clearance from Cs,
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Fig. 4. The higher-dimensional continuation method applied to a two-
dimensional manifold in R

3. Left: A point xj in M can be obtained by

orthogonally projecting a point xi
j on Txi

M. Right: If a new chart is defined

at xj , it must be properly coordinated with the chart at xi so that their
projections smoothly cover the manifold.

determined by the task to be accomplished, and by the char-

acteristics of the underlying mechanical and control systems.

As a result, the search for a path in M must be restricted

to a given domain D of the x-space, usually defined as the

Cartesian product of a number of intervals derived from the

coordinate bounds.

B. Exploring M for a path

To determine a singularity-free path connecting xs and xg

we can gradually construct an atlas of M ∩ D. An atlas is

a collection of charts where each chart Ci defines a local

map between a domain Pi ⊂ R
d and an open set around a

given point xi ∈ M, initially xs. The atlas will be computed

using the higher-dimensional continuation method proposed

in [26]. This method defines a local map for chart Ci using

the matrix Ψi, whose columns define an orthonormal basis

of Txi
M, the d-dimensional tangent space of M at xi. The

map is determined by first selecting a d-dimensional vector ui
j

of parameters (Fig. 4-left), which is used to generate a point

xi
j ∈ R

nq+1 in the neighborhood of xi as follows:

xi
j = xi +Ψi u

i
j . (8)

Then, a point xj in M is computed by orthogonally project-

ing xi
j . This projection is obtained by solving

F (xj) = 0

Ψ
T

i (xj − xi
j) = 0

}

using a Newton method initialized at xi
j . At each iteration of

the method, xj is updated with the increment ∆xj fulfilling
[

Fxi

Ψ
T

i

]

∆xj = −

[

F (xi)

Ψ
T

i (xj − xi
j)

]

. (9)

The update is applied until the norm of the right-hand side

of (9) becomes negligible, or for a maximum number of

iterations.

Each point in the manifold is the potential center of a

new chart (see Fig. 4-right), and a method due to Henderson

can be used to decide where to place the chart centers to

ensure a good coverage of the manifold [26]. In his approach,

the domain Pi of chart Ci is initialized as a d-dimensional

hypercube enclosing a ball Bi of radius r, both defined in

Txi
M, as illustrated in Fig. 5-left. A vertex of Pi exterior

r

Pi Bi

s

ui
j

Pi Bi

Bi
j

Ci
j

Fig. 5. Polytope-based chart construction. Left: The domain for chart Ci, Pi,
is a box including a ball of radius r around xi, both defined in the tangent
space associated with the chart. Right: Pi is refined using a ball Bi

j that

approximates Ci
j , the projection on Ci of the part of the manifold covered

by Cj .

to Bi, with position vector s, is then used to generate a

point xi
j , using (8) with

ui
j = α

s

‖s‖
, (10)

where α is initialized to r. If the projection from xi
j to M

does not converge, or if the new chart Cj at xj is too far or

too different from Ci, i.e., if

‖xj − xi
j‖ > ǫ, (11)

or

det(ΨT

i Ψj) < 1− ǫ, (12)

for a given threshold ǫ, the new chart is discarded and a new

attempt of chart generation is performed with a smaller α. This

procedure adapts the size of the area covered by each chart

to the local curvature of the manifold. When Cj is valid, it

is used to crop Pi from the intersection between Bi and Ci
j ,

the projection on Txi
M of the part of the manifold covered

by Cj . This projection is approximated by a ball Bi
j of radius r

in Txi
M, centered at the point given by ui

j , as shown in

Fig. 5-right. The intersection of Bi and Bi
j defines a new face

of Pi that eliminates some of its vertices (in particular the

one given by s) and generates new ones. Symmetrically, the

polytope Pj associated with Cj is cropped using Ci. When Ci

is surrounded by other charts, Pi becomes a convex polytope

included in Bi, and Ci is considered to be closed, meaning

that no further expansion of the atlas need to be attempted

from that chart. Charts whose center is out of the domain

D are also considered closed. When all charts are closed, the

connected component of M containing the initial point xs gets

fully covered. If a path exists from xs to xg , a chart centered

at xg must be connected to the atlas built from xs and, thus,

a solution path can be determined by searching the graph

implicitly defined by the chart centers and their neighborhood

relations. If the chart centered at xg is not reached, path non-

existence can be established at the considered value of r.

As an example, Fig. 6 illustrates the progression of the

algorithm on tracing the surface of a torus from a given point.

Each picture shows the part of the atlas computed after m
steps, with open and closed charts colored in red and blue,

respectively. Since a torus is a 2-dimensional manifold, the
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Fig. 6. Progression of the algorithm on the surface of the torus defined by

(
√

x2 + y2 −R1)2 + z2 −R2

2
= 0, with R1 = 0.5, R2 = 0.8, and using

the continuation parameters r = 0.1 and ǫ = 0.25. Red and blue polygons
correspond to open and closed charts, respectively.

balls Bi are circles in this case, and the polytopes Pi are

polygons.

Algorithm 1 gives the pseudo-code of the singularity-free

path planner proposed in this paper. The planner implements

an A* search strategy [28], taking into account the cost and

heuristic functions provided. The former function evaluates the

cost of the transition between configurations, and the latter

provides a lower bound of this cost. In our implementation

we use the Euclidean distance in R
nq+1 for both functions,

and thus the planner will compute shortest paths in M, up to

the resolution used to define the atlas. More sophisticated cost

functions can be used, though, considering the travel time or

Algorithm 1: Singularity-free path planner.

PathComputation(F ,xs,xg,C,H, r, ǫ)
input : The functions F defining M, the start and goal

configurations, xs and xg , a function C giving the
cost of the transition between configurations, a
heuristic function H providing a lower bound of the
cost of the transition between configurations, and the
parameters r and ǫ used to build the atlas.

output: An singularity-free path connecting xs and xg .
Cs ←NEWCHART(F ,xs, r)}1

Cg ←NEWCHART(F ,xg, r)}2

A ← {Cs, Cg}3

H ← {Cs}4

V ← ∅5

p(s)← 06

c(s)← 07

h(s)←H(xs,xg)8

Ci ← Cs9

while H 6= ∅ and Ci 6= Cg do10

Ci ←EXTRACTMIN(H, h)11

if Ci 6= Cg and c(i) <∞ then12

while OPEN(Ci) do13

α← r14

s←VERTEX(Pi) s.t. s /∈ Bi15

repeat16

Cj ←CREATENEIGHBORCHART(Ci, α, s)17

α← α · 0.918

until not SIMILARCHARTS(Ci, Cj , ǫ)19

A ← A∪ {Cj}20

V ← V ∪ {Ci}21

xi ← CENTER(Ci)22

forall Cj ∈ NEIGHBOR(Ci) do23

if Cj /∈ V then24

xj ← CENTER(Cj)25

t← c(i) +C(xi,xj)26

if Ci /∈ H or t < c(j) then27

H ← H∪ {Cj}28

p(j)← i29

c(j)← t30

h(j)← t+H(xj ,xg)31

if Ci = Cg then32

RETURN(RECONSTRUCTPATH(s, g, p))33

else34

RETURN(∅)35

avoiding collisions. In the latter case, the cost function only

has to assign an infinite cost to the transitions between charts

that cause collisions [19]. At the beginning, the algorithm

defines charts at the start and goal configurations and uses

them to initialize the atlas (lines 1 to 3). Additionally, it defines

the set of charts from where the search can be expanded H
(line 4) and the set of charts already processed along the

search, V (line 5). It then initializes the pointers to the best

parent for each chart (line 6), the cost to reach the initial chart

(line 7), and the heuristic estimating the cost from this chart to

the goal (line 8). After that, the algorithm iterates while there

are charts in H and the goal chart has not been reached yet

(lines 10 to 31). In this iteration, the chart Ci with minimum

expected cost to the goal is extracted from H (line 11). If Ci

is not the goal chart (line 12), and while it is not a closed
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chart (line 13), all its neighbors are generated (lines 14 to 20).

Note that charts whose center is out of the domain D are

considered closed and, thus, their neighbors are not generated.

If necessary, the neighbors are generated by selecting a vertex

of Pi not in Bi and using this vertex to define the parameters

as in (10). The process of generating a neighboring chart

is repeated until the conditions given in (11) and (12) hold

(line 19). When this happens, the new chart is added to the

atlas, coordinating it with the charts already in it (line 20).

When all the neighbors for Ci are eventually generated, the

chart is added to V (line 21) and the search is expanded from

it. For each of the non-processed neighbors, the tentative cost

to the neighbor via Ci is computed (line 26). Charts not yet

in H, or charts where the tentative cost is lower than the best

cost computed up to the moment, are added to H (line 28),

changing their parent chart (line 29), setting their new cost

(line 30), and, finally, computing the heuristic estimation of

the cost to the goal (line 31). At the end of the search, if

the goal was found, the path connecting xs and xg is derived

using the pointers to the parent chart stored in p (line 33).

Otherwise, an empty path is returned (line 35) indicating that

it is not possible to determine a singularity-free path at the

used resolution.

The cost of the algorithm at each step is dominated by the

cost of two searches among the set of charts: one to find the

potential neighbors of a new chart when adding it to the atlas

(line 20), and another one to find an open chart from which

to continue the search. The performace of the first search can

be increased using a k-d tree storing the centers of the charts.

If H is implemented using a heap, both the extraction of the

next chart to be expanded (line 11) and the insertion of a

new chart in H (line 28) are logarithmic in the number of

expandable charts.

IV. ILLUSTRATIVE EXAMPLES

The performance of the planner is next illustrated in two

situations: first on a fictitious three-dimensional C-space, and

then on a 3-RRR manipulator. The former case is chosen for

its simplicity, to illustrate and visualize the method in three

dimensions, and the latter shows the method’s performance

on a real application of considerable complexity. Note that in

all cases we make no use of closed-form parameterizations

of C. Also, despite the singularity locus and the workspace

are shown for reference in the figures (derived using [24, 29]

and [30] in our case), explicit knowledge of such sets is not

used by the planner in its computations. All results reported

have been obtained from an implementation in C of the method

available in [31], executed on a MacBook Pro equipped with

a 2.66 GHz Intel Core i7 processor.

A. A three-dimensional example

Consider the fictitious C-space defined implicitly by

Φ(q1, q2, q3) = q1 − σ cos(ω (q22 + q23)) = 0,

with σ = 0.5 and ω = 0.25. It is not difficult to see that

this equation defines a sinusoidal surface in the space of

q2

q1

q3

Fig. 7. A fictitious three-dimensional C-space with its singularities high-
lighted in red, assuming that q1 and q2 are the actuated degrees of freedom.

q = [q1, q2, q3]
T, shown in Fig. 7 for q ∈ [−1, 1]×[−20, 20]×

[−20, 20].
Let us assume for this example that the vector of actuated

degrees of freedom is v = [q1, q2]
T, so that y = [q3]. Then,

the forward singularities are given by the equation

det(Φy) =
∂Φ

∂q3
= 2 σ ω q3 sin(ω (q22 + q23)) = 0,

which, for non-null parameters w and σ, holds whenever

ω (q22 + q23) = n π with n ∈ Z, or when q3 = 0. Thus, the

singularity locus is formed by the red circles and the sinusoidal

line shown in Fig. 7. Note that, in accordance to Fig. 2, the

points of such locus are those where the tangent plane to the

C-space projects vertically on a line, in the space defined by

v = [q1, q2]
T.

Fig. 8 shows the results obtained by the planner when

trying to connect the configurations qs = [0, 4.33,−0.38]T

and qg = [0,−4.33,−0.38]T. To compare the results, the

figure shows the computed path, in green, when navigating C
(left figure) and M (right figure), so that the crossing of

singularities is permitted and avoided respectively. In both

cases the planner returns the shortest path up to the resolution

of the generated atlas. The charts of this atlas are shown in

blue in both figures, their shape becoming more clear when

zooming in the electronic version of the paper.

Note that the path on the left figure crosses the singularity

locus twice, while the path on the right figure, although

longer, avoids crossing it. The latter path approaches the

singularity locus, but we note that a certain clearance is always

guaranteed, because the value of |b| is always kept below a

given threshold bmax. In this case, the value bmax = 12 was

used, but alternative paths with a larger clearance could be

obtained by simply reducing bmax. Nevertheless, bmax should

always be chosen larger than the maximum of |b(qs)| and

|b(qg)|, so as to guarantee that the domain D bounding the

search space (Section III-A) includes both xs and xg . The

computation of the singularity-free path took 0.04 seconds in

this example, using the continuation parameters r = 0.25 and

ǫ = 0.25.
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q2

q1

q3

q2

q1

q3

Fig. 8. The path computed by the proposed algorithm when neglecting and considering singularity avoidance (left and right, respectively) on the manifold
of Fig. 7. In the plots, the singularity locus is highlighted in red, the charts explored to connect the two query configurations are shown as blue polygons, and
the final returned path is shown in green. While the path on the left figure crosses the singularity set twice, the path on the right figure is singularity-free.

O X

Y

X ′

Y ′

A1

B1

C1

A3

B3

C3

A2

B2

C2

P

θ

Fig. 9. A 3-RRR planar manipulator. Points A1, A2, and A3 are fixed to
the ground. The angle θ is measured relative to the OX axis.

B. A 3-RRR manipulator

Now, let us consider the planar 3-RRR manipulator in Fig. 9,

consisting of a moving platform linked to the ground by means

of three legs, where each leg is a three-revolute chain. The

three joints attached to the ground are actuated, allowing to

control the three degrees of freedom of the platform, and

the remaining joints are passive. Due to its relatively large

workspace, and the fact that the mounting of the actuators

on the base reduces weight in the mobile equipment, this is

the most common architecture for a 3-DOF planar parallel

manipulator [32]. Although the singularity-free path planning

problem has been addressed for particular geometries of this

manipulator [33], no general path planner has been given yet

to avoid its singularities, to the best of our knowledge.

We set the geometry of the manipulator so that the two links

of each leg are in a different plane and, thus, they can not

collide. In this way, we permit a change of working mode of

the leg, which illustrates that such changes can be performed

without losing the controllability of the manipulator. Doubts

about this fact were initially expressed in the literature. Springs

in intermediate leg joints or the exploitation of link inertias

were said to be necessary to force the flipping of the legs [32,

page 72], but we show that such flippings can be performed

without crossing forward singularities, only by controlling the

angles of the Ai joints. In fact, the possibility of switching

working modes through simple active-joint control has been

recently demonstrated using real prototypes [34].

To formulate (1), let ai and bi denote the position vectors

of the anchor points Ai and Bi of the ith leg relative to

the absolute (OXY ) and moving (PX ′Y ′) reference frames

(Fig. 9). The assembly constraints imposed by the joints can

be formulated as

ai + li1

[

cosφi1

sinφi1

]

+ li2

[

cosφi2

sinφi2

]

−R bi = p, (13)

for i = 1, 2, 3, where p = [x, y]T is the position vector of P
relative to the absolute frame, R is the 2×2 rotation matrix of

angle θ, and lij and φij are the length and absolute orientation

angle of the j-th link on the i-th leg. Using the same geometric

parameters assumed in [32] and given in Table I, the system

in (1) is formed by equations (13) and

q = [x, y, θ, φ11, φ21, φ31, φ12, φ22, φ32]
T. (14)

This system implicitly defines a 3-dimensional C-space be-

cause d = nq − ne = 9 − 6 = 3. In this case, since φ11,

φ21, and φ31 are the actuated degrees of freedom, we have

v = [φ11, φ21, φ31]
T, and y = [x, y, θ, φ12, φ22, φ32]

T.
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TABLE I
PARAMETERS OF THE CONSIDERED 3-RRR MANIPULATOR.

i ai bi li1 li2

1 (0, 0) (0, 0) 1 1.35

2 (2.35, 0) (1.2, 0) 1 1.35

3 (1.175, 2.035) (0.6, 0.6
√
3) 1 1.35

The singularity locus of this manipulator is two-

dimensional, and its shape is known to be rather complex.

In fact, its slices for a fixed value of θ were studied in [35],

and remarkably found to be curves described by a minimal

polynomial of degree 42 in x and y. To have an idea, the

resulting curve for θ = 0 is shown in red in Fig. 10-top, for the

manipulator parameters in Table I. The curve is shown overlaid

to the constant orientation workspace of the manipulator (the

reachable locations of P when θ = 0), colored in gray, with

its boundary curves indicated in blue.

From the figure it may seem that the safe motion range

of the manipulator is severely reduced by the presence of

singularities—e.g., it appears that P cannot be moved from Ps

to Pg while keeping θ = 0—, but note that we are actually

observing a projection of the C-space on the xy-plane, and

that for each pose [x, y, θ]T of the platform there are up to

eight possible inverse kinematic solutions of the manipulator.

Each such solution corresponds to a different working mode

of the mechanism, identified by the sign triple (σ1, σ2, σ3),
where σi gives the orientation of the triangle AiCiBi [32]. The

C-space, thus, has more structure than it looks. It is formed by

several “layers” corresponding to the different working modes,

and if we project such layers separately, larger singularity-free

regions are revealed.

To illustrate, the layers corresponding to the (+,+,+)
and (+,+,−) modes for θ = 0 are shown in Fig. 10-

bottom, together with the portion of the singularity curve

lying on them. A representative configuration is also drawn

in each case, with P coinciding on Ps. As we see, Ps and

Pg are actually connectable through a singularity-free path

lying entirely in the (+,+,+) layer. The proposed planner

is able to compute such a path in only 0.05 seconds, using

bmax = 3.333, r = 0.2, and ǫ = 0.25, obtaining the results

shown in Fig. 11, where the position vectors ps = [0.4,−0.6]T

and pg = [1.4, 1.5]T have been assumed for Ps and Pg . Note

from the right plot how the manifold M reaches higher values

of b as it approaches the singularities, but the found path avoids

these zones and the algorithm returns the shortest possible path

in M. The partial atlas generated to resolve the planning query

is shadowed in blue in the left plot.

Constant-orientation paths in other layers can be computed

if desired, but the full potential of the method comes out when

solving complex planning queries in which the platform is

allowed to rotate and the manipulator has to change its work-

ing mode along the path, to avoid passing through singular

configurations (Fig. 12). Due to the difficulty of illustrating

a 3-dimensional C-space, the obtained path is shown as a

sequence of motion snapshots in this case. The first and last

snapshots, (a) and (i), show the start and goal configurations

O X

Y

Ps

Pg

(+,+,+) (+,+,−)

Fig. 10. Top: Boundaries (in blue) of the constant orientation workspace
(in gray) and interior singularities (in red) of the 3-RRR planar manipulator
of Table I, assuming θ = 0. Bottom: Layers corresponding to two working
modes of the manipulator, differing on the sign of the third leg triangle only,
and their corresponding singular curves.

to be connected, which are given by ps = [−0.3,−0.9]T and

θs = 0, and pg = [0.5, 1.9]T and θg = −π
2

, assuming the

working modes (+,−,−) and (−,+,−) respectively. Note

that at least two legs should change their working mode along

the path, and this can be seen to happen between snapshots (c)

and (d) for the first leg, and between (g) and (h) for the second

leg. The workspace and the singularities shown in each picture

correspond to the orientation of the platform at that moment

only, and can be seen to vary with the orientation. Indeed, the

path is obtained by exploring a 3-dimensional C-space with

a 2-dimensional singularity locus, defined both in a higher-

dimensional ambient space, and each picture in Fig. 12 shows

a constant-θ slice of such C-space, projected onto the x and y
coordinates. The computation of the singularity-free path took

1 second in this example, using r = 0.3 and ǫ = 0.25. An

animated version of Fig. 12 can be seen in a video attached

to this paper, as part of a larger movement planned through

three waypoints.
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x
x

y
y

b

Fig. 11. Results of the method on computing a singularity-free path to connect points Ps and Pg indicated in Fig. 10, assuming that the platform orientation is
fixed to θ = 0. Left: The results projected onto the (x, y)-plane. The obtained path is shown in green overlaid onto the atlas of the singularity-free component
of C attainable from the start configuration. The charts are shown colored in white, with blue or red edges depending on whether they lie inside or outside of
the domain D. The part actually explored by the algorithm to connect the two configurations is shown shadowed in blue. Right: The same results projected
onto the (x, y, b)-space. An animation of this figure is available in the supplementary downloadable material associated with this paper.

Finally, note that inverse singularities could also be avoided

by replacing the second equation in (5) by

det(Φy) · det(Φz) · b = 1,

where in this example z = [φ11, φ21, φ31, φ12, φ22, φ32]
T [24,

25]. In doing so, we would also ensure a full dexterity of the

end effector along the computed path.

V. CONCLUSIONS

This paper has introduced a novel approach to compute

singularity-free paths on non-redundant closed-chain manip-

ulators of general architecture. Due to the complexity of

the involved C-spaces, and of their singularity loci, previous

attempts to solve this problem have only considered explicitly-

parametrizable C-spaces. In contrast, the approach we present

makes no recourse to such parametrizations, and can be ap-

plied to any non-redundant closed-chain manipulator with the

sole limitations imposed by the computational power available.

The problem has been tackled by defining a system of

equations implicitly characterizing the singularity-free C-space

of the manipulator, which avoids the need of representing

the singularity locus explicitly as an obstacle. The solution

manifold of this system can be freely navigated without

fear of crossing any forward singularity of the manipulator.

Higher-dimensional continuation techniques are then used to

progressively construct an atlas of the component of this

manifold that contains the start configuration, until the goal

configuration is reached, or path non-existence is proved at

the resolution of the atlas. Note that, if desired, the method

can also be used to detect non-singular transitions between

assembly modes [36]–[38], and that it can also generate an

exhaustive atlas of the singularity-free C-space component

that is reachable from one configuration, which is useful to

resolve subsequent planning queries rapidly, or to visualize

the singularity-free workspace of the manipulator relative to

any set of coordinates. As shown in [39], the latter workspaces

are helpful in the context of robot design and analysis.

The resolution completeness of the approach comes at the

expense of a computational cost that scales exponentially

with the C-space dimension. To deal with higher-dimensional

problems, however, we could adapt the approach in [40],

which trades off resolution completeness by efficiency and

probabilistic completeness, or the approach in [41] which,

additionally, guarantees asymptotic optimality. The evaluation

of these variants of the planner in the context of singularity-

free path planning certainly deserves further attention.

A point left open in the paper is how to establish the

threshold bmax governing the clearance to the singularity

locus. As mentioned, this threshold has to be determined

case-wise, depending on the particular context of application.

Variants of the method have actually been given for classical

or cable-driven hexapods [42, 43], where the clearance is

implicitly determined by taking into account the range of

forces supported by the actuators.
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i Informàtica Industrial (IRI, CSIC-UPC) in 1997,

where he is currently an Associate Researcher of the Spanish National
Research Council (CSIC) since 2004. His research interests include geometry
and kinematics, with applications to robotics, computer graphics, and machine
vision.

Montserrat Manubens received the Mathematics
degree from the Universitat de Barcelona in 2001,
and the Ph.D. degree (with honors) in Computer Al-
gebra from the Universitat Politècnica de Catalunya
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