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Abstract. This paper explores the possibility of approximating a sur-

face b y a trihedral polygonal mesh plus some triangles at strategic places.

The presented approximation has several attractiv e properties. It turns

out that the Z-coordinates of the vertices are completely governed by

the Z-coordinates assigned to four selected ones. This allows describing

the spatial polygonal mesh with just its 2D projection plus the heights

of four v ertices. As a consequence, these projections essentially capture

the \spatial meaning" of the given surface, in the sense that, whatever

spatial in terpretations are drawn from them, they all exhibit the same

shape, up to some trivial ambiguities.

1 Introduction

A polygonal mesh is a piecewise linear 2-manifold made up with planar polygonal

patc hes, glued along the edges, and possibly containing holes. A polygonization

method is an algorithm able to construct a polygonal mesh approximating a given

surface. The literature on polygonization methods, mainly on triangulations, is

vast (see [3] for a recen tsurv eyon triangulations and algorithms to simplify

them). In general, the main goal is to obtain meshes that are close to the surface

within a known error, as a way to understand and represent the surface shape [7].

Other goals have been to increase the speed of polygonization and the abilit y

of the polygonizer to satisfy some constraints in the solution (e.g., one might

request the most accurate approximation using a given n umber of line segments

or triangles).

In general, a polygonal mesh cannot be reconstructed from its projection onto

a plane because in�nitely many meshes generate exactly the same projection.

F or example, for the triangular mesh projection in �gure 1, there are many

di�erent reconstructions, as illustrated. The �rst two seem to have no meaning;

but, actually, there is a rather \hidden" meaningfull reconstruction: Nefertiti's

face! Can we obtain a spatial mesh approximating Nefertiti's face in such a way

that its projection still keeps its spatial meaning?



Fig. 1. Arbitrary reconstructions of this triangulated projection have no spatial mean-

ing. But actually, a very speci�c one of them really does: it shows Nefertiti's face.

There is a class of meshes whose projections fully determine the spatial shape

once the heights of four vertices are given. We call these projections une quivo cal

because their reconstructions represent essen tially the same object, up to some

trivial ambiguities. For example, the projection in �gure 2a unequivocally rep-

resen ts a truncated tetrahedron, as seen in �gures 2d, e, and f. Observe that it

suÆces to set the heights of P , Q, T and R to determine those of S and U , using

the fact that all cofacial vertices must be coplanar and, hence, S must lie on the

face-plane RPQS, and U on SQTU .

One of our goals is then to approximate any giv en surface with a polygonal

mesh yielding unequivocal projections that uniquely identify the spatial shape up

to the trivial ambiguities produced by changing the heights of only four vertices.

Section 2 presents the trihedral polygonal mesh, the model we use to this end,

and shows how its projections are unequivocal in the sense given above.

Nevertheless, we need to go beyond this goal if this representation is to be

useful. Consider what happens if the (x; y) vertex positions in �gure 2a are

sligh tlyaltered (�gure 2b). The new projection no longer represents a correct

truncated tetrahedron for, to be so, the edges joining the tw o triangular faces,

when extended, should be concurrent at the apex of the (imaginary) original

tetrahedron. Equivalen tly, note that onceP;Q;R and T are given, the height of

U is overconstrained, for it can be calculated fromboth the coplanarity of SQTU

or that of RPTU . For generic vertex positions, the two values of this height do

not necessarily coincide, and the only spatial reconstruction that keeps cofacial

vertices coplanar is a trivial one, with all vertices lying on a single plane [5, 6].

This makes the four provided heights inconsistent betw een each other. In sum,

the consistency of the four heights only holds at very speci�c positions of the

vertices and inevitable discretization errors will make this representation useless.

This problem is common in Computer Vision [8] and Computer Graphics [12,

10], and mathematical characterizations of generically consistent projections are

given in [11, 9]. The way we use to make this representation robust against these
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Fig. 2. A truncated tetrahedron (a) and three possible reconstructions (d, e, f). The

sligh test perturbation destroys the correctness of the projection (b), but this can be

avoided adding new triangular faces (c).

errors follo ws from this observation: if the height of a vertex in a projection

is overconstrained because the vertex lies on several planes that �x it, we just

in troduce new triangular faces around it for preven ting this to occur (�gure 2c).

Section 3 gives a fast algorithm to this end, derived from this observation, us-

ing the so-called T/TT-transformations. Section 4 describes a complementary

optimization step that properly places these transformations to minimize the re-

construction errors by reducing the problem to a cyclic AND/OR graph search.

We �nally conclude in section 5.

2 Trihedral Polygonal Meshes

T rihe dral meshes, i. e., those where all vertices have exactly three incident faces,

produce unequivocal projections. Indeed, �gure 3 shows that in them, after �xing

the planes of tw o adjacent faces, we have enough data to derive the heights of

the remaining vertices. Clearly, the heights of the bold vertices �x the shadow ed

face-planes and the heights of other vertices on them. At this point, any other

surrounding face has three vertices whose height is kno wn and, so, its plane can

be �xed too. The same argument can be iteratively applied and the result is a

height propagation reac hing all vertices in the projection.

In the schematic representation of this height propagation (�gure 3) every

face f receiv esthree incoming arro ws from the three vertices that �x it. The

deriv ation of heights for the rest of vertices on f is indicated with outgoing arrows

from f . The result is a tree-shaped structure spanning all vertices and faces. In

this tree, a path from an yof the initial four vertices to an yother vertex will

be hereafter referred to as a prop agationwave. Note that, height propagations
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where a face is �xed from three (almost) collinear vertices must be avoided.

Section 4 gives a way to compute propagations eluding these collinearities.

A trihedral mesh approximating a convex or concave surface can be readily

obtained by distributing a set of random points all over the surface and comput-

ing its tangent planes at these points. This leads to a plane arrangement whose

upper envelope {if the surface is con vex{or low eren velope {if it is concave{

pro vides a good mesh approximation of the surface. Since the tangent plane ori-

en tations are random, any three of such planes meet in a single point, and hence

the mesh is trihedral.

Alternatively, a trihedral mesh approximation of a piece of concave or con-

vex surface can be obtained by starting with a rough mesh approximation and

iterativ ely applying a bevel-cutting [2] and/or a corner-cutting [1] operation to

attain the desired approximation.

overconstrained

Fig. 3. A heigh t propagation start-

ing at four pre-speci�ed (bold) vertices.

Sev eral vertices can ha ve an overcon-

strained height.

Obviously, the situation becomes

muc h more complex when concavities and

con vexities are simultaneously present.

The �rst step in these cases would be to

decompose the surface in to patches ha v-

ing congruent signs for the maximum and

minimum curvatures at all their points. If

this is done for a general C1 surface, we

w ould get patches labeled (+;+), (+;�),

(�;+) or (�;�) separated by curv es

which could be labeled with (�; 0), (+; 0),

(0;�), or (0;+), and isolated points (actu-

ally , maxima or mimima) which would be

labeled with (0; 0). Saddle points would be

also labeled with (0; 0) but they would ap-

pear as intersections of separating curves.

If w e extend this treatment to C2 surfaces,

w e could get en tire patc heswith one of

the above nine possible labels. For exam-

ple, all plane patches would have the label

(0; 0).

P atcheslabeled with (+;+) or (�;�) represent fully con vexor concave

patc hes and thus they can be polygonized as described above. Patches labeled

as (�; 0) or (0; �) can be polygonized by locating random points along the direc-

tion of maximum curvature. Patches (0; 0) would only require a single point on

them. Unfortunately, the treatment of (+;�) or (�;+) patches remains as an

open problem for us.

The connection betw een polygonized patches can be obtained by computing

tangent planes on points along their common boundaries. In sum, the polygo-

nization we propose can be done, �rst for each patch by generating the tangent

planes in a suÆciently high densit y,and next by connecting them using the

tangent planes generated along their common boundaries.
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Fig. 4. (a and b) T and TT-transformations. (c) Overhanged and self-intersecting

reconstructions induced by T-transformations at locally non-convex faces.

3 T and TT-Transformations

In a trihedral mesh a projection is overconstrained because any of its vertices

lies on three faces and, potentially , up to three propagation waves can determine

a height at the same time. How ev er, asdone in �gure 2c, this can be avoided

by adding triangular faces. T othis end, w e�rst compute an arbitrary height

propagation spanning all vertices, and chec k which of them receives more than

one wave. We then take one overconstrained vertex v at a time and prevent all

but one w aves from reaching v as follo ws. To stop the wave gettingv from face

f , we apply either of these tw o transformations (�gure 4a and b):

{ A T-tr ansformation, which places a new edge joining the tw oneighboring

vertices of v in f , say vl and vr.

{ A TT-transformation, which places a new vertex v0 on f near v and the

three new edges (v0; v), (v0; vl) and (v0; vr).

After either transformation, f cannot constrain the height of v anymore. Also,

the added triangles are innocuous because all heights can still be determined from

the four initial ones.

Which transformation is preferred depends on the geometry of face f around

vertex v. If all points inside the triangle vlvrv belong to f , w esay that f is

locally convex at v. So, for situations where f is locally con vexat v, simplic-

ity prev ails and T-transformations are enough (�gure 4a). When local non-

con vexities are present (�gure 4b), T-transformations yield occluded or partially

occluded crossing edges whose spatial reconstructions ha veoverhanged parts,

or self-in tersecting faces (�gure 4c). Here, TT-transformations are preferred for

they can avoid this.

An observation complements the strategy .In an overconstrainedvertex v,

either t w o or three incoming propagation waves arriv e. Ifno more than one of
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Fig. 5. A projected dodecahedron (a) together with a height propagation (b) and the

T-transformations it yields (c). A protruded tetrahedron (d) and tw o possible correc-

tions: (e), in volving TT-transformations, and (f), involving only T-transformations.

them comes through a locally non-convex face, then w ecan always drop the

incidence constraint in this vertex just with T-transformations: w ejust leave

the ev en tual \bad" wave to determine the height of v and stop the others with

T-transformations. This completes the description of a one-sweep algorithm re-

moving overdetermination. As an example, �gures 5a-c show a projected dodec-

ahedron before and after applying T-transformations.

In general, when the approximated surface is uniformly convex, or uniformly

concave, all faces of the resulting trihedral polygonal mesh will be locally con-

vex, and hence T-transformations will suÆce. How ev er,ev en when local non-

con vexities exist at the faces, there still might be some height propagations where

only T-transformations suÆce. In �gure 5e, for example, an algorithm computing

an arbitrary propagation can be forced to use TT-transformations, whereas with

a proper search, a robust projection is obtained only with T-transformations (�g-

ure 5f). But one certainly �nds correct projections where no propagation strictly

using T-tr ansformationscan be found [5, Section 8.4].

4 Optimal Propagations and Cyclic AND/OR Graphs

The algorithm in the preceeding section corrects the incidence structure by �nd-

ing an arbitrary height propagation and inserting a T or a TT-transformation

whenever a vertex height is determined by tw o or more faces. How ev er, arbitrary

propagations might travel along \degenerate paths" where the planes for some

of the faces are determined by three aligned (or almost aligned) vertices. Clearly,
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these degener ate pr op agationsmust be avoided if we wan t to minimize the errors

during the reconstruction of the spatial shape from the initial set of four heights.

This section provides an algorithm to �nd height propagations that avoid these

degeneracies by formulating the problem as that of �nding the least cost solution

of a cyclic AND/OR graph [4]. We now recall some preliminary concepts about

this kind of graphs.

An AND/OR directedgraphG, can be regarded as a hierarchic representation

of possible solution strategies for a major problem, represented as a root node,

r, in G. An y other node v represents a subproblem of low er complexity whose

solution contributes to solve the problem at hand.

There are three types of nodes: AND nodes, OR nodes and TERMINAL

nodes. Every node v has a set S(v) of suc cessor nodes, possibly empty, to which

it is connected in either of two ways:

{ An AND node v is link ed to all nodessi 2 S(v) through directed AND arcs

(v; si), meaning that the subproblem for v can be trivially solved once all

subproblems for the nodes in S(v) have been solved.

{ An OR node v is link edto all nodes si 2 S(v) through directed OR arcs

(v; si), meaning that the subproblem for v can be trivially solved once any

one of the subproblems for the nodes in S(v) has been solved".

{ A TERMINAL node represents a y et-solv ed or trivial subproblem and has

no successors.

With this setting, a feasible solution to the problem becomes represented as

a directed subgraph T of G verifying:

{ r belongs to T .

{ If v is an OR node and belongs to T , then exactly one of its successors in

S(v) belongs to T .

{ If v is an AND node and belongs to T , then every successor in S(v) belongs

to T .

{ Every leaf node in T is a TERMINAL node.

{ T con tains no cycle, it is a tree.

One can also assign a cost c(u; v) > 0 to every arc (u; v) in G and ask for the

solution T with minimum overall cost C(T ) =
P

(u;v)2E(T ) c(u; v), where E(T )

is the set of arcs of T . Note that, as de�ned, G can contain cycles. This turns

out to be the main diÆculty for this optimization problem, which, in the past,

w as usually tackled by a rather ineÆcient trick: \unfolding" the cycles and ap-

plying standard AND/OR search methods for acyclic graphs. How ev er, explicit

treatment of cycles has recently been considered, and an eÆcient algorithm is

achiev ed in [4].

The search for an optimal height propagation is next reduced to this model.

This amounts to (1) constructing an AND/OR graph Ghp whose feasible solu-

tions de�ne a height propagation, and (2) de�ne a cost function that promotes

non-degenerate propagations over degenerate ones.
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Fig. 6. AND/OR subgraphs for the propagation rules. AND nodes are indicated by

joining all their emanating arcs. (a) Constructed subgraph translating rule R2 for a

quadrilateral face. Dummy-face nodes are shadowed in grey. Note that, actually, there

is only one vertex node for each vertex in the trihedral mesh, but for clarity they are

here duplicated. (b) Propagation waves reaching a vertex. (c) Subgraph for rule R3,

with an arc for each of the possibilities in (b).

4.1 F easible Height Propagations

A height propagation can be de�ned by the following rules, with the giv en

straigh tforward translation into AND/OR subgraphs.

R1: F our selected vertic es of the projection trigger the prop agation.For this, we

put a TERMINAL node for each of the triggering vertices.
R2: Every face in the polygonization can b e determined once the heights of any

three of its vertic es ar e determined. If deg(f) denotes the number of vertices

of face f , then there are cf =
 
deg(f)

3

!
possible combinations of three vertices

determining f . If we put a node in Ghp for every vertex, except for the four

triggering ones, then this rule is translated by adding an OR node for every

face, linked to cf new \dummy-face" AND nodes, each representing one of

the above combinations. Each dummy-face node is in turn linked with arcs

to the three involv ed v ertices in the combination. Figure 6 gives a sc hematic

representation. The newly introduced vertex nodes have not been assigned

a type yet. This type is induced by the following rule.
R3: Exc ept for the initial four vertices, the height of every other vertex is deter-

mined once one of its incident faces has a determined plane. This implements

the fact that the propagation wave �xing the height of a vertex can come

from any of its three incident faces (�gure 6b). This rule can be represented

by setting each vertex node as OR type, and linking it to the face nodes of

its incident faces �gure 6c.
R4: The height prop agation must reach all vertices. For this, we add a root AND

node r to Ghp and link it to all vertex nodes.

Note that a feasible solution tree of Ghp pro vides instructions to deriv ea

height propagation that reac hes all vertices, starting at the four pre-speci�ed

heights.
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4.2 Cost Function

In order to penalize propagations using sets of almost-aligned vertices, we pro-

ceed as follows. Consider a height propagation that �xes a face-plane f from the

point coordinates of three previously �xed vertices vi, vj and vk. We can simply

penalize the corresponding arcs in Ghp emanating from f by giving them a cost

that is inversely proportional to the area of the triangle de�ned by vi, vj and vk
in the projection. The rest of arc costs are actually irrelevant, but need to be

positiv ely de�ned [4]. In sum, for every directed arc (u; v) we de�ne its cost as

follows:

1. c(u; v) = 1=det(v1; v2; v3), if u is a dummy-face AND node and v is any one

of its descendants. Here, vi, vj and vk are the homogeneous coordinates of

the v ertices associated with the three descendants of u.
2. c(u; v) = 1, if u is an OR node.
3. c(u; v) = 1, if u is the root AND node.

Once the least cost solution T is found, the projection can be made robust

to slight vertex perturbations as follows. At a vertex v receiving more than one

propagation wave, w e puta T/TT-transformation on all faces�xing v, except

on the one in the propagation wave represented in T .

4.3 Complexity Analysis

The worst-case complexity of computing the optimal solution of a cyclic AND/OR

graph with n nodes is O(n3) [4]. We now prove that the number of nodes in Ghp

gro ws linearly with the number of vertices of the trihedral polygonal mesh.

Let e, v and f be the number of edges, vertices and faces of the given mesh.

Then, 2e = 3v because the mesh is trihedral. Moreover, if the mesh hash holes,

with \the outside" of the mesh counting as a hole too, then Euler's relation says

that v � e + f = 2 � h. F romthese tw oequalities the number of faces of the

mesh can be written in terms of the number of vertices and holes, f = v+4
2
� h.

Let us now count the n umber of nodes added by each of the rules R1,...,R4:

{ Rule R1 adds four vertex nodes.
{ Rule R2 adds one OR node for each face, amounting to f = v+4

2
�h = O(v)

total nodes, assuming a constant number of holes. Also, for every face f this

rule adds cf =
�
deg(f)

3

�
dummy-face AND nodes. Although this number is

clearly in the worst case O(deg(f)3), if w e divide the sum of face degrees by

the number of faces, the average face degree is six, at an increasing number

of randomly placed vertices in the mesh:P
allfaces deg(fi)

f
=

3v
v+4
2
� h

=
6v

v + 4� 2h
;

which will keep the number of dummy-face AND nodes linearly growing:�
6

3

�
f = 20

�
v + 4

2
� h

�
= O(v):
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{ Rule R3 adds a linear number of OR vertex nodes.

{ Rule R4 only adds one AND node, the root.

Up to no ww eha ve assumed thatthe four v ertices triggering thepropaga-

tion are a priori selected. But other height propagations starting at other four

vertices could yield better height propagations. To test all possibilities, w edo

not need to repeat the AND/OR search for every di�erent combination of four

vertices. Indeed, note that these vertices just �x the planes of the faces they

belong to. So, an y other setof four v ertices on thesefaces will yield the same

optimal propagations, provided that tw o of them lie on the common edge. We

can equivalen tly think of pairs of faces triggering the propagation and use their

face nodes as TERMINAL in Ghp. The choice of TERMINAL vertices (instead

of TERMINAL faces) w as doneto be coherent with previous explanations. In

sum, if one wan ts to search over all possible starting places of propagation, then

for eac h pair of adjacent faces the AND/OR search needs to be repeated. This

amounts to solv ee = 3
2
v optimization problems in the worst case, meaning that

the o verall complexity will be O(v4), under the assumption that the face degree

is six.

5 Conclusion

We have shown how trihedral mesh projections can capture the spatial shape of

a giv en object's surface, up to some trivial ambiguities. We have also presented

a local strategy that takes a trihedral projection as input and places some tri-

angular faces at strategic places until it is made robust to perturbations in its

vertex coordinates. Finally, w e have found how to put these triangles so that the

spatial reconstruction is performed in the most accurate way possible, avoiding

height propagations along degenerate paths.

Although we can deal with an important range of surfaces, no algorithm has

been devised yet to obtain trihedral meshes approximating surfaces with saddle-

crests or saddle-valleys. This constitutes a main issue for further research.
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