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This paper explores the possibility of ap-
proximating a surface by a trihedral polyg-
onal mesh plus some triangles at strategic
places. The presented approximation has
attractive properties. It turns out that the
Z-coordinates of the vertices are completely
governed by the Z-coordinates assigned to
four selected ones. This allows describing
the spatial polygonal mesh with just its 2D
projection plus the heights of four vertices.
As a consequence, these projections essen-
tially capture the “spatial meaning” of the
given surface, in the sense that, whatever
spatial interpretations are drawn from them,
they all exhibit essentially the same shape.
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A polygonal mesh is a piecewise linear 2-manifold
made up with planar polygonal patches, glued along
the edges, and possibly containing holes. A poly-
gonization method is an algorithm able to con-
struct a polygonal mesh approximating a given
surface. The literature on polygonization methods,
mainly on triangulations, is vast (see for exam-
ple [3, 18], or [6] for a survey on triangulations
and algorithms to simplify them). In general, the
main goal is to obtain meshes that are close to
the surface within a known error, as a way to
understand and represent the surface shape [12].
Other goals have been to increase the speed of
polygonization and the ability of the polygonizer
to satisfy some constraints in the solution (e.g.,
one might request the most accurate approxima-
tion using a given number of line segments or
triangles).
In general, a polygonal mesh cannot be reconstructed
from its projection onto a plane because infinitely
many meshes generate exactly the same projection.
For example, for the triangular mesh projection in
Fig. 1, there are many different reconstructions, as il-
lustrated. The first two seem to have no meaning; but,
actually, there is a rather “hidden” meaningful recon-
struction of Nefertiti’s face available. Can we obtain
a spatial mesh approximating this face so that its pro-
jection still keeps its spatial meaning?
Certainly, there is a class of meshes whose pro-
jections fully determine the spatial shape once the
heights of four vertices are given. We call these pro-
jections unequivocal because their reconstructions
represent essentially the same object. For example,
the projection in Fig. 2a unequivocally represents
a truncated tetrahedron, as seen in Fig. 2d–f. Observe
that it suffices to set the heights of P, Q, T and R
to determine those of S and U, using the fact that
all cofacial vertices must be coplanar and, hence, S
must lie on the face-plane RPQS, and U on SQTU.
In general, if all vertices of a polyhedron have ex-
actly three incident faces, the heights of a vertex
and its three neighbours are sufficient to determine
the heights of the rest, as Sect. 2 explains. One of
our goals is then to approximate any given surface
with a polygonal mesh yielding unequivocal projec-
tions that uniquely identify the spatial shape once
the heights of four vertices (selected in this way)
are given. Section 2 presents the trihedral polygonal
mesh, the model we use to this end, and shows how
its projections are unequivocal in the sense given
above.
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Fig. 1. Arbitrary reconstructions of this triangulated
projection have no spatial meaning except for a very
specific one: it shows Nefertiti’s face
Fig. 2a–f. A truncated tetrahedron (a) and three pos-
sible reconstructions (d–f). The slightest perturba-
tion destroys the correctness of the projection (b), but
this can be avoided adding new triangular faces (c)

Nevertheless, we need to go beyond this goal if this
representation is to be useful. Consider what hap-
pens if the (x, y) vertex positions in Fig. 2a are
slightly altered (Fig. 2b). The new projection no
longer represents a correct truncated tetrahedron,
for to be so, the edges joining the two triangular
faces, when extended, should be concurrent at the
apex of the (imaginary) original tetrahedron. Equiv-
alently, note that once P, Q, R and T are given,
the height of U is overconstrained, for it can be
calculated from both the coplanarity of SQTU or
that of RPTU. For generic vertex positions, the
two values of this height do not necessarily coin-
cide, and the only spatial reconstruction that keeps
cofacial vertices coplanar is a trivial one, with
all vertices lying on a single plane [10, 11]. This
makes the four provided heights inconsistent be-
tween each other. In sum, the consistency of the

four heights only holds at very specific positions
of the vertices and inevitable discretization errors
will make this representation useless. This prob-
lem is common in computer vision [13] and com-
puter graphics [15, 17], and mathematical charac-
terizations of generically consistent projections are
given in [14, 16]. The way we use to make this
representation robust against these errors follows
from this observation: if the height of a vertex in
a projection is overconstrained because the vertex
lies on several planes that fix it, we just introduce
new triangular faces around it for preventing this
to occur (Fig. 2c). Section 3 gives a fast algorithm
to this end, derived from this observation, using
the so-called T/TT-transformations. Section 4 de-
scribes a complementary optimization step that prop-
erly places these transformations to minimize the
reconstruction errors by reducing the problem to
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a cyclic AND/OR graph search. We finally conclude
in Sect. 5.

2 Trihedral polygonal meshes

Trihedral meshes, i.e., those where all vertices have
exactly three incident faces, produce unequivocal
projections. Indeed, Fig. 3 shows that in them, af-
ter fixing the planes of two adjacent faces, we have
enough data to derive the heights of the remaining
vertices. Clearly, the heights of the bold vertices fix
the shadowed face-planes and the heights of other
vertices on these face-planes. At this point, any other
surrounding face has three vertices whose heights are
known, and so, its plane can be fixed too. The same
argument can be iteratively applied and the result
is a height propagation reaching all vertices in the
projection.
In the schematic representation of this height prop-
agation (Fig. 3) every face f receives three incom-
ing arrows from the three vertices that fix it. The
derivation of heights for the rest of vertices on f
is indicated with outgoing arrows from f . The re-
sult is a tree-shaped structure spanning all vertices
and faces. In this tree, a path from any of the ini-
tial four vertices to any other vertex will be hereafter
referred to as a propagation wave. Note that height
propagations where a face is fixed from three (al-
most) collinear vertices must be avoided. Section 4
gives a way to compute propagations eluding these
collinearities.
A trihedral mesh approximating a convex or concave
surface can be readily obtained by distributing a set
of random points all over the surface and comput-
ing its tangent planes at these points. This leads to
a plane arrangement whose upper envelope, if the
surface is convex, or lower envelope, if it is concave,
provides a good mesh approximation of the surface.
Since the tangent plane orientations are random, any
three of such planes meet in a single point, and hence
the mesh is trihedral.
Alternatively, a trihedral mesh approximation of
a piece of concave or convex surface can be ob-
tained by starting with a rough mesh approximation
and iteratively applying a bevel-cutting [5] and/or
a corner-cutting [2] operation to attain the desired
approximation.
The situation becomes more complex when concav-
ities, convexities and saddle-like shapes are simulta-
neously present, as neither of the previous strategies

overconstrained

Fig. 3. A height propagation starting at four prespecified
(bold) vertices. Several vertices can have an overcon-
strained height

can be directly applied. A straightforward solution
to find a trihedral mesh approximation of a general
surface consists of computing the three-dimensional
Voronoi diagram of a set of points sampling the
surface. The algorithm encompasses the following
steps, where S denotes the input surface to be poly-
gonized:
1. Generate points on S at random with a density

proportional to the curvature of S.
2. Replace each point p produced in step 1 by a pair

of generating points, p′ and p′′, placing them on
the normal to S at p, one in each side of S, at
the same distance from p. This distance must be
sufficiently small so that the line-segment con-
necting p′ and p′′ penetrates the surface exactly
once.

3. Construct the three-dimensional Voronoi diagram
induced by all generating points. Each such point
will yield one polyhedral Voronoi cell in the dia-
gram, possibly unbounded.

4. For each polygonal face separating two cells, if
the two cells correspond to points on different
sides of S, select this face as part of the desired
output polygonization. Collecting such faces, we
get a polygonization with only trihedral or tetra-
hedral vertices, with three and four incident faces,
respectively.

5. Use one of the local operations shown in the bot-
tom row of Fig. 4 to replace every tetrahedral
vertex with trihedral ones. Output the resulting
polygonization.
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Fig. 4. Top row: a triangulated model of a Venus (left) is symmetrically sampled (center) to obtain a polygonization with only
trihedral and tetrahedral vertices (right). Center row: zoom into three selected areas. Bottom row: local operations used to
remove tetrahedral vertices

We easily see that this algorithm produces a trihe-
dral mesh. Since we select faces from the Voronoi
diagram of points in general position, the poly-
gonization obtained in step four either contains
trihedral or tetrahedral vertices. (Any five points
in general position will not be co-spherical, and
hence, the vertices of the Voronoi diagram will
have at most four incident Voronoi cells.) Any

tetrahedral vertex of this polygonization can be fi-
nally removed by using one of the two operations
shown in the bottom row of Fig. 4. If there is
a plane that separates the vertex from its neigh-
bours, we simply truncate the vertex (bottom left
of Fig. 4), otherwise it is a saddle point and we re-
place it with four trihedral vertices (bottom right
of Fig. 4).
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Fig. 5. a,b T and TT-transformations. c Overhanged and self-intersecting reconstructions induced by T-transformations at
locally non-convex faces. In all figures, newly added edges are shown in thick lines

This strategy has been partially implemented until
step four, using the Qhull package to compute the re-
quired 3D Voronoi diagram [9]. Strictly, Qhull com-
putes convex hulls, but it can also be used to de-
rive Delaunay triangulations, halfspace intersections
about a point, Voronoi diagrams, furthest-site De-
launay triangulations, and furthest-site Voronoi dia-
grams in 2D, 3D, and higher dimensions. It imple-
ments the Quickhull algorithm for computing convex
hulls [1] and is able to handle rounding errors inher-
ent to the use of floating point arithmetic. The top
row of Fig. 4 shows the results of the strategy when
applied to a triangulated surface of a Venus sculp-
ture. The input sculpture is shown (left) together with
the two layers of generating points produced in step 2
(center), and the polygonization generated in step 4
(right). The middle row of Fig. 4 shows three en-
largements of selected areas. One can come up with
other “trihedrization” strategies with possibly bet-
ter results, mainly concerning the smoothness of the
approximation, but this does not modify the discus-
sions that follow.

3 T and TT-transformations

In a trihedral mesh a projection is overconstrained
because any of its vertices lies on three faces, and
potentially up to three propagation waves can deter-
mine a height at the same time (Fig. 3). However, as
done in Fig. 2c, this can be avoided by adding trian-
gular faces. To this end, we first compute an arbitrary

height propagation spanning all vertices and check
which of them receives more than one wave. We then
take one overconstrained vertex v at a time and pre-
vent all but one waves from reaching v as follows. To
stop the wave getting v from face f , we apply either
of these two transformations (Fig. 5a,b):

– A T-transformation, which places a new edge
joining the two neighbouring vertices of v in f ,
say vl and vr .

– A TT-transformation, which places a new vertex
v′ on f , near v, and the three new edges (v′, v),
(v′, vl) and (v′, vr).

After either transformation, f is split into two or
three faces respectively, so that it cannot constrain
the height of v anymore. Also, the added triangles are
innocuous because all heights can still be determined
from the four initial ones.
Which transformation is preferred depends on the
geometry of face f around vertex v. If all points
inside the triangle vlvrv belong to f , we say that
f is locally convex at v. So, for situations where
f is locally convex at v, simplicity prevails and
T-transformations are enough (Fig. 5a). When local
non-convexities are present (Fig. 5b), T-transform-
ations would yield occluded or partially occluded
crossing edges whose spatial reconstructions have
overhanged parts or self-intersecting faces (Fig. 5c).
Here, TT-transformations are preferred for they can
avoid this.
An observation complements the strategy. In an
overconstrained vertex v, either two or three in-
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Fig. 6a–f. A projected dodecahedron (a) together with a height propagation (b) and the T-transformations it yields (c). A pro-
truded tetrahedron (d) and two possible corrections: e involving TT-transformations, and f, involving only T-transformations

coming propagation waves arrive. If no more than
one of them comes through a locally non-convex
face, then we can always drop the incidence con-
straint in this vertex by only using T-transformations:
we just leave the eventual “bad” wave to deter-
mine the height of v and stop the others with
T-transformations. This completes the description
of a one-sweep algorithm removing overdetermi-
nation. As an example, Fig. 6a–c shows a pro-
jected dodecahedron before and after applying
T-transformations.
In general, when the approximated surface is uni-
formly convex, or uniformly concave, all faces of
the resulting trihedral polygonal mesh will be lo-
cally convex, and hence T-transformations will suf-
fice. However, even when local non-convexities ex-
ist at the faces, there still might be some height
propagations where only T-transformations suffice.
In Fig. 6e, for example, an algorithm comput-
ing an arbitrary propagation can be forced to use
TT-transformations, whereas with a proper search,
a robust projection is obtained only with T-transform-
ations (Fig. 6f). But one certainly finds projections
where TT-transformations are strictly necessary [10,
Sect. 8.4].

4 Optimal propagations and cyclic
AND/OR graphs

The algorithm in the preceeding section corrects the
incidence structure by finding an arbitrary height
propagation and inserting a T- or a TT-transformation
whenever a vertex height is determined by two or
more faces. However, arbitrary propagations might
travel along “degenerate paths” where the planes for
some of the faces are determined by three aligned
(or almost aligned) vertices. Clearly, these degen-
erate propagations must be avoided if we want to
minimize the errors during the reconstruction of the
spatial shape from the initial set of four heights.
The following experiment exemplifies this point. For
the projection of a trihedral strip in Fig. 7a, know-
ing the heights of points 1, 2, 3 and 4 produces
a height propagation since, for i = 1, 3, 5, 7, . . . , the
3D locations of points i, i + 1 and i + 2 determine
the plane where the points i + 4 and i + 5 lie and,
thus, their height on the spatial reconstruction. How-
ever, this plane becomes numerically ill-determined
as the angle α between the points i, i +1 and i +2 ap-
proaches 180◦ and, when this happens, small errors
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Fig. 7a–f. Error propagations. Given the projection of a trihedral strip (a), the Z coordinates of points 1, 2, 3 and 4 trigger
a height propagation along the whole strip. Experiments have been done with the strips in b and c, also shown in d together
with their spatial reconstructions. e,f The maximum relative error ρ of the computed heights on the two strips respectively
when the XY coordinates of the points are perturbed within a circle of radius r . See the text for details

on previous heights may accumulate rapidly along
the height propagation. We can see this effect on the
two strips in Fig. 7b,c, whose angles are α = β =
120◦ and α = 175◦, β = 10◦, respectively, with all in-
terior edges of length 1. Their spatial reconstructions

are shown in Fig. 7d, for z1 = 0.01, z2 = z3 = 0.05
and z4 = 0.1. For the two strips respectively, the
plots in Fig. 7e,f show the maximum relative error
ρ in the height of point i, when the XY coordi-
nates of all points are perturbed within a circle of
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radius r around their nominal position. The bounds
on ρ have been obtained by randomly perturbing
all points and then computing the height propaga-
tion, repeating this process 10 000 times. The results
show that, for a fixed r , the errors accumulate lin-
early as the propagation proceeds. Moreover, by lin-
early varying r , the errors increase linearly as well.
Note that, while for the first strip the errors keep
moderately low, they rapidly increase for the second
due to the high degeneracy of the height propaga-
tion. Thus, an algorithm to find height propagations
that avoid these degeneracies is needed. The rest of
the section presents one, based on finding the least-
cost solution of cyclic AND/OR graphs [8]. We now
recall some preliminary concepts about this kind of
graphs.

4.1 Cyclic AND/OR graphs

An AND/OR directed graph G, can be regarded
as a hierarchic representation of possible solution
strategies for a major problem, represented as a root
node, r , in G. Any other node v represents a subprob-
lem of lower complexity whose solution contributes
to solve the problem at hand.
There are three types of nodes: AND nodes, OR
nodes and TERMINAL nodes. Every node v has a set
S(v) of successor nodes, possibly empty, to which it
is connected in either of two ways:

– An AND node v is linked to all nodes si ∈ S(v)
through directed AND arcs (v, si), meaning that
the subproblem for v can be trivially solved once
all subproblems for the nodes in S(v) have been
solved.

– An OR node v is linked to all nodes si ∈ S(v)
through directed OR arcs (v, si), meaning that the
subproblem for v can be trivially solved once any
one of the subproblems for the nodes in S(v) has
been solved.

– A TERMINAL node represents a yet-solved or
trivial subproblem and has no successors.

With this setting, a feasible solution to the problem
becomes represented as a directed subgraph T of G
verifying:

– r belongs to T .
– If v is an OR node and belongs to T , then exactly

one of its successors in S(v) belongs to T .
– If v is an AND node and belongs to T , then every

successor in S(v) belongs to T .

– Every leaf node in T is a TERMINAL node.
– T contains no cycle, it is a tree.

One can also assign a cost c(u, v) > 0 to every arc
(u, v) in G and ask for the solution T with mini-
mum overall cost C(T ) = ∑

(u,v)∈E(T ) c(u, v), where
E(T ) is the set of arcs of T . Note that, as defined,
G can contain cycles. This turns out to be the main
difficulty for this optimization problem, which, in
the past, was usually tackled by a rather inefficient
trick: “unfolding” the cycles and applying standard
AND/OR search methods for acyclic graphs. How-
ever, explicit treatment of cycles has recently been
considered, and an efficient algorithm is achieved
in [8].
The search for an optimal height propagation is next
reduced to this model. This amounts to (1) construct-
ing an AND/OR graph Ghp whose feasible solutions
define a height propagation, and (2) define a cost
function that promotes non-degenerate propagations
over degenerate ones.

4.2 Feasible height propagations

A height propagation can be defined by the following
rules, with the given straightforward translation into
AND/OR subgraphs.

R1: Four selected vertices of the projection trigger
the propagation. For this, we put a TERMINAL
node for each of the triggering vertices.

R2: Every face in the polygonization can be de-
termined once the heights of any three of its
vertices are determined. If deg( f ) denotes the
number of vertices of face f , then there are
c f = (deg( f )

3

)
possible combinations of three

vertices determining f . If we put a node in Ghp
for every vertex, except for the four trigger-
ing ones, then this rule is translated by adding
an OR node for every face, linked to c f new
“dummy-face” AND nodes, each representing
one of the above combinations. Each dummy-
face node is in turn linked with arcs to the three
involved vertices in the combination. Figure 8a
gives a schematic representation. The newly in-
troduced vertex nodes have not been assigned
a type yet. This type is induced by the following
rule.

R3: Except for the initial four vertices, the height
of every other vertex is determined once one of
its incident faces has a determined plane. This
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Fig. 8a–c. AND/OR subgraphs for the propagation rules. AND nodes are indicated by joining all their emanating arcs. a Con-
structed subgraph translating rule R2 for a quadrilateral face. Dummy-face nodes are shadowed in grey. Note that, actually,
there is only one vertex node for each vertex in the trihedral mesh, but for clarity they are here duplicated. b Propagation
waves reaching a vertex. c Subgraph for rule R3, with an arc for each of the possibilities in b

implements the fact that the propagation wave
fixing the height of a vertex can come from any
of its three incident faces (Fig. 8b). This rule
can be represented by setting each vertex node
to OR type, and linking it to the face nodes of its
incident faces (Fig. 8c).

R4: The height propagation must reach all vertices.
For this, we add a root AND node r to Ghp and
link it to all vertex nodes.

Note that a feasible solution tree of Ghp provides in-
structions to derive a height propagation that reaches
all vertices, starting at the four pre-specified heights.

4.3 Cost function

In order to penalize propagations using sets of
almost-aligned vertices, we proceed as follows. Con-
sider a height propagation that fixes a face-plane f
from the point coordinates of three previously fixed
vertices vi , v j and vk . We can simply penalize the
corresponding arcs in Ghp emanating from f by giv-
ing them a cost that is inversely proportional to the
area of the triangle defined by vi , v j and vk in the
projection. The rest of arc costs are actually irrele-
vant, but need to be positively defined [8]. In sum,
for every directed arc (u, v) we define its cost as
follows:

1. c(u, v) = 1/ det(vi, v j , vk), if u is a dummy-face
AND node and v is any one of its descendants.
Here, vi , v j and vk are the homogeneous coor-
dinates of the vertices associated with the three

descendants of u, with a one in the last coordi-
nate.

2. c(u, v) = 1, otherwise.

Once the least-cost solution T is found, the projec-
tion can be made robust to slight vertex perturbations
as follows. At a vertex v receiving more than one
propagation wave, we put a T/TT-transformation on
all faces fixing v, except on the one in the propaga-
tion wave represented in T .

4.4 Complexity analysis

The worst-case complexity of computing the optimal
solution of a cyclic AND/OR graph with n nodes is
O(n3) [8]. We now prove that the number of nodes in
Ghp grows linearly with the number of vertices of the
trihedral polygonal mesh.
Let e, v and f be the number of edges, vertices and
faces of the given mesh. Then, 2e = 3v because the
mesh is trihedral. Moreover, if the mesh has h holes,
with “the outside” of the mesh counting as a hole
too, then Euler’s relation says that v− e+ f = 2−h.
From these two equalities the number of faces of
the mesh can be written in terms of the number of
vertices and holes, f = v+4

2 − h. Let us now count
the number of nodes added by each of the rules
R1, . . . , R4:

– Rule R1 adds four vertex nodes.
– Rule R2 adds one OR node for each face, amount-

ing to f = v+4
2 − h = O(v) total nodes, assum-

ing a constant number of holes. Also, for every
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face f this rule adds c f = (deg( f )

3

)
dummy-face

AND nodes. Although this number is clearly in
the worst case O(deg( f )3), if we divide the sum
of face degrees by the number of faces, the aver-
age face degree is six, at an increasing number of
randomly placed vertices in the mesh:∑

allfaces deg( fi)

f
= 3v

v+4
2 −h

= 6v

v+4−2h

which will keep the number of dummy-face AND
nodes linearly growing:(

6

3

)
f = 20

(
v+4

2
−h

)
= O(v)

– Rule R3 adds a linear number of OR vertex nodes.
– Rule R4 only adds one AND node, the root.

Up to now we have assumed that the four ver-
tices triggering the propagation are a priori selected.
But other height propagations starting at other four
vertices could yield better height propagations. To
test all possibilities, we do not need to repeat the
AND/OR search for every different combination of
four vertices. Indeed, note that these vertices just
fix the planes of the faces they belong to. So, any
other set of four vertices on these faces will yield
the same optimal propagations, provided that two of
them lie on the common edge. We can equivalently
think of pairs of faces triggering the propagation
and use their face nodes as TERMINAL in Ghp. The
choice of TERMINAL vertices (instead of TERMI-
NAL faces) was done to be coherent with previous
explanations. In sum, if one wants to search over all
possible starting places of propagation, then for each
pair of adjacent faces the AND/OR search needs to
be repeated. This amounts to solving e = 3

2v opti-
mization problems in the worst case, meaning that
the overall complexity will be O(v4), under the as-
sumption that the face degree is six.

5 Conclusion

We have shown how trihedral mesh projections can
capture the spatial shape of a given object’s surface,
once the heights of four vertices are known, and we
have given an algorithm to derive trihedral meshes
from arbitrary input surfaces. We have also presented
a local strategy that takes a trihedral projection as
input and places some triangular faces at strategic
places until its reconstructibility is made robust to

perturbations in its vertex coordinates. Finally, we
have found how to put these triangles so that the
spatial reconstruction is performed in the most ac-
curate way possible, avoiding height propagations
along degenerate paths.
One issue that must be solved is that errors accumu-
late from one vertex to another along a height prop-
agation, as shown in Fig. 7. The AND/OR search
algorithm reduces these errors but, for the same pur-
pose, one could additionally extend the number of
vertices for which a Z value is given. Optimizing
the position of such vertices is almost certainly in-
tractable, but simple heuristics could be used to add
vertices to a “specified Z” set whenever errors accu-
mulated along a propagation path become unaccept-
able. This point deserves further attention.
The main issue currently concentrating our efforts is
to find an enhancement of (or an alternative to) the
trihedrization algorithm presented in Sect. 2. Clearly,
as observed in the middle row of Fig. 4, the ob-
tained polygonization contains small polygons, al-
most orthogonal to the input surface. This kind of
“staircase effect” may produce numerical instabili-
ties when attempting to reconstruct the spatial shape
from its projection, and should be avoided. A pos-
sible solution might be found by using projective
polarities [4]. It is well known that the projective
polar of a triangulated polyhedron (with respect to
a quadric) is a trihedral polyhedron. Thus, in princi-
ple, to get a trihedral mesh of a surface S, one could
derive an auxiliary surface S∗, the polar of S through
a polarity P [7], and then apply P−1 to a triangulation
of S∗, to obtain a trihedral mesh approximating S.
We believe this is a promising method to increase the
smoothness of the obtained polygonization.
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