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Box Approximations of Planar
Linkage Configuration Spaces
This paper presents a numerical method able to compute all possible configurations of
planar linkages. The procedure is applicable to rigid linkages (i.e., those that can only
adopt a finite number of configurations) and to mobile ones (i.e., those that exhibit a
continuum of possible configurations). The method is based on the fact that this problem
can be reduced to finding the roots of a polynomial system of linear, quadratic, and
hyperbolic equations, which is here tackled with a new strategy exploiting its structure.
The method is conceptually simple and easy to implement, yet it provides solutions of the
desired accuracy in short computation times. Experiments are included that show its
performance on the double butterfly linkage and on larger linkages formed by the con-
catenation of basic patterns. �DOI: 10.1115/1.2437808�
Introduction
A planar linkage is a set of rigid bodies, also called links, pair-

ise articulated through revolute or slider joints, all lying in a
lane. A linkage configuration is an assignment of positions and
rientations to all links that respects the kinematic constraints im-
osed by all joints. As it is well known, the configuration space of
linkage—the set of all possible configurations—corresponds to

he solution set of a system of polynomial equations and, thus,
orms an algebraic variety. This paper presents a numerical
ethod able to approximate this variety at any desired resolution,

rrespective of whether it contains a finite number of isolated
oints �corresponding to rigid configurations� or higher-
imensional connected components �corresponding to finite mo-
ions of the linkage�.

Many problems translate into the above one, or require an effi-
ient module able to solve it. For instance, in robotics this prob-
em arises when solving the forward kinematics of parallel ma-
ipulators �1�, when planning the coordinated manipulation of an
bject or the locomotion of a reconfigurable robot �2�, or, as re-
ently shown, in simultaneous localization and map building �3�.
he problem also appears in other domains, such as in the simu-

ation and control of complex deployable structures �4�, the theo-
etical study of rigidity �5�, or the conformational analysis of mol-
cules �6�. The common denominator in all cases is the existence
f one or more kinematic loops defining a linkage, for which
onfigurations must eventually be sought.

Whereas specific methods for many linkages abound, a few
ecent methods are already universal, being able to manage arbi-
rary planar mechanisms. For example, Dhingra used reduced
röbner-Bases and Sylvester’s elimination to obtain a simple
olynomial condition describing the solution set �7�. Nielsen and
oth also gave an elimination-based method that uses Dixon’s

esultant to derive the lowest degree polynomial of the algebraic
ystem under study �8�. This technique was later improved by
ampler �9�, who used a complex-plane formulation to reduce the

ize of the final eigenvalue problem by half. The problem can also
e tackled using general continuation-based solvers like �10�, that
tart with a system whose solutions are known, and then transform
t gradually into the system whose solutions are sought, while
racking all solution paths along the way. In general, it can be said
hat, while elimination techniques tend to be faster and acceptably
ccurate when the number of roots is moderate, continuation
ethods seem more efficient and accurate when this number is

arge.
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The previous strategies properly manage configuration spaces
with isolated points, but it is unclear how they could be applied to
deal with higher-dimensional components. Although recent con-
tinuation methods are able to compute the irreducible decomposi-
tion of the solution variety �11�, informing on the number of con-
nected components and their degree, to the best of our knowledge
they can only provide sample-based approximations for each com-
ponent. Contrarily, the method herein presented is able to return
complete approximations �i.e., approximations that include all so-
lution points and not just samples� of all the solution components,
independently of their dimension. This approximation comes in
the form of a collection of boxes, not larger than a user-defined
size, that fully encloses the solution variety. Similar approxima-
tions can be derived using interval-based solvers. Two main
classes of interval-based methods have been explored in the ro-
botics literature: those based on the interval version of the Newton
method �also known as the Hansen algorithm� and those based on
polytope approximations of the solution set. To our knowledge,
the first applications of the Hansen algorithm in this field were
due to Rao et al. �12� and Didrit et al. �13�, who respectively
applied the interval Newton method to the inverse kinematics of
6R manipulators and the forward analysis of Stewart-Gough plat-
forms. Rather than plunging into specific mechanisms, Castellet
and Thomas then tackled general single-loop inverse kinematics
problems �14�, showing that the Hansen algorithm can be sped up
if it is used in conjunction with other necessary conditions drawn
from the problem itself. Later on, successful applications of the
interval Newton method were also reported by Merlet in singular-
ity analysis and mechanism design of parallel manipulators
�15–17�. Polytope-based techniques, on the other hand, were de-
veloped in the early nineties by Sherbrooke and Patrikalakis in the
context of constraint-based CAD �18�. These exploit the convex-
hull and subdivision properties of Bernstein polynomials, which
avoid the computation of derivatives while maintaining the qua-
dratic convergence of the Hansen algorithm. The method we
present here can be seen as part of the latter family. However, our
method is conceptually simpler and easier to implement than gen-
eral polytope-based methods, yet it provides solutions at the de-
sired accuracy in shorter computation times.

The rest of the paper is organized as follows. Section 2 reviews
a standard way to derive the cycle equations of a planar linkage.
The strategy used to solve them is then presented in Sec. 3, fol-
lowed by experimental results showing its performance and con-
vergence order in Sec. 4. The treatment of slider joints is then
explained in Sec. 5 and, finally, Sec. 6 summarizes the main con-

tributions of this work.
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Formulating the Cycle Equations
To ease the explanations, we will start by considering linkages

nly containing revolute joints, leaving the extension to the gen-
ral case for Sec. 5. Also, for the purpose of this paper, a link will
ither be a single bar, or multiple bars forming a rigid compound.

To obtain the kinematic equations of a planar linkage, we fol-
ow the same formulation used in �8�, which references the rota-
ion angles of all bars to a fixed, ground coordinate system. With
his, every angle �i assigned to a bar bi defines a unit vector
i= �cos��i� , sin��i�� that gives the orientation of the bar. We then
onsider a graph containing a node for each link, and an edge
onnecting two links if they are sharing a joint. By traversing a
ycle C of this graph, it must hold that

�
bi�C

��i,C� · li · ui = 0 �1�

here the sum spans all bars bi found around C, li is the length of
he ith bar, and ��i ,C� is +1 or −1 depending on whether ui has
he same or opposite orientation than the cycle. This vector sum
ields two scalar equations of the form

�
bi�C

��i,C�li cos��i� = 0 �2�

�
bi�C

��i,C�li sin��i� = 0 �3�

nd, by collecting all of these for a maximal set of independent
ycles of the graph �19�, we finally get a set of necessary and
ufficient conditions describing the valid configurations of the
inkage.

To illustrate the process, and to facilitate the comparison with
revious work, we consider the same example as in �8� and �9�, a
ouble butterfly linkage, which is the only one of the eight-bar
inkages that does not contain a four-bar loop �Fig. 1�. Using
aman’s theorem �20�, it can be shown that this mechanism

Fig. 1 Double butterfly linkage
oves with one internal degree of freedom and that it becomes

98 / Vol. 129, APRIL 2007
rigid if the orientation of one more link is fixed, having up to 18
assembly modes in this case �21�. On this mechanism, we select
the three independent cycles that leave the ground link via link 7,
and return via links 4, 5, and 3, respectively, to get the following
equations:

l7 cos��7� + b2 cos��2 + �2� − l4 cos��4� − a6 cos��6�

+ a0 cos��0� = 0

l7 sin��7� + b2 sin��2 + �2� − l4 sin��4� − a6 sin��6� − a0 sin��0� = 0

l7 cos��7� + a2 cos��2� + a1 cos��1� − l5 cos��5� + b0 = 0

l7 sin��7� + a2 sin��2� + a1 sin��1� − l5 sin��5� = 0

l7 cos��7� + a2 cos��2� + b1 cos��1 + �1� − l3 cos��3�

− b6 cos��6 + �6� + a0 cos��0� = 0

l7 sin��7� + a2 sin��2� + b1 sin��1 + �1� − l3 sin��3�

− b6 sin��6 + �6� − a0 sin��0� = 0

It is important to realize that one can always derive a similar
system for any planar linkage and that all of its equations will be
linear in the sines and cosines of the unknown angles. �The sines
and cosines of the shifted angles can always be appropriately ex-
panded so as to satisfy the previous statement.� Actually, if the
linkage has nl links and nj joints, its graph will have nc=nj −nl

+1 independent cycles �19� and the system will be formed by m
=2nc trigonometric equations involving v=nl−1 variables �one
angle for each link, except for the ground link, whose orientation
is fixed, and used as a reference�.

To algebraize this system, we can apply the usual change of
variables xi=cos��i�, yi=sin��i�, and add one circle equation xi

2

+yi
2=1 for each angle, ending up with a polynomial system of the

form

L�v� = 0, C�v� = 0 �4�

where v= �x1 ,y1 , . . . ,xv ,yv� are the newly defined variables,
L�v�= �l1�v� , . . . , lm�v�� is a block of linear functions in the xi’s
and yi’s, and C�v�= �c1�v� , . . . ,cv�v�� is a block of quadratic func-
tions with ci�v�=xi

2+yi
2−1, i=1, . . . ,v. Finally, note that since all

variables are sines or cosines of angles, the search space where
the solutions of system �4� must be sought for is the set

B = �− 1,1� � ¯ � �− 1,1� � R2v

In the text below, any set of this kind—defined by the Cartesian
product of 2v intervals—will be referred to as a box of R2v and
we will write �xi

l ,xi
u� to denote the interval of a box along dimen-

sion i.

3 Search Strategy
The algorithm starts with the initial box B and isolates the valid

configurations it contains by iterating over two operations: box
shrinking and box splitting. Using box shrinking, portions of B
containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either �i� the box
is reduced to an empty set, in which case it contains no solution or
�ii� the box is “sufficiently” small, in which case it is considered a
solution box or �iii� the box can no more be “significantly” re-
duced, in which case it is bisected into two subboxes via box
splitting—which simply divides the largest interval at its
midpoint.

Provided box shrinking is sufficiently efficient, the third case
above is symptom that the box contains two or more solution
points, with some of them lying close to its walls. Thus, box
splitting allows separating such points. To converge to all solu-

tions, the whole process is then repeated for the newly created

Transactions of the ASME



s
t
u

e
t
3

t
L
t
b
t

g
u
L

t
i
t
+
i
s
f
i
t
a
t
s

w
t
t
B

L
F
c
t

J

ubboxes, and for the subboxes recursively created thereafter, un-
il one ends up with a collection of small boxes whose sizes are
nder a specified size threshold, �.
Before further precising this process, we will first see how to

liminate portions of a box that cannot contain any solution. De-
ailed pseudocode of the whole strategy will be given later, in Sec.
.2.

3.1 Box Shrinking. When reducing any box Bc�B note first
hat, since any solution inside Bc must be in the linear variety
�v�=0, we may shrink Bc to the smallest possible box bounding

he portion of this variety falling inside Bc. The limits of this new
ox along, say, dimension xi can be easily found by solving the
wo linear programs

LP1: Minimize xi, subject to: L�v� = 0,v � Bc

LP2: Maximize xi, subject to: L�v� = 0,v � Bc

iving, respectively, the new lower and upper bounds for xi. Fig-
re 2�a� illustrates the process on the xi-yi plane, in the case that
�v�=0 is a straight line.
Note however that Bc can be further reduced, as the circle equa-

ions C�v�=0 must also be satisfied. We take them into account as
llustrated in Fig. 2�b�. In short, for each angle �i, one only needs
o consider the gray area bounding the portion of the circle xi

2

yi
2=1 lying inside the rectangle Bc�= �xi

l ,xi
u�� �yi

l ,yi
u�. This area

s the intersection of two half-planes defined by two linear con-
traints that can be added to the previous linear programs. More
ormally, for each �i, we �a� compute the points Pi and Qi of
ntersection of Bc� with the circle, �b� obtain line s, the secant to
he circle through them, and its parallel line t tangent to the circle,
nd �c� add the two inequalities defining the region between l and
to LP1 and LP2. If we let Ri= �Pi−Qi� /2, these inequalities are
imply

wi · xi � di

wi · xi � 1

here xi= �xi ,yi�, di= �Ri�, and wi=Ri /di. Although more sophis-
icated bounds for circle arcs could be used, to ease the implemen-
ation we just consider this simple one, and we only apply it when

c� is fully contained in one quadrant of the xi-yi plane.
The effect of using these inequalities in conjunction with

�v�=0 is usually a much larger reduction of Bc, as illustrated in
ig. 2�c�. Note also that, altogether, these constraints define a
onvex polytope bounding the solution space of system �4�, i.e.,

Fig. 2 „a… Shrinking Bc to fit the linear variety L„v…=0, „b… half
box enclosing the intersection of L„v…=0 with the half-planes
he intersection of the line and the circle in the example of Fig. 2.

ournal of Mechanical Design
The smaller Bc, the tighter this polytope approximates the solution
space or, in other words, the smaller the error introduced in the
circle arc approximations. For small-enough boxes, the error will
become negligible and, therefore, the iteration of the above pro-
cess will reduce Bc to the smallest box bounding the solutions
inside it.

3.2 Pseudocode. Algorithm 1 gives the main loop of the pro-
cess. It receives as input the box B, the lists L and C containing
the equations L�v�=0 and C�v�=0, and two threshold parameters
� and �, and it returns as output S, a list of solution boxes. The
functions VOLUME�B� and SIZE�B� compute the volume and the
length of the longest side of B, respectively.

Algorithm 1. The top-level search scheme.
SOLVE-LINKAGE�B ,L ,C ,� ,��

1: S←�
2: P← �B�
3: while P�� do
4: Bc←EXTRACT�P�
5: repeat
6: Vp←VOLUME�Bc�
7: SHRINK-BOX�Bc ,L ,C�
8: Vc←VOLUME�Bc�
9: until IS-VOID�Bc� or SIZE�Bc��� or

Vc

Vp
	�

10: if not IS-VOID�Bc� then
11: if SIZE�Bc��� then
12: S←S� �Bc�
13: else
14: SPLIT-BOX�Bc ,B1 ,B2�
15: P←P� �B1 ,B2�
16: end if
17: end if
18: end while
19: return S

Initially, two lists are set up in lines 1 and 2, an empty list S of
“solution boxes,” and a list P of “boxes to be processed” contain-
ing B. A while loop is then executed until P gets empty �lines
3–18�, involving the following steps. Line 4 extracts the first box
from P. Lines 5–9 repeatedly reduce this box as much as possible,
via the SHRINK-BOX function, until either the box is an empty set
�IS-VOID�Bc� is true�, or it cannot be significantly reduced �Vc /Vp

	��, or it becomes small enough �SIZE�B����. In this last case,
the box is considered a solution for the problem. If a box is neither
a solution nor it is empty, lines 14 and 15 split it into two sub-

nes approximating the circular arc inside Bc, and „c… smallest
„b…
-pla
in
boxes and add them to P for further processing.

APRIL 2007, Vol. 129 / 399
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Notice that this algorithm implicitly explores a binary tree of
oxes, the internal nodes being boxes that have been split at some
ime, and its leaves being either solution or empty boxes. Solution
oxes are collected in list S and returned as output in line 19.
learly, the tree may be explored in either depth-first or breadth-
rst order, depending on whether line 15 inserts the boxes at the
ead or tail of P, getting identical output in any case.

The SHRINK-BOX procedure is sketched in Algorithm 2. It re-
eives as input the box B to shrink, and the lists L and C with the
quations L�v�=0 and C�v�=0. The procedure starts by gathering
nto a list T all linear constraints in L �line 1� and all half planes
pproximating the circle equations in C �lines 2–8�. Then, the
rocedure uses these constraints to reduce every dimension of the
ox, solving the linear programs in lines 10–13, which possibly
ive tighter bounds for the corresponding intervals.

lgorithm 2. The SHRINK-BOX procedure.
HRINK-BOX�B ,L ,C�
1: T←L
2: for all equations xi

2+yi
2−1=0 in C do

3: Bc�← �xi
l ,xi

u�� �yi
l ,yi

u�
4: if Bc� is contained in only one quadrant then
5: Compute wi and di �see the text�
6: T←T� �wi ·xi�di , wi ·xi�1�
7: end if
8: end for
9: for each i� �1, . . . ,v� do
0: xi

l← minimize xi subject to all eqs. in T and v�B
1: xi

u← maximize xi subject to all eqs. in T and v�B
2: yi

l← minimize yi subject to all eqs. in T and v�B
3: yi

u← maximize yi subject to all eqs. in T and v�B
4: end for

Observe that if system �4� has a finite number of isolated solu-
ions, algorithm 1 returns a collection of boxes containing them
ll, with each solution lying in one, and only one box. If, on the
ontrary, the solution space is an algebraic variety of dimension
ne or higher, the returned boxes will form a discrete envelope of
he variety. The accuracy of the output can be adjusted at will by
sing the � parameter, which fixes an upper limit for the width of
he widest side of all returned boxes.

Experiments
The algorithm has been implemented in C, and all CPU times

ill be given for a 2.6 GHz Intel Pentium 4 PC, running under
inux. The linear programs in the SHRINK-BOX function have been
olved using the SIMPLEX method implemented in the GLPK pack-
ge �22�.

The first experiment presented below solves the position analy-

Fig. 3 The six real solutions of the double butterfly
is of the double butterfly linkage when �6 is a fixed, known

00 / Vol. 129, APRIL 2007
angle, yielding a finite number of isolated solutions. The second
one solves the same problem but assuming that �6 is a free vari-
able, yielding a one-dimensional continuum of solutions. The
former case allows comparing the results to those published in �8�
and �9�, and the latter shows the algorithm’s performance for
problems rarely addressed in the literature. In both cases, we
adopt the geometric parameters used in �8� and �9�: a0=7, a1=7,
a2=5, b0=13, b1=6, b2=3, �0=36.87 deg, �1=22.62 deg, �2
=53.13 deg, l3=7, l4=9, l5=12, l7=11, a6=3, b6=2, and �6
=36.87 deg. Additional experiments are also included that show
the performance of the algorithm on linkages of growing size,
made up of repeated patterns.

4.1 Rigid Butterfly. The number of solutions of the double
butterfly linkage varies depending on the choice of driving joint
and the angle given to it. If we set �6=67.38 deg, the number of
observed solutions is six �8�. We note that, while continuation and
elimination-based methods must filter the solutions among the 18
possible complex roots, the one given here directly provides the
six real ones, shown in Fig. 3. All roots are in accordance with the
results in �8,9�.

Because of the nature of the algorithm all solutions are obtained
as intervals that bound them, which allows estimating the error
with respect to the exact position of the roots. This is equal or less
than 0.0013 deg in this case �the width of the longest interval in
Fig. 3�. The solutions were obtained by running the proposed
algorithm with �=0.0001 and �=0.95 in 0.3 s of CPU time, after
processing 15 boxes. From them, only the six shown in Fig. 3
were considered as solutions �thus returning the minimum pos-
sible number of boxes� and two boxes were found to be empty.

In this particular problem, the application of methods based on
Dixon’s resultant �8,9� boils down to forming and solving an 18
�18 eigenvalue problem, which is likely to be faster than the
presented approach. However, it is difficult to verify this point
mainly because no statistics are given in this respect in those
works, and we have found no publicly available package imple-
menting them. In general, we can say that as the ratio of complex
solutions versus real solutions grows, methods based on Dixon’s
resultants become less efficient, whereas our method is immune to
such problem since it directly operates in the domain of the reals.

Moreover, we have checked that our method converges in sub-
stantially shorter times than those used by the continuation
method in �10,11�, using the implementation available from �23�,
which spent 	8 s of CPU time on the same example, running on
the same machine. We remark, though, that we are comparing our
algorithm to a general-purpose solver targeted to arbitrary systems
of algebraic equations, and that a better performance of our algo-
rithm was to be expected, given the fact that it exploits the spe-

kage for �6=1.175 rad „67.38 deg…, given in radians
lin
cific structure of the obtained equations.
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4.2 Mobile Butterfly. If we now free �6, a one-dimensional
ontinuum of solutions is obtained. Figure 4 depicts the projection
f the returned boxes onto the cos��2�-cos��4� plane, on six dif-
erent runs of the algorithm, at decreasing values of the � param-
ter. If the algorithm is exploring in breadth-first order, the first
ve plots can also be interpreted as earlier stages of the run for the

ast case ��=0.05�. In every plot, we indicate the � threshold, the
PU time spent �t�, the number of solution boxes returned �ns�,
nd the diagonal of the largest box �d�. The latter serves as an
stimation of the maximum distance to the roots, from any point
nside the boxes. The � parameter is set to 0.95 in all runs.

By zooming into the last snapshot on the electronic version of
he paper, one can clearly see that the final output is obtained with
o clustering, that is, no boxes containing no solutions appear in
he neighborhood of the solutions. We note that, although from the
lots it seems that the different solution branches cross at many
oints, these are not true bifurcations of the linkage, as revealed
y observing other three-dimensional projections of the same out-
ut. Actually, four disjoint closed paths appear, corresponding to
he four possible ways to assemble this mobile mechanism.

It is worthwhile noting that, if we wish to visualize the trajec-
ory of any joint J of the linkage, we just need to add the follow-

Fig. 4 Output boxes at increasing resolution. The horizon
cos„�4…, spanning the range †−1,1‡ in all cases, with marks s
ng equation to system �4�:

ournal of Mechanical Design
�xJ,yJ� = �
bi�P

��i,P� · li · ui �5�

where �xJ ,yJ� are the unknown coordinates of point J with respect
to a reference frame placed on a joint O on the ground link, and
the sum is taken over all bars bi found on a path P connecting O
with J. The returned boxes will then have xJ and yJ as extra
dimensions, and we need only to plot the ranges for them on a
plane to see the motion curve of J. The trajectories of the coupler
point B of the double butterfly are shown in Fig. 5 as an example.
It is worth mentioning that the analytic form of these trajectories
is not trivial, as it can be seen in �24�.

4.3 Larger Linkages Made up of Repeated Patterns. In
order to assess the scalability of the proposed algorithm, experi-
ments were carried out with linkages constructed from the repeti-
tive concatenation of a basic pattern. The first of such studied
linkages is the caterpillar framework described in �5�. This
mechanism is iteratively constructed from Desargues frameworks
glued together along an edge in a caterpillar fashion �Fig. 6, left�.
Each such framework can actually be viewed as a 3-RPR planar
manipulator �25� with locked actuators �Fig. 6, right�. In our ex-

and vertical axes, respectively, correspond to cos„�2… and
rated 0.5 units apart
tal
periments, the caterpillar was constructed based on identical

APRIL 2007, Vol. 129 / 401
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-RPR patterns with link lengths chosen to yield four discrete
onfigurations of the basic pattern, multiplying the number of so-
utions of the caterpillar as a whole by four on each repetition of
uch pattern. Since the position analysis of each 3-RPR pattern is
traightforward �25�, deriving all configurations for the whole cat-
rpillar is easy. Therefore, this example can also be used to test
he reliability of our implementation, because we can compute all
ts solutions beforehand.

Table 1 shows the results of the implemented algorithm for
ifferent lengths �repetitions of the basic pattern� of the caterpillar
onstruction. For each length, we give the number of involved
ariables, equations, found solutions, box bisections performed,
mpty boxes found, and the execution time. Note that the process

ig. 5 Path followed by point B of the double butterfly linkage
the ground link is rotated 90 deg to the left with respect to Fig.
…. As observed, B may follow one of four different cyclic tra-
ectories, T1, T2, T3, and T4, reflecting four „mobile… assembly

odes for the mechanism. A sample configuration of the link-
ge following the fourth mode is also shown overlaid.

ig. 6 The three-caterpillar framework „left…, and the 3-RPR

lanar manipulator „right…

02 / Vol. 129, APRIL 2007
time necessarily grows as the simplex tableaus involve more vari-
ables and equations, but the increments are reasonable taking into
account the exponential increment of the number of solutions. As
an example of the results obtained, Fig. 7 shows the 64 solutions
computed for the three caterpillar.

In a second series of experiments the repeated pattern is a rigid
body consisting of a rectangle and a triangle glued together. The
enclosed angle 
 of the triangle is decreased slightly on each
repetition, yielding the spiral-shaped construction in Fig. 8. Since
the whole construction can only be assembled in the given way,
this test demonstrates the algorithm’s behavior for polynomial
systems with a unique solution. One can observe in Table 2 that,
as desired, the algorithm never needs to bisect the search space,
and that no boxes get discarded, meaning it just reduces the initial
box until it approximates the solution to the desired accuracy,
without branching along the way.

4.4 Convergence Order. The asymptotic performance of a
root-finding algorithm is normally evaluated by examining its
convergence order. An algorithm is said to exhibit a convergence
of order r if there exists a constant k� �0,1�, such that

d�xi+1,x*� � kd�xi,x
*�r

where xi and xi+1 are estimations of the exact root x* at iterations
i and i+1, and d�xi ,x*� and d�xi+1 ,x*� indicate their distance to
x*. The algorithm is said to exhibit linear or quadratic conver-
gence when r=1 or r=2, respectively.

The previous definition is valid for algorithms converging to a
single root, and adapting it to our case requires defining d�xi ,x*�
and the scope of an iteration. To this end, note that the diagonal of
a box is an upper bound of the distance from any point inside that
box, to any root in it. Thus, assuming that the search tree explored
by algorithm 1 is traversed in breadth-first order, it seems reason-
able to define d�xi ,x*� as the longest diagonal among all boxes in
list P, i.e., the boxes waiting to be processed. An iteration will
then be defined as the application of lines 4–14 to all boxes in the
ith level of such tree.

Measuring the performance in this way, we have empirically
found that the algorithm converges quadratically to the roots if
these are a finite number of isolated points, or linearly, if they
form a one-dimensional algebraic variety. In the former case, the
convergence order is the same as that of fast single-root-finding
procedures, such as, e.g., the Newton-Raphson method. Although
the performance seems worse in the latter case, we should men-
tion that a linear rate is the best one could expect. Consider, for
example the behavior of an optimal shrink-and-split algorithm dis-
cretizing a line �the simplest possible one-dimensional variety�. At
each iteration, any box Bc adjusted to the line would be split into
two half-boxes, and then, ideally, these would be shrunk to fit the
line again. Note that, in such perfect behavior, d�xi ,x*� would
decrease by half at each iteration, yielding the linear convergence
order we observe.

5 Dealing With Slider Joints
If the linkage has one or more slider joints, the method must be

Table 1 Experimental solver results for the caterpillar
construction

Length Vars. Eqs. Sols. Bisections Empty boxes
Time

�s�

1 8 8 4 3 0 0
2 18 19 16 18 3 5
3 28 30 64 88 25 67
4 38 41 256 490 235 630
5 48 52 1024 2395 1372 5013
6 58 63 4096 11,023 6928 33,582
slightly modified. Consider that a slider joint is acting between,
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Fig. 7 The 64 solutions of the three-caterpillar
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ay, link i and link j, as depicted in Fig. 9�a�. This fixes the angle
between the two links, only allowing a translation of one link
ith respect to the other. Then, Eqs. �2� and �3� will look like

¯ + li cos��i� + lj cos�� j� + ¯ = 0

¯ + li sin��i� + lj sin�� j� + ¯ = 0

or any cycle traversing links i and j. Since � j =�i−�, one of the
ngles can be eliminated, and only �i and li are true variables in
he previous terms. Note that after performing the substitutions
i=sin��i�, yi=cos��i�, these equations will contain bilinear prod-
cts of the form lixi and liyi, which cannot be dealt with by the
roposed algorithm. To obtain a whole block of linear equations
gain, we may simply substitute such terms by dummy variables,
ay zi and ti, and add the hyperbolic equations zi= lixi and ti= liyi to
ystem �4�. With this, the problem reduces to deriving linear-based
ounds for these equations, in a similar way as done for the circle
quations. In other words, if we consider one of these equations,
ay zi= lixi, and we know that its variables can take values inside
he ranges xi� �a ,b�, li� �c ,d�, and zi� �e , f�, all we need is a
ollection of half-planes tightly delimiting the set of points that
atisfy zi= lixi inside the box Bc�= �a ,b�� �c ,d�� �e , f�.

To achieve this, note that zi= lixi is the implicit equation of a
yperbolic paraboloid, whose isocontour lines of constant zi look
s depicted in Fig. 9�b�. Initially, Bc� can be adjusted to this sur-
ace, by easily reducing the ranges of xi and li so that they are
ompatible with the range for zi, yielding a new box Bc�, delimited
y points P1, P2, P3, and P4. Let P1�, P2�, P3�, and P4� be the points
f the hyperbolic paraboloid that project onto P1,P2, P3, and P4.
ote that the line segments P1�− P2�, P2�− P3�, P3�− P4�, and P4�− P1�,

re all part of the two families of lines of this ruled surface. With
he help of Fig. 9�c�, it is easy to see that this implies that the
etrahedron defined by the points P1�, P2�, P3�, and P4� completely
ontains the portion of the surface lying inside Bc�. Hence, to
rune portions of a box that do not satisfy the hyperbolic equa-

Fig. 8 Spiral-shaped construction of 200 repeated patterns

able 2 Experimental solver results for the spiral construction

ength Vars. Eqs. Sols. Bisections Empty boxes
Time

�s�

2 3 1 0 0 0
6 9 1 0 0 0

10 15 1 0 0 0
14 21 1 0 0 0
18 27 1 0 0 0

0 78 117 1 0 0 0
0 118 177 1 0 0 0
0 158 237 1 0 0 1
0 198 297 1 0 0 2
00 398 597 1 0 0 10
00 798 1197 1 0 0 53
00 1998 2997 1 0 0 830
04 / Vol. 129, APRIL 2007
tions, one can simply introduce the half-planes defining this tetra-
hedron into LP1 and LP2.

6 Conclusions
We have presented a method able to give box approximations

of the configuration space of a planar linkage. The method is
general, in the sense that it can manage linkages of any number of

Fig. 9 Dealing with slider joints: „a… A slider joint between
links i and j, „b… adjusting a box to fit a hyperbolic paraboloid
zi=xili, and „c… the tetrahedron defined by the Pi�’s is a convex
bound of this surface inside Bc�
links, joined to form kinematic loops of arbitrary topology. It is
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lso complete, in the sense that every solution point will be con-
ained in one of the returned boxes. Moreover, in all experiments
one so far the algorithm was also correct, in the sense that all
eturned boxes contained at least one solution point. Although in
heory this is not guaranteed, returning boxes with no solution
eems rather improbable, due to the fact that the approximation of
ircle and hyperbolic equations introduce errors smaller than the
ize of the considered boxes. Moreover, the fact that all equations
re simultaneously taken into account during box reduction
whether directly or in a approximated form� eliminates the so-
alled cluster effect, a known problem of bisection-based tech-
iques of this kind �26�, whereby each solution is obtained as a
ompact cluster of boxes instead of a single box containing it.

A main contribution with respect to previous works is the meth-
d’s ability to deal with configuration spaces of general structure.
his is accomplished by maintaining a collection of boxes that

orm a tight envelope of such spaces, which can be refined to the
esired accuracy in a multiresolutive fashion. Empirical tests
how that the method is quadratically convergent to all roots if
hese are isolated points, and linearly convergent to them if they
orm one-dimensional connected components. The presented al-
orithm can be applied without modification to characterize solu-
ion spaces of higher dimension. However, the number of boxes
equired to approximate such spaces rapidly grows with their di-
ension and, therefore, the algorithm is likely to exhibit sublinear

onvergence in such cases.
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