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Abstract 
We present a series of problems arising in the 
theoretical investigation of the use of zonoid 
surfaces as building elements. The questions put 
below concern mainly the basic morphological 
aspects of this investigation. Special attention 
is paid to the possibility of occurrence of not 
strictly convex and of nonconvex regions. 
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Nous presentons une serie de problemes sur- 
venant lors de la recherche theorique de l’util- 
isation de surfaces zonoTdales en tant qu’elemen- 
ts de construction. Les questions enoncees plus 
bas traitent principalement des aspects morpho- 
logiques de base de cette recherche. Une atten- 
tion toute particuliere est portee a la possibilite de 
regions qui ne sont pas formellement connexes et 
d’autres qui sont non-convexes. 

Un zonoTde est defini ici comme &ant simple- 
ment une surface polyedrique (ou une partie de 
surface polyedrique) dont les faces peuvent etre 
completees par des parallelogrammes. 

Introduction 

This review will report about the investigations on 
zonoidal surfaces which were started in the autumn of 
1973 by two simultaneously-operating research teams 
(tMetaform>) and ((ABT-Zone*, in which the author was 
involved. Up to the end of 1976 there was a period 
of intense activity and cooperative team effort. Most of 
the results obtained date back to that period. 

Recently, after a forced three year standstill, the author 
has once more taken up this line of research. In order 
to give the an impression of some of the subjects 
which are waiting to be tackled, we have selected 
for summary in this review some 20 from an extensive 
list of problems. 

The presentation is visual. The figures and captions are 
meant to illustrate some known results and to replace 
definitions. The statements in the text are kept brief. 
No proofs are given. Not all terms, notions and nota- 
tions are explained. A single diagram may be used to 
illustrate several problems, so some captions may 
initially pose a problem to the reader. No attempt has 
been made to reproduce the extensive bibliography on 
the subject, nor to refer to the names of the numerous 
top geometers who should be given credit for their 
beautiful theorems. In fact, this review is necessarily 
incomplete and imperfect. The only aim of it is to show 
to a larger audience how someone was struck by an 
intriguing concept and now is trying, in an elementary 
and modest way, to understand more about it. 



Figure 1. A zonohedron partitioned into two identical parts by the 
surface of a saddle-shaped zonoid. The surface of the saddle shape 
is obtained by taking a set of adjacent zones of the original 
zonohedron and by replacing these zones in exactly reversed order. 
This procedure has been called reciprocation. In fact, this figure was 
the start and the stimulant for our research on zonoids. 

Preliminary Statements 

A zonoid is here defined as a polyhedral surface 
(or a piece of one), the faces of which can be filled 
up with parallelograms. A strip- of parallel arranged 
adjacent parallelograms is called a zone. Such a zone 
can be considered as a part of a prismatic cylinder, and 
a zonoid thus can be described as a system of intersec- 
ting cylinders. We call a zonoid pure or mixed if 
or if not all faces are already parallelograms. A plane 
zonoid, convex or nonconvex, is called a zonogon. 
For a closed strictly convex zonoid we maintain its 
familiar name zonohedron. 

Relatives of a zonoid are obtained by means of chan- 
ging the widths or the arrangements of the zones. 
A special type of relative is obtained by taking away 
one or more zones completely and uniting the 
remaining parts by translation; such a relative is called 
a minor. 
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Figure 2. Modified representations for all types of strictly convex zonogon fillings up to order n = 6. 32 



Figure 3. A zonoidal translation complex: On most of all zonohedra there occur translational caps. 
Such a cap and its minors may be considered to be parts of some translational zonoid. Major and minor 
caps can be fused along corresponding parts of the generators of the zonoids. The complex shown in this figure 
is built up from the translational caps of primary zonohedra. 

Zonogons 

A zonogon of order n is a polygon with 2n edges, in 
which each edge has an opposite parallel equal edge. 

Question 1. What is the number of topological/y 
distinct types of zonogonfillings of order n? This number 
is only known for low order zonogons: Strictly 
convex zonogons of order 2, 3, 4, 5 and 6 have 
1, 1, 1, 6 and 43 types of filling respectively (Figure 2). 
.For n=7 the number is 922, for n-8 it is about 
40,000! It seems to make little sense to try to find 
all types for large n, but probably special types 
are found more easily: 

Question 2. Which types of strictly convex zonogon- 
fillings contain no other convex zonogons, except for 
those of order n<3? For instance n =5 has one such 
type, n = 6 has four. The number does not seem to grow 
very fast (Observe the shadings in Figure 2). 

Question 3. Which types of (convex or nonconvex) 
zonogonfillings of order n have metric realizations 
with some kind of symmetry? For strictly convex fillings 
of low order these types can be found in Figure 2. 
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Question 4. Which types of nonconvex zonogonfillings 
can have a convex, but not necessarily strictly convex, 
representation? These types occur in or may serve as 
simplified views of zonohedra. Several instances are 
shown in Figures 5 through 8. 

1 
Figure 4. A zonoidal tesselation complex: Equatorial caps of major and minor zonohedra are placed in 
face to face contact in some arbitrary tesselation arrangement. The major polyhedron is a bipolar 
dodecazonohedron, the other polyhedra are copies of its minors. All edges are in the same inclination 
with respect to a vertical axis. The whole complex is built up with copies of just four distinct 
rhom bit panel types. 
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Figure 5. Simplified representations for all types of 
pure zonohedra up to order n=7. Pentavalent and 
hexavalent vertices are indicated by white and black 
circles respectively. 
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Figure 6. The effect of simultaneously rolling over a zonohedron and its corresponding system of great circles 
on a concentric sphere, represented by projective diagrams. The zonohedral views are given in modified representations. 
In both views one zone is supposed to be perpendicular to the plane of the paper. The corresponding great circles 
then lie in the plane of the paper and their projective representations are the (invisible) lines at infinity. 

Zonohedra 

The order of a zonohedron is its number of zones. 
A zonohedron, like a convex zonogon, has central 
symmetry. Each part of a zonohedron has an opposite 
identical component. Each cylinder which carries a 
zone has a centre of symmetry incident with the centre 
of the zonohedron. All planes through the centre 
perpendicular to the axes of the cylinders mark on a 
concentric sphere a system of great circles, which 
can be considered as a dual representation of the 
zonohedron. A view of this system of circles may 
conveniently be represented by a projective diagram. 

Question 5. How can we decide the equivalence of two 
views of a zonohedron or of their corresponding 
projective diagrams? This is not always easily done. 
A simple, but probably too cumbersome, manner is the 
rolling over procedure of Figure 6. 

It is not advisable to make an attempt to enumerate all 
types of zonohedra of order ten, or higher. It is more 
significant to look for special types: 

Question 6. Which types of pure zonohedra of even 
order do not contain an equatorial chain? By which 
is meant a closed chain of faces which are connected 
only by opposite vertices. Zonohedra on which occur 
one or more such chains may be represented by more 
simplified views. Their corresponding projective dia- 
grams simplify simultaneously, for all lines occur in 
parallel pairs (see Figure 7). The nonequatorial 
cases seem to be exceptional. 

Question 7. Which types of pure zonohedra do not 
contain convex octagon circuits? We can call these 
exceptional types nontranslational, for the absence of 
translational caps (see Figure 8). 

Question 8. Which combinations of numbers of 
k-valent vertices are incompatible? For instance, pure 
zonohedra of order n = 6 do not exist with 1,4 or 5 pairs 
of pentavalent vertices. 

Question 9. Can we find a suitable set of frames to 
define all types of pure zonohedra of order n? By a 
frame is meant a mixed zonohedron with low order 
faces (65). By some filling of the faces of such a frame 
we obtain a convex, but not strictly convex, pure 
zonohedron which may be topologically equivalent 
with a strictly convex purezonohedron. It may be 34 
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Figure 7. Two types of pure octazonohedra. For each type is shown one of its general views, 

one simplified view and the projective diagram corresponding to the latter. On all but one of the 

135 types of pure octazonohedra there occur equatorial chains. 
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Figure 8. 
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Nontranslational pure zonohedra, satisfying the condition 2v, + 3v, + . . . + (k-3)vk 
n(n-I) - 6, in which v, means the number of j-valent vertices. 
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Figure 9. This single illustration serves as the front view of two related but very 

differently shaped periodical zonoids: Either a helicoidal zonoid or a rotational 
zonoid. Both are related by the procedure of reciprocation. The formulas which 

represent their carrying surfaces differ in only one sign! 



Figure 10. A toroidal *zonoidB, obtained as the intersection of two 

congruent rotational zonoids. 

x = cosu y= sinu + kcosv z = ksinv 

Figure 11. Bohemian zonoids. These generalizations of bohemian vaults are self-reciprocal and self-intersecting zonoids. 36 



elongation of helicoidal zonoid 
elongation of rotational zonoid 
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Figure 12. The process of elongation applied to a 
zonoid does not always result 

in a zonoid: 

and 6, in contrast 
with C, still remain zonoids (no longer pure and proper). 

The elongations A 

indicated). 

Each of the hexagonal faces can be filled, 
in. two ways, 

with parallelograms (some are 

These surfaces can be covered, 
in many distinct ways, 

by systems of zones. The elongation C, 

be filled with parallelograms. There are no 

however, is not a zonoid. 
The concave hexagons cannot 

continued zones. 
Surfaces like this one could probably be called <<quasi-zonoids>a. 

elongation of rotational zonoid 



Figure 13. True equatorial views of four topologically distinct equilateral dodecazonohedra (12 zones, 
132 faces). The zonohedra A, B, C have octahedral symmetry; the zonohedron D has an axis of 
twelvefold rotational symmetry. All four are metrically determined by the choice of the edge length and the 

choice of one particular ratio. The minimum numbers mA-3, mr,-3, m,-4, mo-4, are obtained for 
the ratios indicated above. In each figure equally numberes faces are congruent. Moreover, the equally 
numbered faces of the zonohedra C and D are mutually congruent. 

expected that classifying pure zonohedra in this way 
can be done with, proportionally, a few types of such 
frames. For instance, all but one pure heptazono- 
hedron have an identical barrel-shaped frame 
(Figure 5). All pure octazonohedra have at least a pair 
of decagon-circuits or four nonintersecting octagon- 
circuits, by which eight frames are sufficient to describe 
all 135 types. 

The following questions concern metric realizations of 
zonohedra: 

Question 10. Which types of zonohedra can have 
distinct metric realizations, each with another kind of 
symmetry? A trivial example is the hexazonohedron 
p6(6), which has a realization with icosahedral 
symmetry: axes of twofold, threefold and fivefold 
rotational symmetry. Then there are also realizations 
with only one such axis. 

Question 11. Given some realization of a major 
zonohedron, how can we enumerate and describe all its 
metrically distinct minors? This is easily done for some 
very special types, like the primary zonohedra 
(Hanegraaf 1975). But in most cases it seems to be 
less simple. 

Question 12. How can we control rapidly the 
convex-realizability of a metrically determined projected 
zonohedron? For instance, the two types of multipolar 
zonohedra B and C of Figure 13 differ only in the 

hexagonal regions with white circles. (In this case 
these hexagons become planar for the ratio b/a -2). 
Recall that, from order n =9 upwards, types of 
pseudo-zonohedra are known which cannot have 
convex realizations at all. The projective diagrams of 
these types cannot have all lines stretched. 

Zonoids I 

Here we will pay attention to the aspect of non-convex- 
ity, in which the general concept of zonoid differs 
from the already treated cases. A zonoid is called 
proper or compound if or if not all vertices are 
tetravalent. A proper zonoid may be considered to be 
a discrete model of a translational surface, which is 
represented by equations like x = u1 + Vl, 
Y u2 + v2, z = u3 + v3, in which uf is any 
function of u alone and vi is any function of v alone 
(see for instance the formulas in Figures 9 and 11). 

Question 13. Which types of analytical surfaces may be 
approximated by a zonoid? First, we may look for 
special types of analytical surfaces, which are transla- 
tional and at the same time either surfaces of revolution, 
helicoidal surfaces, ruled surfaces, or minimal surfaces, 
etc. Most of these are known from differential 
geometry and several of them are treated as zonoids 
in an earlier paper (Hanegraaf 1976a). However, the 
concept of zonoid surfaces is not restricted to proper 

analytical surfaces only and several interesting com- 
pounds can be found. For instance, we are still 
looking for zonoid approximations of a torus surface, 
better than those depicted in Figures 10 and 11. 

Question 14. Which types of zonoids are closed, 
at least in one direction? Except for the obvious cases 
of zonohedra, which are so by definition, several other 
classes are known. We first can mention the pseudo- 
zonohedra, which are locally concave zonohedra. 
An interesting class consists of the helicoidal zonoids, 
which occur in reciprocal pairs. (A particular view of 
one of such a pair is shown in Figure 9.) There 
is also the class in which the bohemian zonoid 
(Figure 11) belongs. So far, we did not find a suitable 
classification. 

Question 15. On which conditions can convex zonoid 
surfaces contain convex zonogons of higher order? 

Question 16. Which restrictions occur in trying to 
obtain minors of nonconvex zonoids? Questions 15 and 
16 are related. Only very poor results are known SO 

far. (See also Figure 12.) 
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Figure 14. True equatorial view of an icositetrazonohedron (24 zones, 552 faces) with octahedral symmetry. 
The two views of the characteristic triangle show that with given edge length only two ratios b/a and c/a 
determine the surface metrically. If these ratios are arbitrarily chosen, the number of distinct faces 
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is sixteen. 
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However, for the special ratios b/a = (3, c/a 
= f&r % = L, R5 = &a, % = Rm, L = L. 

= 2-(3, ten distinct types suffice: 



Maxima and Minima 

By introducing certain regularities and symmetries the 
number of different types of components for a zonoid 
can be reduced. 

Question 17. How is the number of metrically 
distinct face types of a zonoid effected by the choice of 
an equilateral realization? For zonohedra we can 
conclude that this choice is mostly favourable. This 
does not always apply to nonconvex zonoids. For 
instance, the helicoids can be built most economically 
from nonequilateral faces. 

Question 18. What is the maximum number of 
metrically distinct types of zonohedra, which can be 
built with copies of a given set of face types? 

Question 19. What is the minimum number m of 
metrically distinct faces, such that with copies of this set 
we can build a zonohedron of prescribed order and 
type? Questions 18 and 19 are related. Figures 
13 and 14 illustrate some possible starting points. 

Question 20. What is the absolute minimum M, for 
zonohedra of order n? M,, is the lowest number m 
(as defined in Question 19) possible for all zonohedra 
of order n. The hexazonohedron depicted in Figure 8 
can have a realization with all faces equal, so 
MS = hll4 = M, = & = 1. The decazonohedron 

depicted in Figure 8 can have a realization with m -2, 
so we expect that M, = & = M, = MI,-, = 2. 
The dodecazonohedra depicted in Figure 13a and 
13b have a realization with m =3, so we expect that 
MI1 = MI, = 3. . 
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