
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Degree program

INDUSTRIAL TECHNOLOGY ENGINEERING

Degree Thesis

DYNAMIC MODELLING AND VELOCITY CONTROL OF A TWO-WHEELED

INVERTED PENDULUM ROBOT

Eduard Godayol Carceller

Supervisors:

Lluís Ros Giralt

Enric Celaya Llover

Tutor:

Maria Alba Pérez Gracia

June 2022

Dynamic Modelling and Velocity Control of a Two-wheeled Inverted Pen-
dulum Robot

by Eduard Godayol Carceller

This work has been presented at the Universitat Politècnica de Catalunya to obtain the Degree
in Industrial Engineering

ETSEIB degree program:
Degree in Industrial Technology Engineering

This work has been done in:
Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Supervisors:
Lluís Ros Giralt
Enric Celaya Llover

Tutor:
Maria Alba Pérez Gracia

DYNAMIC MODELLING AND VELOCITY CONTROL OF A TWO-WHEELED
INVERTED PENDULUM ROBOT

Eduard Godayol Carceller

Abstract

With the advancement of Industry 4.0, mobile robots are being applied to more and more
tasks, in areas such as exploring unfamiliar environments, inspecting and monitoring infrastruc-
ture, finding and rescuing people, or transporting and handling loads, among others. In this
project we will focus on the modeling and control of two-wheeled inverted pendulum robots.
Although they must be actively stabilized to prevent them from tipping over, these systems
have several advantages over stable robots with more wheels: they can rotate around a point
without moving, compensate external force disturbances that would tip over a conventional
robot, and achieve taller and slimmer geometries while being stable. Along the project we will
see how the kinematic and dynamic models for a twinbot (two-wheeled inverted pendulum
robot) are obtained, we will go over the design of a control system, that, using the dynamic
model, stabilizes the robot in the upright position along a real time defined trajectory, and we
will end up validating the robustness of this control by applying force disturbances while the
robot is trying to follow a defined trajectory.

I

Acknowledgments

First of all, and most importantly, I would like to thank professors Lluís Ros and Enric Celaya for
their big support and dedication to the project, they have opened me the doors of a new universe
of control theory that I would have had a lot of trouble understanding on my own. They have
given me their time and knowledge, that without them, facing this project would have probably
been unaffordable.

I want to thank the Institut de Robòtica i Informàtica Industrial (IRI) for welcoming me into
their offices, and providing me the facilities I needed to develop the project. I really appreciate
the effort of Maria Alba Pérez Gracia for accepting the role of the director of the project, and
finally, I want to thank my family and friends for their infinite support throughout the project.

III

Contents

Abstract I

Acknowledgments III

1 Introduction 1
1.1 Motivation . 1
1.2 Project objectives . 3
1.3 Scope of the project . 4
1.4 Document structure . 4
1.5 Notation . 5

2 Kinematic model 7
2.1 Reference frames and vector bases . 7
2.2 Configuration and state coordinates . 9
2.3 Rolling contact constraints . 9
2.4 Holonomic and nonholonomic constraints . 13
2.5 The configuration and state spaces . 13

3 Dynamic model 15
3.1 Lagrange’s equation of motion . 15

3.1.1 Mass matrix . 16
3.1.2 Coriolis matrix . 21
3.1.3 Generalized gravity force . 21
3.1.4 Generalized force of actuation . 23
3.1.5 Generalized force of friction . 23
3.1.6 Generalized disturbance force . 24

3.2 The x model . 24
3.3 The y model . 26
3.4 Odometry . 28
3.5 Particularized y model . 29

4 Optimal Control Theory 33
4.1 The finite horizon LQR controller . 33
4.2 The infinite horizon LQR controller . 34
4.3 Stabilization of a given trajectory . 35

5 Controller design 37
5.1 A feedback law for a twinbot . 37
5.2 The control loop algorithm . 39

5.2.1 Initializations . 39
5.2.2 Control loop . 41

5.3 Grafical Interface . 41
5.4 Simulation Results . 44

5.4.1 Twinbot’s ability to recover from unbalanced configurations 44
5.4.2 Response to a v0 step input . 46

V

VI CONTENTS

5.4.3 Response to a θ̇ step input . 46
5.4.4 Reaction to a force pulse . 47
5.4.5 Reaction to a constant force . 47

6 Conclusions 51
6.1 Contributions . 51
6.2 Future work . 52

Bibliography 53

A Source code 55
A.1 Matlab liveScript . 55
A.2 Matlab code . 87

A.2.1 Graphical interface application . 87
A.2.2 Dynamics function . 103
A.2.3 Torque calculation function . 104
A.2.4 Disturbance force . 105
A.2.5 Torque calculation function . 106
A.2.6 Dynamics linealization function . 106
A.2.7 URDF file . 107

B Project budget 111
B.1 Assumptions . 111

B.1.1 The hourly cost of the staff . 111
B.1.2 Hourly cost of using the equipment . 111

B.2 Development cost . 112
B.2.1 Project staff cost . 112
B.2.2 Cost of using the equipment . 113
B.2.3 Documentation costs . 113
B.2.4 Licence costs . 113
B.2.5 Total cost of development . 113

C Environmental impact 115
C.1 CO2 kg generated . 115

1
Introduction

1.1 Motivation

With the advancement of Industry 4.0, mobile robots are being applied to more and more tasks,

in areas such as exploring remote environments, inspecting infrastructure, finding and rescuing

people, or transporting and handling loads, among others [1]. Various solutions have been

proposed for the locomotion of these robots based on the use of legs or wheels [2, 3]. While

legged robots are capable of overcoming complex obstacles, they are also more difficult to design

and control, and tend to have higher energy consumption. Wheeled robots, on the other hand,

tend to be more energy efficient, and usually have a simpler mechanical structure and dynamic

model, making them more attractive in a variety of situations [4].

In this project we are focused on the modelling and control of two-wheeled inverted pen-

dulum robots (Fig. 1.1). These robots, which we call twinbots for short, use two coaxial drive

wheels located on either side of a central body, or chassis. Their center of mass is located

above the wheel’s axis (either due to the arrangement of their parts, or because of an added

load that is being transported), causing a natural tendency of falling. Although a twinbot must

be actively stabilized to prevent it from tipping over, these systems have several advantages

over stable robots with more wheels [2]. First of all, their simple design makes them very

maneuverable, as they can rotate around a point without moving, and the fact of being actively

stabilized allows them to compensate for external force disturbances that would tip over a

conventional robot. Secondly, twinbots can achieve taller and slimmer geometries and still

be stable, which makes them suitable for carrying loads stacked in narrow aisles, as well as

allowing the movement through tight corridors or hard-to-reach corners. Furthermore, as these

robots can tilt forward or backwards, they are also able to maintain stability on slopes and even

to accelerate quickly without tipping over, making them more versatile and faster compared to

regular mobile platforms.

2 Introduction

Figure 1.1: A two-wheeled inverted pendulum robot. Picture courtesy of Elegoo.

The aim of this work is to design a control system that allows the execution of trajectories of

constant velocity with these robots, specified by means of linear and angular speed commands

of the chassis. This system must calculate the motor actions required to meet these speeds at all

times, while ensuring the robot stays close to the upright position, and making sure it returns to

that position in the event of any deviations due to unforeseen disturbances or orientation errors.

There are two clear applications of this control system. Firstly, it can serve as a control

module for twinbots with autonomous navigation capability (Fig. 1.2, left). These robots

use a pre-built map of the environment to generate a collision-free path that takes them to

a desired position. During the execution of this path, the navigation system is constantly

generating corrective commands for the speed of advance, either to reduce the risk of collision

with obstacles already foreseen, or to negotiate with any new obstacles that may appear near

the robot. In this context, the control system of this project allows a precise fulfillment of the

aforementioned commands. Another clear application of the control system is to manually pilot

a robot: a human generates speed commands with the help of an input device (such as a joystick,

a keyboard, or a mouse) and the robot tries to follow them closely. The piloting can be remote,

in which case we will have to communicate with the robot to receive feedback from what it sees,

or sitting on the robot itself, in which case we can use the robot as a personal transportation

system (Fig. 1.2, right). Some brands are beginning to propose this concept in fact, as an

alternative to the Segway concept, in which the user needs to be standing up in order to gain

control.

1.2 Project objectives 3

Figure 1.2: Conceptual designs for a two-wheeled autonomous robot (left) and a wheelchair
controlled with a joystick (right). The joystick is very small, located on the right hand side of
the chair. Pictures courtesy of Turbosquid and Segway, respectively.

1.2 Project objectives

Specifically, this project pursues three objectives:

1. To obtain the kinematic and dynamic models of a twinbot. The kinematic model must

take into account the non-slip condition imposed by the contacts of the wheels with the

ground, and must serve as a basis for a later development of the dynamic model of the

robot. This second model should be sufficiently general, incorporating aspects such as a

generic mass distribution for the main body of the robot, the friction on the wheel’s axes,

or perturbation forces that might be applied to the robot.

2. To design a control system that, using the above dynamic model, stabilizes a twinbot in

an upright position along a constant velocity trajectory, specified by means of linear and

angular velocity setpoints for the chassis.

3. To validate the robustness of the control system in the event of non-modeled force dis-

turbances, or deviations of the robot with respect to the vertical position, either with the

robot stationary or in motion, while following a given trajectory.

4 Introduction

1.3 Scope of the project

Usually, the development of system modelling and control methods is approached in two stages.

In a first stage, such methods are designed and programmed, and their performance is tested

in simulation. Then, in a second stage, the methods are implemented and validated in a real

system. In this project we have focused on covering all tasks of the first stage, leaving those of

the second for future work. Therefore, this project has been devoted to:

1. Obtain the dynamic model of the Twinbot using the laws of Mechanics.

2. Design a control law to stabilize the system along a desired trajectory.

3. Validate the identification and control methods in simulation.

The following implementation aspects are thus left for a future project:

1. The construction of a physical protoype of the robot.

2. Identify its parameters.

3. Hardware implementation and validation.

4. The development of control interfaces for its sensors and actuators.

5. The experimental validation of the methods proposed in this project.

1.4 Document structure

The rest of the document is structured as follows:

• In Chapter 2 we explain how the kinematic model of a twinbot has been obtained. This

model describes the feasible motions of the robot without considering their generating

forces. The resulting equations are necessary to later obtain the dynamic model of the

robot.

• In Chapter 3 we obtain the dynamic model of a twinbot. By this model we mean the

equations of motion that relate the accelerations of the robot to its motor torques. In this

chapter we introduce two working models, with their respective pros and cons, and how

to move from one to the other.

1.5 Notation 5

• In Chapter 4 we introduce the optimal control theory that we use to stabilize the robot at

a certain configuration, and around a given trajectory. We review both the finite and the

infinite horizon LQR controllers that will be used for this purpose.

• In Chapter 5 we deal with the controller design. Here we design a control loop algorithm

that allows us to stabilize a twinbot along a constant velocity trajectory, determined by the

linear and angular speeds of the chassis. Moreover we will explain how the control gains

can be adjusted, and we will validate the controller in simulation.

• Finally, in Chapter 6 we provide the main conclusions of this project, and list several points

for further attention.

The document has two appendices providing the MATLAB programs implementing our algo-

rithms and simulated experiments, and the project budget.

1.5 Notation

Throughout the document we will denote scalar magnitudes with normal font, and vector ones

with bold font. Vectors and matrices will be denoted with lowercase and uppercase letters,

respectively. Thus, x will denote a scalar, x a vector, and X a matrix. When x is a vector that

appears in a mathematical operation, it will be assumed to be a column vector.

When we have to make the components of a vector explicit, we will usually write them in

columns and in square brackets.

x =

x1
...

xn

 . (1.1)

Sometimes, however, we will also use x = (x1, . . . , xn) for compactness, which we will

assume to be equivalent to Eq. (1.1).

To ease the explanations, we will use underbraces to define new symbols or make clarificati-

ons. For example, when we write

expression︸ ︷︷ ︸
symbol

we mean that, thereafter, the specified symbol will denote the underbraced expression.

In long vectors or matrices, we sometimes use sα and cα as a shorthand for the sine and

cosine of α.

2
Kinematic model

In this chapter we develop the kinematic model of a twinbot. We start by defining the different

reference frames and vector bases that we have set, and the configuration and state coordinates

of the robot. Then we cover the different constraints imposed by the rolling contacts of the robot

with the ground. Finally, we introduce the configuration and state spaces, and show that the

system is nonholonomic and underactuated.

2.1 Reference frames and vector bases

A twinbot can be viewed as a differential drive robot whose chassis is allowed to rotate around

the wheels’ axis. The wheels are powered by electric motors mounted underneath the chassis

(Fig. 2.1).

Figure 2.1: Kinematic structure of a twinbot.

8 Kinematic model

The structure of the robot is simple but effective. With proper maneuvering, the robot can

reach any desired position and orientation in the plane. However, since its center of gravity is

above the wheels axis, the robot may tip over if proper control torques are not applied. The

challenge is to move the robot forward (even while turning) in a stable manner. To obtain the

robot’s model, we use the reference frames seen in Fig. 2.2.

Figure 2.2: Reference frames of a twinbot.

The blue frame is the absolute frame fixed to the ground, with the axes 1, 2, and 3. The

red frame is centered at the midpoint M of the wheels’ axis. Axes 1’, 2’, and 3’ correspond

to the heading direction of the robot, the wheels’ axis, and the vertical direction through M ,

respectively. We call this frame the robot frame. The green frame is fixed to the robot chassis,

and is rotated an angle φp with respect to the robot frame. We call this frame the chassis frame.

The three frames are sometimes referred to as F,F′, and F′′, respectively.

Each frame has a vector basis attached to it, whose unit vectors are directed along the frame

axes. The three bases will be referred to as:

2.2 Configuration and state coordinates 9

• B = {1, 2, 3} ←− Fixed to the absolute frame

• B′ = {1′, 2′, 3′} ←− Fixed to the robot frame

• B′′ = {1′′, 2′′, 3′′} ←− Fixed to the chassis frame

2.2 Configuration and state coordinates

The robot configuration can be described by means of six coordinates: the position (x, y) of M

in the absolute frame, the orientation angle θ of the platform (between axes 1’ and 1), the pitch

angle φp, and the angles of the left and right wheels, φl and φr, relative to the chassis. The

robot configuration is thus given by

q = (x, y, θ, φp, φl, φr),

and the time derivative of q provides the robot velocity. Therefore, the robot state is given by

x = (q, q̇).

It will also be useful to consider an internal configuration vector

φ = (φp, φl, φr)

and its associate internal state

y = (φ, φ̇).

2.3 Rolling contact constraints

We next see that the coordinates of x are not independent. The rolling contacts of the wheels

impose a kinematic constraint of the form

J(q) · q̇ = 0, (2.1)

where J(q) is a 3× 6 Jacobian matrix. We will next obtain this Jacobian. In our derivations we

use v(Q) to denote the velocity of a point Q of the robot. The basis in which v(Q) is expressed

will be mentioned explicitly, or understood by context.

The robot pose is given by the position (x, y) of point M , and by the θ angle. The half-length

of the wheels axis is d. Also, Cr and Cl denote the centers of the right and left wheels, and Pr

and Pl are the contact points of such wheels with the ground (Fig. 2.3). The two wheels have

10 Kinematic model

the same radius r.

Figure 2.3: Main notation for a twinbot.

The rolling contact constraints of the chassis can be found by computing the velocities v(Pr)

and v(Pl) in terms of ẋ, ẏ, θ̇, φ̇p, φ̇l and φ̇r, and forcing these velocities to be zero (as the wheels

do not slide when placed on the ground).

To obtain v(Pr) and v(Pl), note first that the velocity of M can only be directed along axis

1’, since lateral slipping is forbidden under perfect rolling. Therefore in B′ = {1′, 2′, 3′}, v(M)

takes the form

v(M) =

v

0

0

 .

Also note that, if ωrobot is the absolute angular velocity of the robot frame, the velocities of

2.3 Rolling contact constraints 11

the centers of the two wheels are

v(Cr) = v(M) + ωrobot ×MCr =

v

0

0

+

0

0

θ̇

×

0

−d
0

 =

v + d θ̇

0

0

v(Cl) = v(M) + ωrobot ×MCl =

v

0

0

+

0

0

θ̇

×

0

d

0

 =

v − d θ̇

0

0

 .

Therefore, the velocities of the ground contact points are given by

v(Pr) = v(Cr) + ωwheel ×CrPr =

=

v + d θ̇

0

0

+

0

φ̇p + φ̇r

θ̇

×

0

0

−r

 =

v + d θ̇ − r (φ̇p + φ̇r)

0

0

v(Pl) = v(Cl) + ωwheel ×ClPl =

=

v − d θ̇

0

0

+

0

φ̇p + φ̇l

θ̇

×

0

0

−r

 =

v − d θ̇ − r (φ̇p + φ̇l)

0

0

.

Since Pr and Pl do not slip, v(Pr) and v(Pl) must be zero, which gives the two fundamental

constraints of the robot:
v − r (φ̇p + φ̇r) + d θ̇ = 0

v − r (φ̇l + φ̇p)− d θ̇ = 0.

Solving these equations for v and θ̇, we obtain

v =
r (φ̇l + 2 φ̇p + φ̇r)

2
, (2.2)

θ̇ = −r (φ̇l − φ̇r)

2 d
. (2.3)

For later use, we can also solve the equations for φ̇l and φ̇r, which gives

φ̇r =
v + d θ̇ − r φ̇p

r
,

φ̇l = −
d θ̇ − v + r φ̇p

r
.

12 Kinematic model

From Figs 2.2 and 2.3 we see that the velocity of point M in basis B={1,2,3} is

v(M) =

ẋ

ẏ

0

 ,

and its components are: {
ẋ = v · cos θ
ẏ = v · sin θ.

By substituting Eq. (2.2) in the previous two equations, and also considering Eq. (2.3), we

obtain the system of equations:
ẋ = cos (θ)

(
r φ̇l
2 + r φ̇p +

r φ̇r

2

)
ẏ = sin (θ)

(
r φ̇l
2 + r φ̇p +

r φ̇r

2

)
θ̇ = − r (φ̇l−φ̇r)

2 d

(2.4)

This system expresses the rolling contact constraints of the robot. For compactness, we write it

as

ṗ = N(q) · φ̇,

where p = (x, y, z), φ = (φp, φl, φr), and N(q) is the 3× 3 matrix

N(q) =

r cos (θ) r cos(θ)

2
r cos(θ)

2

r sin (θ) r sin(θ)
2

r sin(θ)
2

0 − r
2 d

r
2 d

 . (2.5)

The equation ṗ = N(q) · φ̇ can be written as

[
I3 −N

]
·

[
ṗ

φ̇

]
= 0 →

[
I3 −N

]
· q̇ = 0.

Thus, the constraint Jacobian J(q) in Eq. (2.1) is

J(q) =
[
I3 −N

]
.

2.4 Holonomic and nonholonomic constraints 13

2.4 Holonomic and nonholonomic constraints

Recall that the last equation of the system ṗ = N(q) · φ̇ (Eq. (2.4)) was

θ̇ =
r

2d
(φ̇r − φ̇l).

This equation is integrable, and yields the holonomic constraint [5]

ϕ(q) = 0,

where
ϕ(q) = θ − r

2d(φr − φl)−K0

K0 = θ0 − r
2d (φr,0 − φl,0).

In sum, the robot is subject to three nonholonomic and one holonomic scalar constraints:

F (x) ≡

{
J(q) · q̇ = 0

ϕ(q) = 0

2.5 The configuration and state spaces

The configuration space of the robot (C-space) is the set

C = {q : ϕ(q) = 0}.

The state space X of the robot, in turn, is defined by the 4 constraints introduced in the

previous section:

X = {x : F (x) = 0}.

Taking into account that q is a 6-dimensional vector, and that it is subject to the scalar

constraint ϕ(q) = 0, C is a 5-dimensional manifold. This manifold is smooth because ϕq is full

rank:

ϕq(q) =
∂ϕ(q)

∂q
=
[
0 0 1 0 r

2d − r
2d

]
.

Note that the space of feasible accelerations must be three dimensional since ν = {q̇ : J · q̇ =

0} is three-dimensional. Since the robot only has two motors, it will only be able to command

a 2-dimensional space of accelerations. That is, the robot not only is nonholonomic, it is also

underactuated [6].

3
Dynamic model

In this chapter we obtain the dynamic model of a twinbot, which provides the relationship

between the accelerations of the system and the torques applied by its motors. Since we are

working with a non-holonomic system, the model will be derived using Lagrange’s equation

with multipliers [7,8]. The solutions obtained with this model will be used to achieve a precise

control of the robot that takes into account all the dynamic parameters. Moreover, we will

introduce two different working models. The x-model encompasses all the (q, q̇) coordinates,

while the y-model is more simplified and only takes into account the (φ, φ̇) ones. Finaly we will

cover the odometry equations that will allow us to move between the x and y models; and we

will make a particularization of the dynamic model using a concrete geometry for a twinbot.

3.1 Lagrange’s equation of motion

Recall that the Lagrange equation of a non-holonomic robot takes the form

M(q) q̈ +C(q, q̇) q̇ +G(q) + J(q)⊤ λ = Qa(u) +Qf +Qd, (3.1)

where:

• q is the configuration vector (of size nq = 6 in our case).
• u = (τl, τr) is the vector of motor torques (the left and right wheel torques).
• M (q) is the mass matrix of the unconstrained system (positive-definite of size nq × nq).
• C (q, q̇) is the generalized Coriolis and centrifugal force matrix.
• G (q) is the generalized gravity force.
• J(q) is the constraint Jacobian.
• λ is a vector of Lagrange mulitpliers.
• Qa(u) is the generalized force of actuation, which can be written in the form E(q) · u.
• Qf is the generalised force modelling all friction forces in the system.

16 Dynamic model

• Qd is a generalised force modelling all disturbance forces considered, which may be

added to test disturbance rejection when a feedback controller is used.

Although a twinbot moves on flat terrain, for different configurations of the φp angle, the

height of its center of gravity changes. For this reason the potential energy is not constant,

therefore G(q) will not be 0. Our task is to obtain the values of all the matrices needed to

calculate the equation of motion of the robot: M(q), C(q, q̇), G(q), Qa(u), Qf , and Qd.

3.1.1 Mass matrix

Recall that the robot configuration is given by

q = (x, y, θ, φp, φl, φr).

To find the mass matrix M(q) we need to write the kinetic energy T of the robot as a function

of q and q̇ and then express it as:

T (q, q̇) =
1

2
q̇⊤ ·M(q) · q̇.

We have to compute the translational and rotational kinetic energies of all bodies in a twinbot

and add them all to obtain T . In computing such energies we must view the robot as a kinematic

tree whose configuration is given by q.

The expressions of the translational kinetic energies for the chassis, the left wheel, and the

right wheel are:

Ttra,chas =
1

2
v(G)⊤mc v(G),

Ttra,l =
1

2
v(Cl)

⊤mw v(Cl),

Ttra,r =
1

2
v(Cr)

⊤mw v(Cr).

(3.2)

The only paramether left to compute the previous equations is the absolute velocity of the center

of gravity G of the chassis, which is given by

v(G) = v(M) + ωchassis ×MG.

3.1 Lagrange’s equation of motion 17

In the basis B′ we have

v(G) =

cθ −sθ 0

sθ cθ 0

0 0 1

⊤

︸ ︷︷ ︸
RotBtoB′

ẋ

ẏ

0

+

0

φ̇p

θ̇

×

cφp 0 sφp

0 1 0

−sφp 0 cφp

︸ ︷︷ ︸

RotB′′ toB′

xG

yG

zG

 ,

where (xG, yG, zG) is the vector MG in the chassis reference (B”). If we develop the previous

equation, we see that

v(G) =

φ̇p (zG cos (φp)− xG sin (φp))− θ̇ yG + ẋ cos (θ) + ẏ sin (θ)

θ̇ (xG cos (φp) + zG sin (φp)) + ẏ cos (θ)− ẋ sin (θ)

−φ̇p (xG cos (φp) + zG sin (φp))

 .

Once v(G) is determined, we can apply the Eq. (3.2) to obtain the translational kinetic

energies of the chassis and the two wheels (Eq. (3.3)).

Ttra,chas =
mc

(
θ̇
(
xG cφp + zG sφp

)
+ ẏ cθ − ẋ sθ

)2
2

+
mc

(
φ̇p

(
zG cφp − xG sφp

)
− θ̇ yG + ẋ cθ + ẏ sθ

)2
2

+
mc φ̇

2
p

(
xG cφp + zG sφp

)2
2

Ttra,l =
mw

(
v − d θ̇

)2
2

Ttra,r =
mw

(
v + d θ̇

)2
2

(3.3)

The expressions of the rotational kinetic energies in the basis B’ are:

Trot,chas =
1

2
ω⊤
chas Ichas,B′ ωchas

Trot,l =
1

2
ω⊤
l Il ωl

Trot,r =
1

2
ω⊤
r Ir ωr,

(3.4)

18 Dynamic model

where the inertia matrices (Ichas,B′ , Il, Ir) are:

Ichas,B′′ =

Ic11 Ic12 Ic13

Ic12 Ic22 Ic23

Ic13 Ic23 Ic33

S =

cφp 0 sφp

0 1 0

−sφp 0 cφp

︸ ︷︷ ︸

RotB′′ toB′

Ichas,B′ = S IchasB′′ S
⊤

Il = Ir =

It 0 0

0 Ia 0

0 0 It

 ,

(3.5)

and the angular speed values of the three bodies are:

ωchas =
[
0 φ̇p θ̇

]⊤

ωl =
[
0 φ̇p + φ̇l θ̇

]⊤

ωr =
[
0 φ̇p + φ̇r θ̇

]⊤
.

(3.6)

Combining Eqs. (3.4 - 3.6), we get the values of the three rotational kinetic energies:

3.1 Lagrange’s equation of motion 19

Trot,chas = θ̇

(
φ̇p

(
Ic23 cφp − Ic12 sφp

)
2

)

+

(
θ̇2
(
cφp

(
Ic33 cφp − Ic13 sφp

)
− sφp

(
Ic13 cφp − Ic11 sφp

))
2

)

+ φ̇p

(
Ic22 φ̇p

2
+

θ̇
(
Ic23 cφp − Ic12 sφp

)
2

)

Trot,l =
It θ̇

2

2
+ Ia

(
φ̇l

2
+

φ̇p

2

)
(φ̇l + φ̇p)

Trot,r =
It θ̇

2

2
+ Ia

(
φ̇p

2
+

φ̇r

2

)
(φ̇p + φ̇r)

(3.7)

The global kinetic energy is the sum of all the kinetic energies calculated in the Eqs. (3.3)

and (3.7):

T = Ttra,chas + Ttra,l + Ttra,r + Trot,chas + Trot,l + Trot,r

Since T is a quadratic form, the Hessian of T gives the desired mass matrix:

20 Dynamic model

M
(q
)
=

m
c
c θ

2
+

m
c
s θ

2
0

−
m

c
y G

c θ

−
m

c
s θ

(x
G
c φ

p
+

z G
s φ

p
)

m
c
c θ
,(z G

c φ
p
−
x
G
s φ

p

)
0

0

0
m

c
c θ

2
+

m
c
s θ

2
m

c
c θ
,(x G

c φ
p
+

z G
s φ

p

)
−
m

c
y G

s θ
m

c
s θ
(z Gc

φ
p
−

x
G
s φ

p

)
0

0

−
m

c
y G

c θ

−
m

c
s θ
(x G

c φ
p
+
z G

s φ
p

)
m

c
c θ
,(x G

c φ
p
+

z G
s φ

p

)
−
m

c
y G

s θ

2
I t

+
m

c

(x G
c φ

p
+
z G

s φ
p

) 2
+
2
d
2
m

w
+

m
c
y G

2

+
c φ

p

(I c33
c φ

p
−

I c
1
3
s φ

p

)
−
s φ

p

(I c13
c φ

p
−
I c

1
1
s φ

p

)
I c

2
3
c φ

p

−
I c

1
2
s φ

p

−
m

c
y G
(z Gc

φ
p
−
x
G
s φ

p

)
0

0

m
c
c θ
,(z G

c φ
p
−

x
G
s φ

p

)
m

c
s θ
(z Gc

φ
p
−

x
G
s φ

p

)
I c

2
3
c φ

p

−
I c

1
2
s φ

p

−
m

c
y G
(z Gc

φ
p
−

x
G
s φ

p

)
2
I a

+
I c

2
2

+
m

c

(x G
c φ

p
+
z G

s φ
p

) 2
+
m

c

(z Gc
φ

p
−
x
G
s φ

p

) 2
I a

I a

0
0

0
I a

I a
0

0
0

0
I a

0
I a

3.1 Lagrange’s equation of motion 21

3.1.2 Coriolis matrix

Recall that the (i, j) elements of C (q, q̇) are given by the following formula [9]:

Cij =
1

2

n∑
k=1

(
∂Mij

∂qk
+

∂Mik

∂qj
−

∂Mkj

∂qi

)
q̇k

The resulting Coriolis matrix is:

C(q) =

0 0
θ̇ (2mc yG sθ−2mc cθ (xG cφp+zG sφp))

2

−mc φ̇p sθ
(
zG cφp − xG sφp

) −mc φ̇p cθ
(
xG cφp + zG sφp

)
−mc θ̇ sθ

(
zG cφp − xG sφp

) 0 0

0 0
mc φ̇p cθ

(
zG cφp − xG sφp

)
− θ̇ (2mc yG cθ+2mc sθ (xG cφp+zG sφp))

2

mc θ̇ cθ
(
zG cφp − xG sφp

)
−mc φ̇p sθ

(
xG cφp + zG sφp

) 0 0

0 0

− φ̇p (mc sφp xG
2−2mc cφp xG zG)
2

+
φ̇p (mc sφp zG

2−2 Ic13 cφp)
2

+
φ̇p (+Ic11 sφp−Ic33 sφp)

2

−mc θ̇ sφp xG
2

2

+mc θ̇ cφp xG zG

+mc φ̇p yG cφp xG

+
mc θ̇ sφp zG

2

2

+mc φ̇p yG sφp zG

−Ic23 φ̇p sφp − Ic13 θ̇ cφp

+
Ic11 θ̇ sφp

2 − Ic33 θ̇ sφp

2

−Ic12 φ̇p cφp

0 0

0 0

θ̇ (mc sφp xG
2−2mc cφp xG zG)

2

− θ̇ (mc sφp zG
2−2 Ic13 cφp)
2

− θ̇ (+Ic11 sφp−Ic33 sφp)
2

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3.1.3 Generalized gravity force

To find the generalized gravity force, we need the gravitational potential energy of the robot.

We assume that a mass has zero potential energy when it is located in the plane through M that

22 Dynamic model

is parallel to ground (U(q) = 0 when φp = 90◦). Thus, the wheels have always zero potential

energy as their center of gravity is aligned with M , and we only have to count the potential

energy of the chassis. In view of Fig. 3.1, this energy can be computed as follows using basis

B′′.

U(q) = mc ·GM⊤ · g = mc ·
[
−xG −yG −zG

]
·

g sinφp

0

−g cosφp

 ,

where g is the acceleration of gravity vector, g is its magnitude, and (xG, yG, zG) are the coordi-

nates of G in the chassis frame (green). Therefore:

U = gmc zG cos (φp)− gmc xG sin (φp) .

Figure 3.1: Geometry of the gravity force.

3.1 Lagrange’s equation of motion 23

The generalized gravity force is G(q) = ∂U(q)
∂q . Therefore, we have

G(q) =

0

0

0

−gmc xG cos (φp)− gmc zG sin (φp)

0

0

.

3.1.4 Generalized force of actuation

Our vector u of motor torques is defined as

u =

[
τl

τr

]
,

where each τ represents the torque of the corresponding wheel. Each of the torques in u acts

directly on a qi coordinate and, therefore, the generalized force of actuation is

Qa =

0

0

0

0

τl

τr

. (3.8)

To rewrite this force in the form Qa = E · u we only have to define

E =

0 0

0 0

0 0

0 0

1 0

0 1

. (3.9)

3.1.5 Generalized force of friction

In this project we only consider the friction forces of the wheels’ rotation. The expression of the

generalized friction force is given by

24 Dynamic model

Qf =

0

0

0

0

−b φ̇l

−b φ̇r

. (3.10)

3.1.6 Generalized disturbance force

This disturbance will not be used to design the controller. Rather, it will serve to test the

controller under unmodelled situations. For example, when there is some wind or a colision

between the chassis and an object or person, or when the ground offers some rolling resistance.

For the moment we just model a disturbance force Fd = [Fdx, Fdy, Fdz] applied at G, which

would allow the modeling of the first two examples, but would not include the case of a change

of the rolling resistance.

Qd =

Fdx cos (θ)− Fdy sin (θ)

Fdy cos (θ) + Fdx sin (θ)

Fdy (xG cos (φp) + zG sin (φp))− Fdx yG

Fdx (zG cos (φp)− xG sin (φp))− Fdz (xG cos (φp) + zG sin (φp))

0

0

,

where

Fd · vG = Qd · q̇.

3.2 The x model

We now wish to obtain the robot model in the form ẋ = f(x,u). This requires writing q̈ as a

function of q, q̇, and u, to then convert the 2nd order ODE into a 1st order one.

Recall that Lagrange’s equation is

M q̈ +C q̇ +G+ J⊤ λ = Qa + Qf

where we have omitted the dependencies on q and q̇ for simplicity. Since we are working with

a system of 6 equations in 9 unknown variables (6 coordinates in q̈ and 3 in λ) we need 3

additional equations to determine q̈ and λ for a given u. These can be obtained by taking the

3.2 The x model 25

time derivative of the kinematic constraint

J · q̇ = 0,

which gives

J q̈ + J̇ q̇ = 0,

or equivalently,

J q̈ = −J̇ q̇. (3.11)

Equation (3.11) is called the acceleration constraint of the robot. In order to get the J̇ value

we need to go back to the expression

J =
[
I3 −N

]
.

If we take the time derivative of the previous equation, we get

J̇ =
[
03 −Ṅ

]
,

where Ṅ is the time derivative of N (Eq. (2.5)):

Ṅ =

−r θ̇ sin (θ) − r θ̇ sin(θ)

2 − r θ̇ sin(θ)
2

r θ̇ cos (θ) r θ̇ cos(θ)
2

r θ̇ cos(θ)
2

0 0 0

 .

Therefore, J̇ is:

J̇ =

0 0 0 r θ̇ sin (θ) r θ̇ sin(θ)

2
r θ̇ sin(θ)

2

0 0 0 −r θ̇ cos (θ) − r θ̇ cos(θ)
2 − r θ̇ cos(θ)

2

0 0 0 0 0 0

 .

The system formed by Lagrange’s equation and the acceleration constraint is{
M q̈ +C q̇ + J⊤ λ = E u

J q̈ = −J̇ q̇

which can be written in matrix form as[
M J⊤

J 0

][
q̈

λ

]
=

[
E u−C q̇

−J̇ q̇

]
.

26 Dynamic model

The matrix on the LHS is called the extended mass matrix. This matrix is invertible, since

M is positive-definite and J is full row rank. Thus we can write[
q̈

λ

]
=

[
M J⊤

J 0

]−1 [
E u−C q̇

−J̇ q̇

]
.

Therefore

q̈ =
[
I6 0

] [M J⊤

J 0

]−1 [
E u−C q̇

−J̇ q̇

]
.

Finally, by considering the trivial equation q̇ = q̇ in conjunction with the earlier one we

arrive at [
q̇

q̈

]
=

q̇[

I6 0
] [M J⊤

J 0

]−1 [
E u−C q̇

−J̇ q̇

] ,

which, if we let x = (q, q̇), gives the robot model in the state space form

ẋ = f(x,u).

We refer to this equation as the x model of the robot.

A drawback of this model is that the x variables are not independent (they must fulfill

F (x) = 0). Therefore:

• The numerical integration of ẋ = f(x,u) easily generates errors pulling x(t) away from

the state space X. In practice, this translates into sliding of the robot on the ground

(both lateral and longitudinal).

• The equation cannot be used to design a common controller to stabilize a given

trajectory, as such controllers typically assume the x variables to be independent.

We next derive an alternative model in independent coordinates, which overcomes these

limitations in the case of stabilizing the constant velocity trajectories for the internal state y =

(φ, φ̇).

3.3 The y model

We start again from Lagrange’s equation of the x-model

M q̈ +C q̇ +G+ J⊤ λ = Qa(u) +Qf +Qd,

3.3 The y model 27

and consider this parameterization of the feasible velocities q̇[
ṗ

φ̇

]
=

[
N

I3

]
· φ̇,

which we write as

q̇ = ∆ · φ̇,

where ∆ =

[
N

I3

]
.

If we multiply Lagrange’s equation by ∆⊤ we get

∆⊤M q̈ +∆⊤C q̇ +∆⊤G+ (J∆)⊤λ = ∆⊤Qa(u) +∆⊤Qf +∆⊤Qd.

Since the columns of ∆ are feasible velocities, and the rows of J are orthogonal to such velocities

(by virtue of J · q̇ = 0), J∆ must be 0. Therefore, the equation simplifies to

∆⊤M q̈ +∆⊤C q̇ +∆⊤G = Ta(u) + Tf + Td,

where Ta(u) = ∆⊤Qa(u), Tf = ∆⊤Qf , and Td = ∆⊤Qd. Furthermore, if we apply the

substitutions
q̇ = ∆ · φ̇
q̈ = ∆ · φ̈+ ∆̇ · φ̇,

we obtain

M̄ φ̈+ C̄ φ̇+ Ḡ = Ta(u) + Tf + Td, (3.12)

where
M̄ = ∆⊤M ∆

C̄ = ∆⊤ (M ∆̇+C∆)

Ḡ = ∆⊤G.

Equation (3.12) is the equation of motion in φ coordinates. This ODE is remarkable, as all

of its terms depend only on φ or φ̇ (see our calculations below). In fact, they only depend on

(φp, φ̇p, φ̇l, φ̇r). To convert the ODE into first order form (Eq. (3.13)), we isolate φ̈ and add the

trivial equation φ̇ = φ̇. φ̇ = φ̇

φ̈ = M̄−1(Ta(u) + Tf + Td − C̄ φ̇− Ḡ)
(3.13)

28 Dynamic model

If we define y = (φ, φ̇) and represent the RHS of the previous system by g(y,u), we have

ẏ = g(y,u).

We refer to ẏ = g(y,u) as the y model of the robot, and to y as the “internal state”. The y

model has these advantages:

• It is sufficient to predict the trajectory φ(t) for a given input u(t).

• Since the φ coordinates are independent, the result will also be compliant with F (x) = 0.

• The model allows the design of a feedback controller to stabilize the robot in the upright

position, or moving with constant speeds v and θ̇, using proprioceptive feedback only.

• Since the terms of the model depend only on (φp, φ̇p, φ̇l, φ̇r), the linearized model will

not depend on (φl, φr). In other words, the system linearization about a state y = (φ, φ̇)

stays constant as long as φp and φ̇ do not change.

3.4 Odometry

Suppose we have simulated the robot using the y model ẏ = g(y,u). We then have (φ(t), φ̇(t)),

but in some situations we would like to recover the full configuration (q(t), q̇(t)). The angle

θ(t) is easy to obtain, since using the holonomic constraint we have:

θ(t) =
r

2d
(φr(t) + φl(t)) +K0.

To recover r(t) = (x(t), y(t)), we can use the first two equations of ṗ = N(θ) · φ̇, which we

write as

ṙ = V (θ) · φ̇,

where V (θ) is the matrix defined by the first two rows of N(θ). Therefore:

r(t) = r(0) +

∫ t

0
V (θ(t)) · φ̇(t) · dt.

This integral will be computed numerically using Matlab’s integral function in our implementa-

tion (Chapter 5). This function admits vector-valued integrands like V (θ(t)) ·φ(t).

If the values rk = r(tk) have to be computed on-line from a sequence of values θk = θ(tk),

φ̇k = φ̇(tk), for k = 0, 1, 2, . . .; we can use the following recurrence, which approximates the

3.5 Particularized y model 29

integral from tk to tk+1 by using the trapezoidal rule:rk+1 = rk +
h

2
(V (θk) · φ̇k + V (θk+1) · φ̇k+1)

r0 = r(0)

where

h = tk+1 − tk.

3.5 Particularized y model

In order to have a working model to validate our controller, the y model has been particularized

assuming the chassis has a symmetric design in which:

• G is located on axis 3”, so xG = yG = 0.

• The chassis inertia tensor at G is diagonal.

Although real life robots are not that perfect, most of the designs made are not very far from

being symmetric. For these reasons our calculations will not be very distant from reality, and

small variations can always be compensated by a well designed controller.

The geometric parameters we choose are inspired by the Loomo robot made by Segway [10].

We used this robot as a reference as it was a small robot that came with the same movement

mechanism that we are developing, and matched with the idea that we had. With this in mind,

and assuming the wheels and the chassis are cylinders of uniform mass distribution, the resulting

dimensions of our particular twinbot are specified in Table 3.1.

If we now substitute the values of the Table 3.1 into the dynamic matrices, we will have

the final system we will be working with. The notation M̄twinbot, C̄twinbot, Ḡtwinbot, T̄f twinbot,

T̄dtwinbot means that we are using the y-model with the substituted parameters of our twinbot.

We can see the results in the following equations:

M̄twinbot =
0.8775 cos (φp) + 1.507 0.2194 cos (φp) + 0.2138 0.2194 cos (φp) + 0.2138

0.2194 cos (φp) + 0.2138 0.2415− 0.02361 cos (2.0φp) 0.02361 cos (2.0φp)− 0.02779

0.2194 cos (φp) + 0.2138 0.02361 cos (2.0φp)− 0.02779 0.2415− 0.02361 cos (2.0φp)

 .

30 Dynamic model

C̄twinbot =

−0.4388 φ̇p sφp

−0.02361 s2φp (φ̇l − 1.0 φ̇r)

−0.03148 sφp (φ̇l − 1.0 φ̇r)

0.02361 s2φp (φ̇l − 1.0 φ̇r)

+0.03148 sφp (φ̇l − 1.0 φ̇r)

0.03148 sφp (φ̇l − 1.0 φ̇r)

−0.2194 φ̇p sφp

+0.02361 s2φp (φ̇l − 1.0 φ̇r)

0.02361 φ̇p s2φp

0.03148 sφp (φ̇l − 1.0 φ̇r)

−0.02361 φ̇p s2φp

−0.03148 sφp (φ̇l − 1.0 φ̇r)

−0.219375 φ̇p sφp

−0.02361 s2φp (φ̇l − 1.0 φ̇r)

−0.03148 sφp (φ̇l − 1.0 φ̇r)

−0.02361 φ̇p s2φp

0.02361 φ̇p s2φp

.

Ḡtwinbot =

−28.67 sin (φp)

0

0

T̄ftwinbot
=

0

−0.1 φ̇l

−0.1 φ̇r

 .

T̄dtwinbot
=

Fdx r − Fdz zG sin (φp) + Fdx zG cos (φp)

r (Fdx d−Fdy zG sin(φp))
2 d

r (Fdx d+Fdy zG sin(φp))
2 d

 .

As the Force vector (F = [Fdx, Fdy, Fdz]) is expressed in the B’ reference system, and the

force applied has been defined in the direction of the movement, F = [Fdx, 0, 0]. Then, T̄dtwinbot

should be modeled as:

T̄dtwinbot
=

r Fdx + zG Fdx cos(φp)

(r2)Fdx

(r2)Fdx

 =

0.15Fdx + 0.225Fdx cos(φp)

0.075Fdx

0.075Fdx

 .

3.5 Particularized y model 31

Table 3.1: Nominal parameters of the robot assumed

Symbol Meaning Value Unit

g Acceleration of gravity 9.81 m s−2

xG x coord of G 0 m
yG y coord of G 0 m
zG z coord of G 0.225 m
d Semiaxis length 0.280 m
rw Wheel radius 0.150 m
hw Wheel with 0.050 m
mw Wheel mass 3 kg
Ia Wheel axial inertia moment 0.150 kg m2

It Wheel twisting inertia moment 0.150 kg m2

rc Chassis radius 0.180 m
hc Chassis height 0.550 m
mc Chassis mass 13 kg
Ic11 Chassis inertia tensor 11 element mc (r2c/2 + h2

c/12) kg m2

Ic12 Chassis inertia tensor 12 element 0 kg m2

Ic13 Chassis inertia tensor 13 element 0 kg m2

Ic22 Chassis inertia tensor 22 element mc r2c kg m2

Ic23 Chassis inertia tensor 23 element 0 kg m2

Ic33 Chassis inertia tensor 33 element Ic11 kg m2

b Viscous friction coeff. wheels 0.150 kg m2 s−1

τmax,w Maximum torque applicable by a wheel motor 10 Nm

4
Optimal Control Theory

In this chapter we provide the optimal control theory required in order to stabilize a twinbot

around a constant speed trajectory. The objective is that the robot does not fall on the ground,

while trying to follow the different linear and angular velocities given in real time.

4.1 The finite horizon LQR controller

Let us consider a generic linear time-varying (LTV) system as

ẋ(t) = A(t)x(t) +B(t)u(t)

which we wish to stabilize at x = 0, under u = 0, during T seconds. To this end we need to

find a feedback law u(t) = Π(x(t)) such that all solution trajectories x(t) of the ODE

ẋ(t) = A(t)x(t) +B(t)Π(x)

stay close to x = 0, u = 0 for t ∈ [0, T]. There are many such laws and we will choose one that

is optimal in a specific sense.

According to optimal control theory, if we wish that x(t) and u(t) = Π(x(t)) minimize

J(x(t),u(t)) = x(T)T Qf x(T) +

∫ T

0
(xT Qx+ uT Ru)dt,

then, the control law takes the form

u(t) = −K(t)x(t),

34 Optimal Control Theory

where

J(t) = −R−1B(t)T S(t),

and S(t) is the solution for t ∈ [0, T] of the Ricatti equation

Ṡ = −SA−AT S + SBR−1BT S −Q (4.1)

that satisfies the final condition

S(t) = Qf . (4.2)

Some considerations must be taken into account about the finite horizon LQR controller:

• The previous theory assumes that x and u are not subject to any constraints, so the

coordinates in x and u must be independent and unbounded.

• To implement the previous control law, S(t) must be computed a priori via solving the

Ricatti equation numerically from S(T) = Qf . This can be done using the ode45 command

that Matlab offers. For its implementation, it is necessary to have the values of S(t) and

K(t) = R−1B(t)T S(t) stored for all t ∈ [0, T] (or sufficient discrete values).

• Ṡ(t) is symmetric for all t, which implies that S(t) must be symmetric for all t too. It

can also be shown that S(t) is positive semidefinite. Tedrake shows how these properties

can be preserved by using the factorization S(t) = P (t)P (t)⊤ and an alternative form of

Eqs. (4.1) and (4.2) [6] . An alternative is to only integrate the upper (n2 − n)/(2 + n)

components of S(t).

4.2 The infinite horizon LQR controller

There is a case in which the gain matrix K(t) is constant ∀t. This occurs when the following

conditions are all met [11]:

• A and B are constant ∀t, so the system is linear time-invariant (LTI).

• Q and R are also constant ∀t.

• The system ẋ(t) = Ax(t) +Bu(t) is controllable.

• Qf = 0 (there is no final state penalty)

• T =∞, so we consider an infinite-horizon problem.

4.3 Stabilization of a given trajectory 35

In this situation, since the Ricatti equation is integrated backwards in time, the solution S(t)

can be expected to approach a constant matrix S for t near zero. Accordingly Ṡ(t) approaches

zero, so the limiting matrix S is the solution of the algebraic Ricatti equation:

0 = −SA−AT S + SBR−1BT S −Q. (4.3)

In this case, the optimal control torque is simply

u(t) = −R−1BT S · x(t) = −K · x(t),

where K is a constant matrix. Thus, if our system is LTI and we do not have a requirement to

bring it to x = 0 in some specific time T , this law is preferable because it is easier to implement

as the gains won’t be changing through time. In this case, for the calculations used in the

forward sections, the matrix K can be computed in Matlab using the command lqr [11].

4.3 Stabilization of a given trajectory

Once the controller to be used is defined, we are ready to stabilize a twinbot along a given

trajectory (x0(t),u0(t)), that satisfies

ẋ0 = f(x0(t),u0(t)),

where f is the dynamic function previously seen in Eq. (3.2).

That is, we aim the reference trajectory to be an attractor of the closed-loop system. In this

manner, if we start the robot at (x0(0),u0(0)), it will follow the trajectory; and if it suffers some

disturbance that deviates it from (x0(t),u0(t)), it will return back to it. We wish the closed-loop

system to have a similar behaviour as the representation in Fig. 4.1.

Figure 4.1: Ideal closed-loop behaviour.

36 Optimal Control Theory

To construct the controller, let us consider the time varying linearization of the system at

(x0(0),u0(0)):

ẋ = f(x0(0),u0(0))︸ ︷︷ ︸
ẋ0

+
∂f

∂x

∣∣∣∣ x=x0
u=u0︸ ︷︷ ︸
A

(x− x0) +
∂f

∂u

∣∣∣∣ x=x0
u=u0︸ ︷︷ ︸
B

(u− u0). (4.4)

If now we apply the change of variables

x = (x− x0)⇒ ẋ = ẋ,

u = (u− u0),

then Eq. (4.4) looks like

ẋ = Ax+Bu. (4.5)

Formally, Eq. (4.5) is a linear time-varying system. This is because A and B are evaluated at

(x0,u0), which are not constant values, therefore A and B are time-variant. This way, generally

we would have to use a finite-horizon LQR controller to stabilize this system at (x = 0,u = 0),

which means stabilizing at (x = x0,u = u0):

x = 0⇒ (x− x0(t)) = 0⇒ x = x0(t),

u = 0⇒ (u− u0(t)) = 0⇒ u = u0(t).

The feedback law would be, as before

u = −Kx⇒ u(t) = u0(t)−K(t) (x− x0(t)),

where K is time-dependent because K = R−1B⊤ S, and both B and S (Eq. (4.3)) vary

through time. Thus, u is time-dependent too.

However, if for some reason A and B happen to be constant along the trajectory, then we can

implement the∞-horizon LQR controller, for which S is constant (and so is K = R−1B⊤ S).

In our twinbot we will see that the A and B matrices for the y-model are constant along

trajectories that keep

v = constant

θ̇ = constant

φp = constant

∀t.
For these trajectories we will be able to design an∞-horizon LQR controller.

5
Controller design

In this chapter we will apply the theory from the previous chapter to design a control law that is

able to stabilize a twinbot along a constant velocity trajectory, determined by the desired linear

and angular velocities for the chassis (v and θ̇). Lastly we will provide the simulation results to

analize the behavior of a twinbot while working with the control system.

5.1 A feedback law for a twinbot

The y-model of a twinbot (ẏ = g(y,u)) describes the evolution of the internal state y = (φ, φ̇).

In this project, we are going to use this model to design a feedback law that keeps the robot

moving under constant velocities v and θ̇, while keeping φp(t) = 0 ∀t. This corresponds to

asking the robot to move under the following angular velocities for all t:

φ̇p = 0

φ̇l =
v − d θ̇

r

φ̇r =
v + d θ̇

r

where v, θ̇ are the input variables, and d, r are geometric parameters previously defined in Table

3.1. Assuming φl(0) = φr(0) = 0, the angles φl(t) and φr(t) will be

φl(t) =
v−d θ̇

r t , φr(t) =
v+d θ̇

r t.

38 Controller design

In sum, the internal state trajectory to be followed is:

y0 =
1

r

0

(v − d θ̇) t

(v + d θ̇) t

0

v − d θ̇

v + d θ̇

.

Moreover, the torques u =

[
τl0

τr0

]
that allow the robot to maintain this trajectory can be

obtained by substituting

φp = 0 , φ̇p = 0 , φ̇l =
v−d θ̇

r , φ̇r =
v+d θ̇

r , φ̈p = φ̈l = φ̈r = 0

in the equation of motion (3.12) and solving for Ta(u). For the specific case of xG = 0, yG = 0

and Ic(1, 3) = 0, we get:

Ta(u) =

0

b (v−d θ̇)
r

b (v+d θ̇)
r

 ,

so the required wheel torques are

u0 =

[
τl0(t)

τr0(t)

]
=

[
b (v−d θ̇)

r
b (v+d θ̇)

r

]
.

In our case, g(y,u) only depends on

φp , φ̇p , φ̇l , φ̇r , τl , τr .

Since these values remain constant along y0(t), the matrices A and B

A = ∂g
∂y

∣∣∣ y=y0(t)
u=u0(t)

B = ∂g
∂u

∣∣∣ y=y0(t)
u=u0(t)

(5.1)

will be constant along (y0,u0). In other words, the linearization of the system along the desired

trajectory y0(t) will be an LTI system of the form

˙̄y = Aȳ +B ū,

5.2 The control loop algorithm 39

where ȳ(t) is the state error of the system and ū(t) is the action error (5.2).

ȳ(t) = y(t)− y0(t) ← State error

ū(t) = u(t)− u0(t) ← Action error.
(5.2)

In sum, as we are working with constant A and B matrices, we can stabilize the system

along y0(t) with an infinite-horizon LQR controller.

Assuming that the controller has to minimize

J(y(t), ū(t)) =

∫ ∞

0
[ȳ(t)⊤Qȳ(t) + ū(t)⊤Rū(t)]dt,

the feedback law will be

ū(t) = −K ȳ(t)→ u(t) = u0(t)−K (y(t)− y0(t)),

where K = R−1B⊤ S, and S is the solution of the algebraic Ricatti equation (4.3).

The closed-loop system’s stability is directly related to the state error, which behaves accor-

ding to the following expression.
˙̄y = (A−BK) ȳ.

This system will be stable (all trajectories ȳ will converge to the origin as t → ∞) if, and

only if, all eigenvalues of A−BK have their real parts negative.

To make sure if we are working with a stable system, we are going to use the MATLAB

command lqr, which returns the eigvals of A−BK, as well as the values of the matrix K.

5.2 The control loop algorithm

In this section we will go over the control loop algorithm that allowed us to move a twinbot

while keeping it in an stable position.

5.2.1 Initializations

First of all, we must define the initial conditions of the robot (yi) and the desired equilibrium

state (y0). It is not needed to provide the x coordinates, as we will be working with the y-model

for the calculations. In our case we set

yi = [0 0 0 0 0 0],

y0 = [0 0 0 0 0 0].

40 Controller design

Secondly, we set the control gains of the system (Q and R). To do so we use the Bryson

rule [12] which gives us a reference basis from where to start adjusting the two gains. At the

end there’s no rule that works perfectly for all the control systems, but this one provides a

starting point. Bryson proposes that the diagonal elements of the matrices Q and R should be

calculated with the following formula:

Qii =
1

maximum acceptable value of y(i)2
, i ∈ [1, 2, ..., 6]

Rjj =
1

maximum acceptable value of u(j)2
, j ∈ [1, 2]

We have set a maximum wheel’s torque of 10Nm, therefore Rjj should be 0.01. For Qii we

start by setting them to the same value as Rjj . Afterwards we need to start a trial-and-error

iterative adjusting procedure until we get the acceptable results. In our case, all the elements

of the diagonal of Q and R were set to 0.01, except for Q11 and the Q44, that correspond to φp

and φ̇p, which are set 1000 times higher. With this modification we improve the stabilization of

the chassis.

Next, we draw the initial configuration of the robot. To do it, we used the URDF technique,

which allowed us to build a multi-body tree of a twinbot (Fig. 5.1).

Figure 5.1: A simplified 3D model of a twinbot.

In section 3.5, we described a simplified model of the robot made by three cylinders, one for

each wheel and one for the chassis. For this reason, our robot will have these three bodies. There

are three main variable spatial transformations between rigid bodies that need to be given: one

specifying the position of the chassis with respect to the floor, and one for each wheel specifying

its position with respect to the chassis. The chassis position involves two translations (x, y),

5.3 Grafical Interface 41

and two rotations (θ, φp), whereas each wheel involves only one rotation (φl and φr). Once the

configuration is drawn, we can set the timer to 0 and begin the control loop.

5.2.2 Control loop

The first step to take is to read the input variables v0 and θ̇0, from an input device (a keyboard),

and recalculate the y0 coordinates. The φp0 and φ̇p0 values do not change, as we always want

to keep the chassis as vertical as possible.

The next step is to obtain the K matrix, for which A and B are needed. The last two

matrices are obtained following (5.1), and for the computation of K, we use the MATLAB lqr

command.

With the value of K, we can finally calculate the new y coordinates. To do so, we used

a function handle for the u variable, which allowed us to do the ode45 numerical integration.

This function implements a Runge-Kutta method with a variable time step for efficient computa-

tion [13–15]. It probably was enough to use a Runge-Kutta 4, but as the computing times were

not very different, we went for the most precise method.

Finally, we can recalculate the x-model coordinates, using the odometry explained in section

3.4. It is important to keep in mind that for the recalculation of the x-model, we need to find

the new N matrix, as it is directly related to θ, which is constantly changing.

To end the loop, we draw the new configuration of the robot, using the same method

explained in section 5.2.1.

The iteration time of the control loop is set to 20ms, as most of our loops take between 10

and 15ms to compute. By setting the iteration time higher than the response time of most loops,

we minimize the chances of over-passing the set time.

5.3 Grafical Interface

In order to develop the control loop, we used MATLAB [16]. Specifically we used an app module

of the program that provides a nice interface for the user. A great advantage of this module is

that, although this software is not free, once the program is finished, it can be downloaded and

opened in any computer, despite not having a MATLAB license.

In our interface there is a series of buttons and visuals so that the user can tune certain

visualization characteristics and can get feedback from the robot movement. These components

are, starting from the top-left corner (Fig.5.2):

• A control period semicircular gauge that shows the control loop time (before fixing it to

20ms). This measure is very important in order to make sure it is not over-passing the set

42 Controller design

time.

• A view mode button that allows the user to change the camera position. The three options

are: First person view (the camera follows the robot closely), Zenithal (seen from above)

and Oblique view (the camera is oriented with an azimuth angle of 45◦ [17]). The last

one is the predefined view.

• A camera elevation knob, which only works for the oblique view, allows the user to change

the elevation angle of the camera. The range is from 0◦, where you get a sideways view,

to 90◦, that corresponds to a sky view.

• A meters around knob, which defines the camera distance from the robot. It can be set

from a very close view of 1m to 50m, from where the robot is hard to see.

• A quit button. This feature is linked to the ESC key and is used to close the app. If the

button or the keyboard key is pressed once, the simulation stops and the plots show up,

when pressed again, the interface closes.

• The linear speed circular gauge shows the desired speed of the robot in m/s. It corresponds

to the variable v0. The control of v0 is done with the up and down arrows of the keyboard.

Every time the up arrow key is pressed, the desired velocity is increased by 0.5m/s, while

the down arrow decreases this variable by the same amount, keeping the linear velocity

limited between 3 and −3m/s.

• The angular speed circular gauge shows the desired angular velocity of the robot in rad/s.

It corresponds to the variable θ̇0. Its control is done with the left and right arrows of the

keyboard. Every time the left arrow key is pressed, the desired angular speed is increased

by 15rad/s, while the right arrow decreases by the speed the same amount, keeping the

angular velocities between 3 and −3m/s.

• The two linear gauges indicate both wheel’s torques, which should always be in the interval

(−10, 10) Nm as this is how we have defined it.

• At the bottom-right corner, there is a knob that shows the value of an external force applied

to the center of gravity of the robot in the x direction. This knob can not be directly

actuated with the mouse, but its value is set through the keyboard. Each time the F key is

pressed, the force applied takes the value of 100N for a period of 0.5ms, while pressing G

the force value becomes −100N for the same period of time.

• Finally, if the SPACE key is pressed on the keyboard, the robot will converge into a stop

position (v0 = θ̇0 = 0).

5.3 Grafical Interface 43

Figure 5.2: Graphical interface caption.

44 Controller design

5.4 Simulation Results

To show the performance of the controller we run five experiments designed to evaluate the

following aspects: its ability to recover from unbalanced configurations, its response to abrupt

changes in the commanded linear and angular velocities, respectively, and its reaction in front

of two different disturbance situations, one consisting in a short pulse of force and a second one

in which a constant force is permanently applied.

5.4.1 Twinbot’s ability to recover from unbalanced configurations

In this first test, the robot starts at rest with an angle φp = 60◦ (Fig. 5.3) and we hope the

controller will be able to stabilize it at φp = 0◦, remembering that the maximum wheel’s torque

is 10Nm.

Looking at Fig. 5.4 we can see that the robot starts by accelerating in the positive x direction,

what results in an effective reduction of the φp deviation. However, this correction of φp is

achieved at the cost of producing an undesired x displacement, which must be subsequently

compensated. So, near t = 0.5s, the robot starts reducing its speed until zero (just after t = 1s),

to finally inverting it until the initial location with x = 0 is reached.

Note that each acceleration in x produces an acceleration of φp in the opposite sense. This

explains why φp takes negative values after about t = 0, 5s, since this is required to permit the

acceleration in the−x direction while driving φp towards zero. The value of φp becomes positive

again in the last part of the maneuver, and this is necessary to allow the x velocity to decelerate

from a negative value to 0.

As we see, there is a delicate interplay between x and φp whose precise coordination yields

the convergent behavior observed. Noticeably, the x = 0 position is asymptotically approached,

without surpassing it and without oscillations.

5.4 Simulation Results 45

Figure 5.3: Twinbot initialized in a φp = 60◦ configuration.

Figure 5.4: Behavior of our twinbot recovering from an unbalanced situation with φp = 60◦.

46 Controller design

5.4.2 Response to a v0 step input

In this test, the robot starts at rest with φp = 0, and a desired velocity v0 = 0.5m/s is com-

manded. The first response of the controller may be surprising, since, instead of accelerating

in the positive x direction to approach the required speed, the robot starts by accelerating in

the opposite direction. This is the adequate behavior in this kind of robots, since, as already

explained, an acceleration in the x direction produces an acceleration of φp in the opposite

direction. Thus, it is necessary to start by setting the φp angle at a positive value by means of

an acceleration in the −x direction (Fig. 5.5). The stabilization process towards the desired

trajectory is similar to that of the previous test, and we can observe how the robot trajectory

converges smoothly to the desired one.

Figure 5.5: Graphics of the behavior when our twinbot is under a v0 step input.

5.4.3 Response to a θ̇ step input

In this case the robot is required to turn in place with an angular velocity of −0.25rad/s.
Since there is no need to accelerate in the x direction, the angle φp may stay equal to 0 at

all times. Consequently, in this case, the controller produces an angular acceleration in the

expected direction from the beginning (Fig. 5.6). As in the previous test, the robot is able to

5.4 Simulation Results 47

smoothly converge to the specified trajectory.

Figure 5.6: Graphics of the behavior when our twinbot is under a θ̇ step input.

5.4.4 Reaction to a force pulse

In this experiment, we simulate a quick collision of the robot by applying an external force along

the x axis to the center of gravity (G point) for a period of time of 0.5s.

The immediate effect of the external force is a positive x displacement of the robot and

a negative angular deviation of φp. This situation is very close to that reached in the first

experiment just when φp takes a negative value. Once the external force disappears, the

stabilization process is very similar in both tests. The robot is able to recover from the perturbed

configuration following essentially the same steps (Fig. 5.7).

5.4.5 Reaction to a constant force

The last experiment consists in applying a constant force in the x direction to the center of

gravity and maintain it for an indefinite period of time. In this case the robot first reacts, as

in the previous experiment, by applying a torque to accelerate the robot in the same direction

as that produced by the external force. This is required to reach an angle φp large enough to

48 Controller design

�
X

0.5

--XM(m)
__ XM (m)

o

o 1.....,,,,, ___ � ___ _,¡__,_;,, __ ,,,,,4 ____ �---�==""""",.,,,i____ _..J

100

80

.--.. 60
z

LL 40

�

�

�

�20

o

o

....... -10
O)

� -20
E
a.

-30

2 4

1 1

1 1

2 4

6 8

Time (s)

F
1 1

1 1

6 8

Time (s)

10 12 14

1 1

-

-

-

-

1 1

10 12 14

-40 �---�---�-�-�---�---�---�---�
o 2 4 6 8

Time (s)

10 12 14

--v(m/s)

2 --v O(m/s)

(/)

E 1

>

o

-1
2 4 6 8 10 12 14

Time (s)

4
u (left and right)

2
--u(Nm)
--uO(Nm)

-o
E

':,-2

-4

-6

o 2 4 6 8 10 12 14
Time (s)

1

(/)

o

·-c. -1

-2
2 4 6 8 10 12 14

Time (s)

Figure 5.7: Graphics of the behavior when our twinbot is under a quick collision.

allow the effect of the gravity to compensate for the external force. The final behavior of the

controller in this case is to stay in a configuration in which the angle φp and the torques applied

to wheels exactly compensate the external force, so that the desired target state with φp = 0

and φl = φr = 0 is not reached (Fig. 5.8). This is explained noting that, if the external force is

maintained, it is not possible to stay in a static configuration with the desired values of φ = 0

and φ̇ = 0. The final configuration reached by the robot is one such that a reduction of the

φp angle would require a decrease of the torques ul and ur, whereas a reduction of the φl and

φr angles would require an increase of the ul and ur torques, so that, unable to satisfy both

conditions at the same time, the robot stays in a trade-off configuration in which these two

requirements are mutually countered(Fig. 5.9).

5.4 Simulation Results 49

Figure 5.8: Twinbot configuration while going through a constant force.

X
M V

6 3

--X
M

(m) --v(m/s)

__ X
M

(m) --vO(m/s)

-4
o - 2

.s

>

2 1

o o

o 2 4 6 8 10 12 14 16 18 o 2 4 6 8 10 12 14 16 18

Time (s) Time (s)

F u (left and right)
100 1 1 1 1 1 1 1 1 5

--u (Nm)
80 � --uO(Nm)

o
-

z
60 �

-

E
z

LL
40 :::::,

-5

20

o
1 1 1 1 1 1 1 1

-10
o 2 4 6 8 10 12 14 16 18 o 2 4 6 8 10 12 14 16 18

Time (s) Time (s)

o 0.5

o
-20

- ---

O) "O

Q) ro -0.5,_

� -40
c. -e

E c.
-1

a.
E

-60 a.
-1.5

-80 -2
o 2 4 6 8 10 12 14 16 18 o 2 4 6 8 10 12 14 16 18

Time (s) Time (s)

Figure 5.9: Graphics of the behavior when our twinbot is under a constant force.

6
Conclusions

The following is a summary of the main contributions of this work, and some points that could

be addressed in future extensions.

6.1 Contributions

In this project we have obtained the kinematic and dynamic models for a two-wheeled inverted

pendulum robot, we have designed a control system, that, using the dynamic model, stabilizes

the robot in the upright position along a real time defined trajectory, and we have validated the

robustness of this control by applying force disturbances while the robot was trying to keep a

specific configuration.

The dynamic model takes into account the mass and inertia moments of all robot bodies, the

viscous friction of the axes, and assumes arbitrary positions and dimensions for the wheels and

the chassis. We started defining the model using generic coordinate systems, which includes

twelve state variables. Nevertheless, this model had constraints, which would complicate the

control, for this reason we developed a new reduced model that only involves six independent

state variables. Finally, we made a particularization of the model with a simplified twinbot

geometry, which has been essential for the control system implementation.

The controller obtained is executed in a control loop that, in every iteration, recognizes the

desired configuration, compares it with the actual one, and defines the wheel’s torques needed to

minimize the positioning and velocity errors. The robot can be controlled by applying linear and

angular velocity steps by means of a graphical interfacte that provides, among others, a real time

output of the robot movement, the desired velocities, the actual motor torque of both wheels,

and allows the user to move the camera settings in order to change the viewer’s perspective.

Finally, a validation test was done, which provided very positive results. The robot was

able to lift himself from a 60◦ angle, only using 10Nm torque motors; was able to follow, with

52 Conclusions

no oscillations, a linear and an angular speed step, and could manage both a punctual and a

constantly applied disturbance force without deviating too much from the desired trajectory.

6.2 Future work

This project is just the first step that needed to be made before having a functional robot. Right

now, we have developed the control system, but if we want to materialize it, and make sure it

works as it does in the simulation, there are several steps to take:

• First of all, the robot needs to be designed, and for this we need to decide what application

we want to give it, how much budget we are able to spend in the process and which

materials, shapes and dimensions should the robot have in order to fulfill its purpose

without becoming overpriced.

• The code designed using MATLAB should be translated into C++, if we want to achieve a

faster response.

• Once the robot is built, the mass, inertia, friction, and geometric parameters will need to

be identified in order to particularize the dynamic model, and thus the controller.

• The capability of the control system should by widen to make it able to follow arbitrary

trajectories, not restricted to those with constant speed and φp = 0, as has been assumed

in this work.

• Furthermore, we could equip the robot with a path planner to provide it with autonomy

to generate navigation plans for obstacle environments.

• Finally, the proposed controller could be programmed to become adaptive, so that the

system itself were able to adjust the dynamic parameters, in case they are subject to

changes, such as when depositing a load of unknown mass and inertia moment attached

to the robot.

With these suggestions said, it is clear that there is still a long road to go, and a lot of work

that needs to be done if we want to build our own twinbot some day.

Bibliography

[1] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile

robots. MIT press, 2011.

[2] R. P. M. Chan, K. A. Stol, and C. R. Halkyard, “Review of modelling and control of two-

wheeled robots,” Annual reviews in control, vol. 37, no. 1, pp. 89–103, 2013.

[3] K. Albert, K. S. Phogat, F. Anhalt, R. N. Banavar, D. Chatterjee, and B. Lohmann, “Structure-

preserving constrained optimal trajectory planning of a wheeled inverted pendulum,” IEEE

Transactions on Robotics, vol. 36, no. 3, pp. 910–923, 2020.

[4] G. Campion and W. Chung, “Wheeled robots,” in Springer Handbook of Robotics, pp. 391–

410, Springer Berlin Heidelberg, 2008.

[5] J. A. Batlle and A. B. Condomines, Rigid Body Kinematics. Cambridge University Press,

2020.

[6] R. Tedrake, “Underactuated Robotics. Course lecture notes. Available online through.”

http://underactuated.csail.mit.edu.2018.

[7] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge University Press, 2017.

[8] J. A. Batlle and A. B. Condomines, Rigid Body Dynamics. Cambridge University Press, 2022.

[9] R. M. Murray, Z. Li, and S. Sastry., A Mathematical Introduction to Robotic Manipulation.

CRC Press, 1994.

[10] Segway, “Loomo specs.”

[11] M. Athans and P. L. Falb, Optimal control: an introduction to the theory and its applications.

Courier Corporation, 2013.

[12] J. P. Hespanha, “Linear systems theory,” in Linear Systems Theory, Princeton university

press, 2018.

[13] N. A. F. Senan, “A brief introduction to using ode45 in matlab,” Department of Mechanical

Engineering, University of California at Berkeley.

[14] L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” Journal of Scientific

Computing, vol. 18, pp. 1–22, 1997.

[15] J. Dormand and P. Prince, “A family of embedded Runge-Kutta formulae,” Appl. Math.,

vol. 6, pp. 19–26, 1980.

http://underactuated.csail.mit.edu.2018

54 BIBLIOGRAPHY

[16] D. J. Higham and N. J. Higham, MATLAB guide. SIAM, 2016.

[17] MathWorks, “Set the viewpoints with azimuth and elevation.”

[18] Sibelga, “How much power does a computer use? and how much co2 does that

represent?.”

[19] T. I. P. S. Ltd, “How much co2 does a light bulb create?.”

A
Source code

In this project, we have developed all the simulations and calculations using MATLAB. In order
to obtain the kinematic and dynamic models of our twinbot we have used the symbolic toolbox
that the program offers, which made the calculations possible. To make the code more visually
attractive, we have used the liveSripts tool, which allows the inclusion of text and images
interspersed with parts of the code. This file can be find in section A.1.

The graphical interface is done with the application designer that MATLAB offers, neverthe-
less, some of the functions are imported as external .m files. Finally, the URDF text file, which
includes the bodies and joints of the simplified robot, is also present in this annex.

A.1 Matlab liveScript

The MATLAB liveSript that has been implemented for the kinematic and dynamic modeling of
the robot is the following one. It is necessary to run the liveSript file before moving to the
application, because the first one exports several matrices and parameters that are needed later
on.

Dynamic models of Twinbot
Authors: Eduard Godayol and Lluís Ros, 2022

This livescript develops the x and y models of Twinbot. It computes all of their terms symbolically, and exports
them for numeric evaluation. It also explains how to obtain the z model, which is a full model in independent
coordinates.

Table of Contents

Initializations... 1
Introduction...2

Reference frames and vector bases...2
Configuration and state coordinates... 3

Kinematic constraints imposed by the rolling contacts... 4
Holonomic and nonholonomic constraints..8
Lagrange's equation of motion... 9

Mass matrix.. 9
Coriolis matrix... 12
Generalized gravity force..13
Generalized force of actuation..14
Generalized force of friction..14
Generalized disturbance force..15

The x model..15
The y model..17
Odometry..20
The z model..21
Defining a constant velocity trajectory.. 21
Particularization for a symmetric chassis design..23

Particularized y model.. 23
Explicit dynamics function...24
Jacobians A and B..25
Computation of A and B without symbolic inversion of Mbar..25
Export Matlab functions of the generic symmetric model... 28
Export Matlab functions of the loomo-like symmetric model...28

Print ellapsed time.. 31
References... 31

Initializations
% Clear all variables, close all figures, and clear the command window
clearvars
close all
clc

% Start stopwatch
tic

% Display the matrices with rectangular brackets
sympref('MatrixWithSquareBrackets',true);

1

% Avoid Matlab's own substitution of long expressions
sympref('AbbreviateOutput',false);

% Symbolic variables
syms d r % Semiaxis length and wheel radius
syms x y % Absolute coords. of point M
syms x_dot y_dot % Absolute velocity of point M
syms theta % Absolute angle between the axes 1' and 1
syms theta_dot % Absolute angular velocity of the platform
syms varphi_p % Pitch angle of the chassis
syms varphi_l % Angle of left wheel relative to chassis
syms varphi_r % Angle of right wheel relative to chassis
syms varphi_dot_p % Time derivative of varphi_p
syms varphi_dot_l % Time derivative of varphi_l
syms varphi_dot_r % Time derivative of varphi_r
syms v % Absolute velocity of point M in basis B'
syms x_G y_G z_G % Coords. of the chassis c.o.g. in basis B''
syms m_c % Mass of the chassis
syms m_w % Mass of a wheel
syms I_c11 I_c12 I_c13 % Entries of the chassis inertia tensor
syms I_c22 I_c23 I_c33 % Entries of the chassis inertia tensor
syms I_a % Axial moment of inertia of a wheel
syms I_t % Twisting moment of inertia of a wheel
syms b % Viscous friccion coeff. at the wheels axis
syms g % Acceleration of gravity
syms tau_l tau_r % Torques applied to the left and right wheels
syms F_dx F_dy F_dz % Components of disturbance force in basis B'

Introduction
Reference frames and vector bases
Twinbot is a two-wheeled inverted pendulum robot. It can be viewed as a differential drive robot whose chassis
is allowed to rotate about the wheels' axis. The wheels are powered by electric motors mounted underneath the
chassis.

The structure of the robot is simple but effective. With proper maneuvering, the robot can reach any desired
position and orientation in the plane. However, since its center of gravity is often above the wheels axis

2

(specially if the robot is carrying a load) the robot may fall if proper control torques are not applied. The
challenge is to move the robot forward (perhaps while turning) in a stable manner.

To obtain the robot model, we use the following reference frames:

The blue frame is the absolute frame fixed to the ground, with axes 1, 2, and 3. The red frame is centered at
the midpoint M of the wheels' axis, and its axes 1', 2', and 3' correspond to the heading direction of the robot,
the wheels axis, and the vertical direction through M, respectively. We call this frame the robot frame. The
green frame is fixed to the robot chassis, and is rotated an angle with respect to the robot frame. We call this

frame the chassis frame. The three frames are sometimes referred to as , and , respectively.

Each frame has a vector basis attached to it, whose unit vectors are directed along the frame axes. The three
bases will be referred to as:

• Fixed to the absolute frame
• Fixed to the robot frame
• respectively Fixed to the chassis frame

Configuration and state coordinates
The robot configuration can be described by means of six coordinates: the position of M in the absolute
frame, the orientation angle of the platform (between axes 1' and 1), the pitch angle , and the angles of the
left and right wheels, and , relative to the chassis.

The robot configuration is thus given by

3

and the time derivative of provides the robot velocity.Therefore, the robot state is given by

It will also be useful to consider an internal configuration vector

and its associate internal state

% Vars. of full config. and state: q, qdot, x=(q,qdot)
qvec = [x; y; theta; varphi_p; varphi_l; varphi_r];
qdotvec = [x_dot; y_dot; theta_dot; varphi_dot_p; varphi_dot_l; varphi_dot_r];
xvec = [qvec;qdotvec];
nq = length(qvec);

% Vars. of internal config. and state: varphi, varphidot, y=(varphi,varphidot)
varphivec = [varphi_p; varphi_l; varphi_r];
varphidotvec = [varphi_dot_p; varphi_dot_l; varphi_dot_r];
yvec = [varphivec; varphidotvec];
nphi = length(varphivec);

% Action vector
uvec = [tau_l; tau_r];
nu = length(uvec);

% Pars. vector of a general design
parsvec = [d;r;x_G;y_G;z_G;m_w;I_a;I_t;m_c;I_c11;I_c12;I_c13;I_c22;I_c23;I_c33;b;g];

Kinematic constraints imposed by the rolling contacts
We next see that the coordinates of are not independent. The rolling contacts of the wheels impose a
kinematic constraint of the form

where is a Jacobian matrix. We will next obtain this Jacobian.

On our derivations we use to denote the velocity of a point Q of the robot. The basis in which is
expressed will be mentioned explicitly, or understood by context.

We also use the following notation:

4

The robot pose is given by the position of point M, and by the angle. The half-length of the wheels axis is
d. Also, and denote the centers of the right and left wheels, and and are the contact points of such
wheels with the ground. The two wheels have the same radius r.

The rolling contact constraints of the chassis can be found by computing the velocities of and in

terms of , , , , and (i.e., as if the robot were a floating kinematic tree) and forcing these velocities to
be zero (as the wheels do not slide when placed on the ground).

To obtain and , note first that the velocity of M can only be directed along axis 1', since lateral slipping

is forbidden under perfect rolling. Therefore in , takes the form

Also note that, if is the absolute angular velocity of the robot frame, we have

5

or, in Matlab:

v_Cr = [v;0;0] + cross([0;0;theta_dot], [0;-d;0]); % Velocity of Cr
v_Cl = [v;0;0] + cross([0;0;theta_dot], [0; d;0]); % Velocity of Cl

The velocities of the ground contact points are thus given by

i.e.,

v_Pr = v_Cr + cross([0; varphi_dot_p+varphi_dot_r; theta_dot], [0; 0; -r]);
v_Pl = v_Cl + cross([0; varphi_dot_p+varphi_dot_l; theta_dot], [0; 0; -r]);

Since and do not slip, and must be zero, which gives the two fundamental constraints of the
robot:

eqn1 = (v_Pr(1) == 0);
eqn2 = (v_Pl(1) == 0);
disp(eqn1); disp(eqn2);

It is easy to solve for v and in these two equations:

[solved_v,solved_thetadot] = solve([eqn1,eqn2],[v,theta_dot]);

eqn3 = (v==simplify(solved_v));
eqn4 = (theta_dot==simplify(solved_thetadot));

disp(eqn3); disp(eqn4);

It is also easy to solve for and :

eqn3p = isolate(eqn1,varphi_dot_r);

6

eqn4p = isolate(eqn2,varphi_dot_l);
disp(eqn3p); disp(eqn4p);

From the previous figure we see that, in basis B = {1,2,3},

.

We also see it must be

By substituting in these two equations, and also considering , we obtain

the system of equations:

eqn5 = (x_dot == solved_v * cos(theta));
eqn6 = (y_dot == solved_v * sin(theta));
eqn7 = eqn4;

disp(eqn5); disp(eqn6); disp(eqn7);

This system expresses the rolling contact constraints of the robot. For compactness, we write it as

where , , and is the matrix

N = equationsToMatrix([rhs(eqn5), rhs(eqn6), rhs(eqn7)],...
 [varphi_dot_p, varphi_dot_l, varphi_dot_r])

N =

7

The equation can be written as

Thus, the constraint Jacobian we were searching for is

J = [eye(3), -N]

J =

Holonomic and nonholonomic constraints
Recall that the last equation of was

This equation is integrable, and yields the holonomic constraint

where

In sum, thus, the robot is subject to the 4 constraints:

The state space of the robot is thus the set

8

Lagrange's equation of motion
Recall that the equation of motion of a robot takes the form

where:

• is the configuration vector of the robot (of size in our case)
• is the vector of motor torques (the left and right wheel torques).
• is the mass matrix of the unconstrained system (positive-definite of size
• is the generalized Coriolis and centrifugal force matrix
• is the generalized gravity force
• is the constraint Jacobian of the robot
• is a vector of Lagrange mulitpliers.
• is the generalized force of actuation, which can be written in the form
• is the generalised force modelling all friction forces in the system
• is a generalised force modelling all disturbance forces considered, which may be added to test

disturbance rejection when a feedback controller is used.

Although the Twinbot moves on flat terrain, the chassis can turn about the wheels axis, which changes the
height of its center of gravity. For this reason will not be 0.

Our task now is to obtain , , , , , and .

Mass matrix
Recall that the robot configuration is given by

To find the mass matrix we need to write the kinetic energy T of the robot as a function of and and
then express it as:

We have to compute the translational and rotational kinetic energies of all bodies in the Twinbot, and add them
all to obtain T. In computing such energies we must view the robot as a kinematic tree whose configuration is
given by .

The absolute velocity of the center of gravity G of the chassis is given by:

9

In basis B' we have

where is the position vector of G in the chassis reference (and written in B''). Thus we have:

% Rotation that transforms vectors in B' to vectors in B
Rot_BpB = [cos(theta) -sin(theta) 0;
 sin(theta) cos(theta) 0;
 0 0 1];

% Rotation that transforms vectors in B'' to vectors in B'
Rot_Bpp_Bp = [cos(varphi_p) 0 sin(varphi_p);
 0 1 0;
 -sin(varphi_p) 0 cos(varphi_p)];

% Velocity of the midpoint (in B')
v_M = transpose(Rot_BpB) * [x_dot; y_dot; 0];

% Angular velocity of the chassis (in B')
omega_chas = [0; varphi_dot_p; theta_dot];

% Position vector of G in chassis reference (in B')
MG = Rot_Bpp_Bp * [x_G; y_G; z_G];

% Absolute velocity of G (in B')
v_G = v_M + cross(omega_chas,MG)

v_G =

% Translational kinetic energies (using B')

 % Of the chassis
 T_tra_chas = 1/2 * m_c * transpose(v_G) * v_G;

 % Of the left wheel
 T_tra_l = 1/2 * m_w * transpose(v_Cl) * v_Cl;

 % Of the right wheel
 T_tra_r = 1/2 * m_w * transpose(v_Cr) * v_Cr;

% Rotational kinetic energies (using B')

10

 % Chassis
 I_chas = [I_c11 I_c12 I_c13; I_c12 I_c22 I_c23; I_c13 I_c23 I_c33];
 S = Rot_Bpp_Bp;
 I_chas_Bp = S * I_chas * transpose(S);
 T_rot_chas = 1/2 * transpose(omega_chas) * I_chas_Bp * omega_chas;

 % Left wheel
 omega_l = [0; varphi_dot_p + varphi_dot_l; theta_dot];
 I_w = [I_t 0 0; 0 I_a 0; 0 0 I_t];
 T_rot_l = 1/2 * transpose(omega_l) * I_w * omega_l;

 % Right wheel
 omega_r = [0; varphi_dot_p + varphi_dot_r; theta_dot];
 I_w = [I_t 0 0; 0 I_a 0; 0 0 I_t];
 T_rot_r = 1/2 * transpose(omega_r) * I_w * omega_r;

% Total kinetic energy
T = simplify(T_tra_chas + T_tra_l + T_tra_r + T_rot_chas + T_rot_l + T_rot_r);

% Display the translational kinetic energies
display(T_tra_chas); display(T_tra_l); display(T_tra_r);

T_tra_chas =

T_tra_l =

T_tra_r =

% Display the rotational kinetic energies
display(T_rot_chas); display(T_rot_l); display(T_rot_r);

T_rot_chas =

T_rot_l =

T_rot_r =

11

Since T is a quadratic form, the Hessian of T gives the desired mass matrix:

M = hessian(T,[x_dot y_dot theta_dot varphi_dot_p varphi_dot_l varphi_dot_r])

M =

% See which variables are in M
symvar(M)

ans =

Coriolis matrix
Recall that the element of is given by the following formula [Murray, Li, Sastry 2017]:

,

In Matlab, the computation can be implemented as follows:

C = sym(zeros(nq,nq));
for i=1:nq
 for j=1:nq
 for k=1:nq
 C(i,j) = C(i,j) + qdotvec(k) * 0.5 * (...
 diff(M(i,j),qvec(k)) + ...
 diff(M(i,k),qvec(j)) - ...
 diff(M(k,j),qvec(i)));
 end
 end
end
C = simplify(C);
display(C)

C =

12

% See which variables are in C
symvar(C)

ans =

Generalized gravity force
To find the generalized gravity force, we need the gravitational potential energy of the robot. We assume that a
mass has zero potential energy when it is located in the plane through M that is parallel to ground. Thus, the
wheels have zero potential energy and we only have to count the potential energy of the chassis. In view of this
figure,

this energy can be computed as follows using basis B''

13

where is the acceleration of gravity vector, g is its magnitude, and are the coordinates of G in the
chassis frame (green). Therefore:

U = m_c * [-x_G -y_G -z_G] * [g*sin(varphi_p); 0; -g*cos(varphi_p)]

U =

Now,

G = jacobian(U,qvec).'

G =

Generalized force of actuation
Our vector of motor torques is defined as

Each of the torques in acts directly on a coordinate and, therefore, the generalized force of actuation is

Qa = [0 ; 0 ;0 ; 0 ; tau_l ; tau_r];

To rewrite this force in the form we only have to define

E = [zeros(4,2);eye(2)];

Generalized force of friction
The friccion forces are given by:

%Qf = [-b_a*x_dot ; -b_a*y_dot ;0 ; 0 ; -b * varphi_dot_l ; -b * varphi_dot_r];

14

Qf = [0; 0; 0; 0; -b * varphi_dot_l ; -b * varphi_dot_r]

Qf =

Generalized disturbance force
This disturbance will not be used to design the controller. Rather, it will serve to test the controller under
unmodelled situations. For example, when there is some wind, or when the ground offers some rolling
resistance. For the moment we just model a disturbance force applied at G.

Fd = [F_dx;F_dy;F_dz]; % The force in basis B'
Pvirt = transpose(Fd)*v_G; % Its virtual power
Qd = transpose(equationsToMatrix(Pvirt,qdotvec)) % The generalized force

Qd =

The x model
We now wish to obtain the robot model in the form This requires writing as a function of , , and

 to then convert the 2nd order ODE into a 1st order one.

Recall that Lagrange's equation is

(we omit the dependencies on and for simplicity)

Since this equation is a system of 6 equations in 9 unknowns (6 coordinates in and 3 in) we need 3
additional equations to determine and for a given . These can be obtained by taking the time derivative of
the kinematric constraint

,

which gives

15

,

or, equivalently,

The latter is called the acceleration constraint of the robot.

Recall that

,

so

Let us obtain and then :

% Substitute theta in N for a function of t so we can take the time derivative
syms f1(t)
N_of_t = subs(N,theta,f1(t));

% Actual time derivative
dNdt = diff(N_of_t,t);

% Substitute d/dt of f1 by the original variable using dot notation
Ndot = subs(dNdt,[f1(t) diff(f1,t)],[theta theta_dot]);

% Obtain Jdot
Jdot = [zeros(3) -Ndot]

Jdot =

The system formed by Lagrange's equation and the acceleration constraint is

These equations can be written as

.

16

The matrix on the LHS is the extended mass matrix. This matrix is invertible, since is positive-definite and
 is full row rank. Thus we can write

.

Therefore

.

Finally, by considering the trivial equation in conjunction with the earlier equation we arrive at

,

which, if we let , gives the robot model in the state space form

.

We refer to this equation as the model of the robot.

A drawback of the model is that the variables are not independent (they must fulfill). Therefore:

• The numerical integration of easily generates errors pulling away from the state space .
In practice, this translates into lateral slidings of the robot.

• The equation cannot be used to design an LQR controller to stabilize a given trajectory, as LQR theory
assumes the variables to be independent.

We next derive an alternative model in independent coordinates, which overcomes these limitations.

The y model
We start again from Lagrange's equation

and consider this parameterization of the feasible velocities

which we write as

17

where .

Multiplying Lagrange's equation by we have

Since the columns of are feasible velocities, and the rows of are orthogonal to such velocities (by virtue of

), it must be . Therefore, the equation simplifies to

where , , and . Furthermore, if we apply the substitutions

we obtain

where

The latter ODE is the equation of motion in coordinates. This ODE is remarkable, as all of its terms depend

only on or (see our calculations below). In fact, they only depend on .

To convert the ODE into first order form, we isolate and add the trivial equation

If we define and represent the RHS of the previous system by , we have

We refer to as the model of the robot, and to as the "internal state".

The model has these advantages:

• It is sufficient to predict the trajectory for a given input .
• Since the coordinates are independent, the result will also be compliant with .
• The model allows the design of a feedback controller to stabilize the robot in the upright position, or

moving with constant speeds v and , using propioceptive feedback only.

18

• Since the terms of the model depend only on , the linearized model will not depend on

. In other words, the system linearization about a state stays constant as long as

and do not change.

Let us obtain , , , , , and :

% Compute Delta and Deltadot
Delta = [N;eye(3)];
Deltadot = [Ndot; zeros(3)];

% Compute Mbar
Mbar = simplify(transpose(Delta) * M * Delta);

% Compute Cbar and substitute thetadot by its expression in Eq. 7
Cbar0 = simplify(transpose(Delta) * (M * Deltadot + C * Delta));
Cbar = simplify(subs(Cbar0,theta_dot,rhs(eqn7)));

% Compute Gbar, Ta, and Tf
Gbar = simplify(transpose(Delta) * G);
Ta = simplify(transpose(Delta) * Qa);
Tf = simplify(transpose(Delta) * Qf);
Td = simplify(transpose(Delta) * Qd);

% Display the terms
display(Mbar); display(Cbar); display(Gbar); display(Ta); display(Tf); display(Td);

Mbar =

Cbar =

Gbar =

19

Ta =

Tf =

Td =

Note that, except for the dynamic parameters, the previous terms only depend on , , ,

symvar(Mbar)

ans =

symvar(Cbar)

ans =

symvar(Td)

ans =

Odometry
Suppose we have simulated the robot using the model . We then have , but in some situations
we would like to recover the full configuration . The angle is easy to obtain, as from the holonomic
constraint we have

To recover , we can use the first two equations of , which we write as

.

Here, is the matrix defined by the first two rows of .

20

Therefore:

.

This integral can be computed numerically using Matlab's integral function. This function admits vector-valued
integrands like .

If the values have to be computed on-line from a sequence of values

, , for

we can use the following recurrence, which approximates the integral from to with the trapezoidal rule:

The z model
In other situations, we will need a robot model that contains x and y explicitly. This is necessary, for example,
when trying to stabilize the Twinbot along a given trajectory involving reference values for the coordinates
of M.

For this purpose it is easy to build a model involving the state

We only have to augment the model with :

The LHS of this system is , and the RHS defines .

While depends on in this model, this angle can be written as a function of and using the holonomic

constraint . Thus, the model is self-included and really depends on only.

The model does not contain but this is irrelevant for control purposes, as cannot be controlled
independently from x and y. A reference trajectory already determines a trajectory .

Defining a constant velocity trajectory
We now wish to find the input trajectory that allows the robot to move with , while keeping constant

its speeds v and . Since such speeds are constant, it will be .

Assuming there is no disturbance, the equation of motion is

21

If we make and isolate we get

which, recall, only depends on .

To find the values of that generate v and we will apply these substitutions to the previous equation:

% Compute the RHS of the equation
varphidotvec = [varphi_dot_p; varphi_dot_l; varphi_dot_r];
RHS = Cbar * varphidotvec + Gbar - Tf;

% Apply the substitutions
RHS1 = simplify(subs(RHS,...
 [varphi_p, varphi_dot_p, varphi_dot_l, varphi_dot_r],...
 [0, 0, (v-d*theta_dot)/r, (v+d*theta_dot)/r]))

RHS1 =

Recall that must be of the form , so the first component of the previous vector should be zero.

We can achieve so if we assume the chassis has a symmetric design, with , , :

RHS2 = simplify(subs(RHS1,[x_G,y_G,I_c13],[0,0,0]))

RHS2 =

22

The second and third components of the previous vector provide the torques and that must be applied by
the motors to keep the robot along the desired trajectory:

disp(Ta(2) == RHS2(2)); disp(Ta(3) == RHS2(3));

Particularization for a symmetric chassis design
We next particularize the model assuming the chassis has a symmetric design in which:

• G is located on axis 3'', so .
• The chassis inertia tensor at G is diagonal.

Particularized y model
% Parameters of the symmetric design
psymm = [x_G, y_G, I_c12, I_c13, I_c23];
psymmvals = [0, 0, 0, 0, 0];

% Mbar, Cbar, Gbar of the symmetric design
Mbar_symm = simplify(subs(Mbar,psymm,psymmvals));
Cbar_symm = simplify(subs(Cbar,psymm,psymmvals));
Gbar_symm = simplify(subs(Gbar,psymm,psymmvals));
Tf_symm = simplify(subs(Tf,psymm,psymmvals));
Td_symm = simplify(subs(Td,psymm,psymmvals));

% Display results
display(Mbar_symm); display(Cbar_symm); display(Gbar_symm); display(Tf_symm); display(Td_symm);

Mbar_symm =

Cbar_symm =

23

Gbar_symm =

Tf_symm =

Td_symm =

Explicit dynamics function
For the symmetric design (and maybe for the general one) it is feasible to write the dynamics function explicitly,
but this is costly.

For this we consider the equation of motion in coordinates (again without disturbance)

and write it as

where

In state space form, the equation of motion is then

,

where

24

Let us compute :

% Function Fcal_symm (Fcal for the symmetric design)
Fcal_symm = simplify(Ta + Tf_symm - Cbar_symm * varphidotvec - Gbar_symm)

Fcal_symm =

The symbolic computation of will take some time (minutes maybe). Uncomment the following if you want to
try it. The mlx file becomes rather unmanagable afterwards.

% % Function varphiddot giving the acceleration
% varphiddot = simplify(Mbar_symm\Fcal_symm);
% display(Fcal_symm); display(varphiddot);
%
% % Dynamics function
% g_dyn = [varphidot;varphiddot]

Jacobians A and B
In many applications it will be necessary to have the Jacobians

as, for example, when linearizing the system dynamics about a state . Again this computation is costly
(uncomment if you dare):

% % Jacobian of g_dyn wrt the state
% A = simplify(jacobian(g_dyn,yvec));
%
% % Jacobian of g_dyn wrt the action
% B = simplify(jacobian(g_dyn,uvec));
%
% display(A); display(B);

Computation of A and B without symbolic inversion of Mbar

25

An alternative and faster way to compute and is through the differentiation formulas in Kelly (2017). These

avoid the inversion of and produce much nicer expressions.

Since

and

where , we have

We can now apply the following formulas in Kelly (2017):

Thus, if we have the symbolic expressions of and and the Jacobians

, , , and

it is easy to write a Matlab function that numerically evaluates and for a given and . Such a function

should first obtain by solving , to then compute the derivatives using the mentioned Jacobians. In

this function, it will be helpful to obtain the LU decomposition of , which minimizes the number of operations

required to evaluate when this has to be done for many vectors.

% Jacobian of Mbar_symm wrt varphi
Mbar_symm_varphi = sym(zeros(3,3,3));
for i = 1:3
 Mbar_symm_varphi(:,:,i) = diff(Mbar_symm,varphivec(i));
end

% Jacobian of Fcal wrt varphi
Fcal_symm_varphi = jacobian(Fcal_symm,varphivec);

26

% Jacobian of Fcal wrt varphidot
Fcal_symm_varphidot = jacobian(Fcal_symm,varphidotvec);

% Jacobian of Fcal wrt u
Fcal_symm_u = jacobian(Fcal_symm,uvec);

% Display the results
display(Mbar_symm_varphi);

Mbar_symm_varphi(:,:,1) =

Mbar_symm_varphi(:,:,2) =

Mbar_symm_varphi(:,:,3) =

display(Fcal_symm_varphi);

Fcal_symm_varphi =

display(Fcal_symm_varphidot);

Fcal_symm_varphidot =

27

display(Fcal_symm_u);

Fcal_symm_u =

Export Matlab functions of the generic symmetric model
% Define the input variables of the exported functions
vars = {yvec,uvec,parsvec};

matlabFunction(Mbar_symm,'File','Compute_Mbar_symm','Vars',vars);
matlabFunction(Cbar_symm,'File','Compute_Cbar_symm','Vars',vars);
matlabFunction(Gbar_symm,'File','Compute_Gbar_symm','Vars',vars);
matlabFunction(Tf_symm,'File','Compute_Tf_symm','Vars',vars);
matlabFunction(Mbar_symm,Fcal_symm,...
 Mbar_symm_varphi,Fcal_symm_varphi,Fcal_symm_varphidot,Fcal_symm_u,...
 'File','Compute_Mbar_Fcal_Jacobians_symm','Vars',vars);

Export Matlab functions of the loomo-like symmetric model
Let us find the terms of the model for specific parameters. The following values are inspired by the Loomo
robot by Segway.

See https://www.segway.com/loomo/loomo-spec/

We assume the wheels and the chassis are cylinders of uniform mass distribution with the following dimensions
(in mm):

28

g_val = 9.8; % Acceleration of gravity (m/s^2)

xG_val = 0; % x coord of G (m)
yG_val = 0; % y coord of G (m)
zG_val = 0.225; % z coord of G (m)

d_val = 0.280; % Semiaxis length (m)

rw_val = 0.150; % Wheel radius (m)
hw_val = 0.050; % Wheel width (m)
mw_val = 3; % Wheel mass (kg)
Ia_val = mw_val * rw_val^2; % Wheel axial inertia moment (kg·m^2)
It_val = mw_val * (rw_val^2/2 + hw_val^2/12); % Wheel twisting inertia moment (kg·m^2)

rc_val = 0.180; % Chassis radius (m)
hc_val = 0.550; % Chassis height (m)
mc_val = 13; % Chassis mass (m)

Ic11_val = mc_val * (rc_val^2/2+hc_val^2/12); % Chassis inertia tensor 11 element (kg·m^2)
Ic12_val = 0; % Chassis inertia tensor 12 element (kg·m^2)
Ic13_val = 0; % Chassis inertia tensor 13 element (kg·m^2)
Ic22_val = mc_val * rc_val^2; % Chassis inertia tensor 22 element (kg·m^2)
Ic23_val = 0; % Chassis inertia tensor 23 element (kg·m^2)
Ic33_val = Ic11_val; % Chassis inertia tensor 33 element (kg·m^2)

29

b_val = 0.1; % Viscous friction coeff. wheels

% Parameters vector
p = [...
 d, r, x_G, y_G, z_G,...
 m_w, I_a, I_t, m_c,...
 I_c11, I_c12, I_c13, I_c22, I_c23, I_c33,...
 b, g
];

% Parameter values vector
pvals = [...
 d_val, rw_val, xG_val, yG_val, zG_val,...
 mw_val, Ia_val, It_val, mc_val, ...
 Ic11_val, Ic12_val, Ic13_val, Ic22_val, Ic23_val, Ic33_val,...
 b_val, g_val
];

% Save parameters vector
pars_loomo = pvals';
save('parameters_loomo.mat','pars_loomo');

% Evaluate Mbar, Cbar, Gbar
Mbar_loomo = vpa(subs(Mbar_symm,p,pvals));
Cbar_loomo = vpa(subs(Cbar_symm,p,pvals));
Gbar_loomo = vpa(subs(Gbar_symm,p,pvals));
Tf_loomo = vpa(subs(Tf_symm,p,pvals));

% Display results
display(Mbar_loomo); display(Cbar_loomo); display(Gbar_loomo); display(Tf_loomo);

Mbar_loomo =

Cbar_loomo =

Gbar_loomo =

Tf_loomo =

30

% Export dynamics terms of loomo-like model
matlabFunction(Mbar_loomo,'File','Compute_Mbar_loomo','Vars',vars);
matlabFunction(Cbar_loomo,'File','Compute_Cbar_loomo','Vars',vars);
matlabFunction(Gbar_loomo,'File','Compute_Gbar_loomo','Vars',vars);
matlabFunction(Tf_loomo,'File','Compute_Tf_loomo','Vars',vars);

Print ellapsed time
toc

Elapsed time is 26.239028 seconds.

References
Kelly, Matthew. "An introduction to trajectory optimization: How to do your own direct collocation." SIAM Review
59.4 (2017): 849-904.

Murray, Richard M., Zexiang Li, and S. Shankar Sastry. A mathematical introduction to robotic manipulation.
CRC press, 2017.

31

A.2 Matlab code 87

A.2 Matlab code

In this section, it figures the application code of the graphical interface, which works as the
main function, the external .m functions that are being called, and the URDF file that defines
the robot’s bodies and joints.

A.2.1 Graphical interface application

classdef Twinbot_app_neta_graphs_exported < matlab.apps.AppBase

% Properties that correspond to app components

properties (Access = public)

UIFigure matlab.ui.Figure

ExternalForceKnob matlab.ui.control.Knob

ExternalForceKnobLabel matlab.ui.control.Label

Tau_LGauge matlab.ui.control.LinearGauge

Tau_LGaugeLabel matlab.ui.control.Label

Tau_RGauge matlab.ui.control.LinearGauge

Tau_RGaugeLabel matlab.ui.control.Label

AngularspeedradsGauge matlab.ui.control.Gauge

AngularspeedradsGaugeLabel matlab.ui.control.Label

LinearspeedmsGauge matlab.ui.control.Gauge

LinearspeedmsGaugeLabel matlab.ui.control.Label

ControlPeriodGauge matlab.ui.control.SemicircularGauge

ControlPeriodGaugeLabel matlab.ui.control.Label

CameraElevationKnob matlab.ui.control.Knob

CameraElevationKnobLabel matlab.ui.control.Label

QuitButton matlab.ui.control.Button

MetersAroundKnob matlab.ui.control.Knob

MetersAroundKnobLabel matlab.ui.control.Label

ViewModeButtonGroup matlab.ui.container.ButtonGroup

ObliqueViewButton matlab.ui.control.RadioButton

ZenithalViewButton matlab.ui.control.RadioButton

FirstPersonViewButton matlab.ui.control.RadioButton

end

% User defined app properties: access them as app.axobj, app.quit, ...

properties (Access = private)

axobj % Axes object on which we plot the robot

quit % Logical. If true, we want to quit

v % Desired velocity in m/s

om % Desired angular velocity in rad/s

end

88 Source code

% Callbacks that handle component events

methods (Access = private)

% Code that executes after component creation

function startupFcn(app)

%==

% This code is run upon app startup

%==

% Initializations

fprintf('App started\n');

% close all;

% Create separate figure from app main panel

h = figure;

% Initialize app properties, in particular the axes in h

app.axobj = axes(h);

app.quit = false;

app.v = 0;

app.om = 0;

% Import URDF model of robot ('row' means q will be row vector)

robot = importrobot('diffbot2.urdf','DataFormat','row');

% Print robot details in command window (optional)

showdetails(robot);

% Show robot in home configuration (delayed until 'drawnow')

q = homeConfiguration(robot);

show(robot,q,'Frames','off','collision','off',...

'visuals','on','PreservePlot',0,'FastUpdate',1,...

'Parent',app.axobj);

% Set limits of the axes in the robot window. To avoid plotting

% in unwanted axes, we specify the axes handle in all axes=

% related commands.

mar = app.MetersAroundKnob.Value;

app.axobj.XLim = [q(1)=mar q(1)+mar];

app.axobj.YLim = [q(2)=mar q(2)+mar];

app.axobj.ZLim = [0 1];

% Use black grid lines with opacity GridAlpha in [0,1]

A.2 Matlab code 89

app.axobj.LineWidth = 1.5;

app.axobj.GridLineStyle = '=';

app.axobj.GridColor = 'r';

app.axobj.GridAlpha = 0.2;

% Use a boxed plot

box on;

%~~

% Initialitzations before loop control

%~~

global FORCE TIME_INI TIME_END

global u_val

% Twinbot parameters

parameters=readmatrix('parameters.xls');

param = load('parameters_twinbot.mat').pars_twinbot;

phi_p_i = 0; % Initial pendulum angle (Degree)

FORCE = 0; % Disturbance force (N)

TIME_INI = 0; % Disturbance initial time (s)

TIME_END = 0; % Disturbance final time (s)

pars.g = parameters(1); % Gravity [m/s^2]

pars.r = parameters(2); % Wheel radius [m]

pars.d = parameters(3); % Semiaxis length [m]

pars.zG = parameters(4); % z coord of G (m)

pars.b = parameters(5); % Friction coefficient

pars.m = parameters(6); % Mass of the chassis [kg]

delta_t = 0.02; % Simulation step time

% Initial twinbot state xi = (xi,yi,thetai,varphi_pi,varphi_li,

varphi_ri,

% ... xi_dot,yi_dot,thetai_dot,varphi_pi_dot,varphi_li_dot,

varphi_ri_dot)

% and yi = (varphi_pi,varphi_li,varphi_ri,

% ... varphi_pi_dot,varphi_li_dot,varphi_ri_dot)

xi = [0;0;0;deg2rad(phi_p_i);0;0;0;0;0;0;0;0];

yi= [xi(4:6);xi(10:12)];

%Equilibrium State:

x0 = [0;0;0;deg2rad(0);deg2rad(phi_p_i);deg2rad(phi_p_i)

;0;0;0;0;0;0];

y0= [x0(4:6);x0(10:12)];

90 Source code

app.v= 0;

app.om= 0;

phi_dot = yi(4:6);

x=xi; % initialitzation of the x vector

y=yi; % initialitzation of the y vector

xM=xi(1); yM=xi(2); theta=xi(3); xM0=x0(1);

% Torque tau0 needed to maintain equilibrium

% if xG=yG=0 ==> l=zG

u0 = pars.m * pars.g * pars.zG * sin(y0(1)) * 0.5 * [1;1];

y0(5) = (app.v = pars.d * app.om) / pars.r;

y0(6) = (app.v+ pars.d * app.om) / pars.r;

% Penalty matrices Q and R

Q = 0.0025*diag([1000,1,1,10,1,1]); % Penalises state deviations

from y0

R = 0.0025*diag([1,1]); % Penalises action deviations

from tau0

% Ask for a precise simulation (otherwise energy is not conserved)

options = odeset('abstol', 1e=6,'reltol',1e=6);

% Plot the robot at q (limit rate to 20 fps for speedup)

q = x(1:6)';

show(robot,q,'Frames','off','collision','off',...

'visuals','on','PreservePlot',0,'FastUpdate',1,...

'Parent',app.axobj);

hold on;

% Set axes limits centered at the robot position

mar = app.MetersAroundKnob.Value;

app.axobj.XLim = [q(1)=mar q(1)+mar];

app.axobj.YLim = [q(2)=mar q(2)+mar];

app.axobj.ZLim = [0 1];

% Set view according to the selected view mode

switch true

case app.ObliqueViewButton.Value

% Oblique view

camproj(app.axobj,'perspective');

elev = app.CameraElevationKnob.Value;

view(45,elev);

case app.FirstPersonViewButton.Value

% First person view

camproj(app.axobj,'perspective');

A.2 Matlab code 91

xM = q(1); yM = q(2); th = q(3);

campos([xM yM 3]=10*[cos(th) sin(th) 0]);

camtarget([xM yM 0]+3*[cos(th) sin(th) 0]);

case app.ZenithalViewButton.Value

% Zenithal view

camproj(app.axobj,'orthographic');

view(0,90);

end

drawnow limitrate;

phi_dot0 = y0(4:6);

varphip= [0];

varphip_dot= [0];

theta_dot= [0];

v= [0];

theta_dot0= [0];

v0= [0];

u01= [0];

u1= [0];

u02= [0];

u2= [0];

F= [0];

t= [0];

zero=[0];

xMvec= [0];

xMvec0= [0];

app.quit = false;

pause(3);

tic;

%~~

% Simulate the closed=loop system

%~~

% Start the robot control loop. Note that app.quit can only be

% set to true by the QuitButtonPushed callback

while ~app.quit

% Infer time increment

t_act = toc;

t_future = toc + delta_t;

92 Source code

% Update the robot configuration q

phi_dot0_ant = phi_dot0;

y0(5) = (app.v = pars.d * app.om) / pars.r;

y0(6) = (app.v + pars.d * app.om) / pars.r;

y0(2) = y0(2) + delta_t * y0(5);

y0(3) = y0(3) + delta_t * y0(6);

u0(1) = pars.b*(app.v=pars.d*app.om)/pars.r;

u0(2) = pars.b*(app.v+pars.d*app.om)/pars.r;

[A,B] = AB_cdiff(y0,u0,param);

[K,~,~] = lqr(A,B,Q,R);

phi_dot0 = y0(4:6);

y_act = y;

% Get handle to function that gives the control torque

u = @(t,y)tau_wheels(t,y,y0,u0,K);

% Get handle that gives ydot = f(y,u)

dydt = @(t,y)ydot_twinbot(t,y,u,pars,param);

% Simulate the closed=loop system for t in [toc,toc + delta_t sec

], starting

% from y = y_act

sol = ode45(dydt,[t_act,t_future],y_act,options);

% Evaluate solution for times in t. Size of y is [length(y0) ,1]

y = deval(sol,t_future);

% Calculate x solution. Size of x is [length(x0) , 1]

phi_dot_ant = phi_dot;

phi = y(1:3);

phi_dot = y(4:6);

N0 = Compute_N(theta);

theta = xi(3) + pars.r * (y(3)=y(2)) / (2*pars.d) = ...

pars.r * (yi(3)=yi(2)) / (2*pars.d);

N1 = Compute_N(theta);

A.2 Matlab code 93

p_dot = N1 * phi_dot;

Vx0=N0(1,:);

Vy0=N0(2,:);

Vx1=N1(1,:);

Vy1=N1(2,:);

xM = xM + (delta_t/2) * (Vx0*phi_dot_ant + Vx1*phi_dot);

yM = yM + (delta_t/2) * (Vy0*phi_dot_ant + Vy1*phi_dot);

x=[xM;yM;theta;phi;p_dot;phi_dot];

q = x(1:6)';

% Plot the robot at q (limit rate to 20 fps for speedup)

show(robot,q,'Frames','off','collision','off',...

'visuals','on','PreservePlot',0,'FastUpdate',1,...

'Parent',app.axobj);

hold on;

% Set axes limits centered at the robot position

mar = app.MetersAroundKnob.Value;

app.axobj.XLim = [q(1)=mar q(1)+mar];

app.axobj.YLim = [q(2)=mar q(2)+mar];

app.axobj.ZLim = [0 1];

% Set view according to the selected view mode

switch true

case app.ObliqueViewButton.Value

% Oblique view

camproj(app.axobj,'perspective');

elev = app.CameraElevationKnob.Value;

view(45,elev);

case app.FirstPersonViewButton.Value

% First person view

camproj(app.axobj,'perspective');

xM = q(1); yM = q(2); th = q(3);

campos([xM yM 3]=10*[cos(th) sin(th) 0]);

camtarget([xM yM 0]+3*[cos(th) sin(th) 0]);

case app.ZenithalViewButton.Value

% Zenithal view

camproj(app.axobj,'orthographic');

view(0,90);

end

94 Source code

% Draw now

drawnow limitrate;

% Store variables for future plots

xM0 = xM0 + (delta_t/2) * (Vx0*phi_dot0_ant + Vx1*phi_dot0);

varphip= [varphip,x(4)];

varphip_dot= [varphip_dot,x(10)];

theta_dot=[theta_dot,x(9)];

% v_val=sqrt(x(7)^2+x(8)^2);

v_val= pars.r*(x(11)+2*x(10)+x(12))/2

v=[v,v_val];

theta_dot0= [theta_dot0,app.om];

v0= [v0,app.v];

u01= [u01,u0(1)];

u1= [u1,u_val(1)];

u02= [u02,u0(2)];

u2= [u2,u_val(2)];

F=[F,FORCE];

t=[t,t_act];

zero=[zero,0];

xMvec=[xMvec,xM];

xMvec0=[xMvec0,xM0];

% Fix the iteration time to delta_t (the only problem is

% ifthe iteration time get's higher than delta_t)

t_pause = t_future = toc;

pause (t_pause);

% Update the 'Control period' gauge (miliseconds)

app.ControlPeriodGauge.Value = (delta_t=t_pause)*1000;

if app.quit

% pause(10);

break

end

% Update slider values with app.v and app.om

app.ExternalForceKnob.Value = FORCE;

app.Tau_LGauge.Value = u_val(1);

app.Tau_RGauge.Value = u_val(2);

end

app.quit=false;

A.2 Matlab code 95

% Plots (it is needed to change the commented sections in order

% to get the different graphs)

figure(2);

clf;

% Plot theta_dot(t)

subplot(3,2,1)

plot(t,theta_dot);

hold on;

plot(t,theta_dot0);

hold off;

title('theta dot');

xlabel('Time (s)');

ylabel('\theta dot (ras/s)');

legend('\theta dot (ras/s)','\theta_0 dot (ras/s)')

% Plot v(t)

subplot(3,2,2)

plot(t,v);

hold on;

plot(t,v0);

hold off;

title('v');

xlabel('Time (s)');

ylabel('v (m/s)');

legend('v (m/s)','v0 (m/s)')

% Plot u1(t)

subplot(3,2,3)

plot(t,u1);

hold on;

plot(t,u01);

hold off;

title('u left');

xlabel('Time (s)');

ylabel('u_l (Nm)');

legend('u_l (Nm)','u0_l (Nm)')

% Plot u2(t)

subplot(3,2,4)

plot(t,u2);

hold on;

96 Source code

plot(t,u02);

hold off;

title('u right');

xlabel('Time (s)');

ylabel('u_r (Nm)');

legend('u_r (Nm)','u0_r (Nm)')

% Plot varphi_p(t)

varphip=varphip*180/pi;

subplot(3,2,5)

plot(t,varphip);

hold on;

plot(t,zero);

hold off;

title('phi_p');

xlabel('Time (s)');

ylabel('phi_p (deg)');

% Plot varphi_p dot(t)

subplot(3,2,6)

plot(t,varphip_dot);

hold on;

plot(t,zero);

hold off;

title('phi_p dot');

xlabel('Time (s)');

ylabel('phi_p dot(rad/s)');

% % Plot F(t)

% subplot(3,2,3)

% plot(t,F);

% hold off;

% title('F');

% xlabel('Time (s)');

% ylabel('F (N)');

% % Plot xM(t)

% subplot(3,2,1)

% plot(t,xMvec);

% hold on;

% plot(t,xMvec0);

% hold off;

% title('x_M');

% xlabel('Time (s)');

A.2 Matlab code 97

% ylabel('x_M (m)');

% legend('x_M (m)','x_{M_0} (m)')

% % Plot u1 i u2(t)

% subplot(3,2,4)

% plot(t,u1);

% hold on;

% plot(t,u01);

% hold off;

% title('u (left and right)');

% xlabel('Time (s)');

% ylabel('u(Nm)');

% legend('u (Nm)','u0(Nm)')

% Shut down the entire app

while ~app.quit

pause(0.1);

end

delete(app);

close all;

clear;

fprintf('App closed\n');

end

% Button pushed function: QuitButton

function QuitButtonPushed(app, event)

app.quit = true;

end

% Close request function: UIFigure

function UIFigureCloseRequest(app, event)

delete(app);

end

% Key press function: UIFigure

function UIFigureKeyPress(app, event)

global QUIT

global FORCE

global TIME_INI

global TIME_END

key = event.Key;

fprintf('key event is: %s\n',key);

98 Source code

switch key

case 'uparrow'

app.v = app.v + 0.5;

case 'downarrow'

app.v = app.v = 0.5;

case 'rightarrow'

app.om = app.om = deg2rad(15);

case 'leftarrow'

app.om = app.om + deg2rad(15);

case 'space'

app.v = 0;

app.om = 0;

case 'escape'

QUIT = true;

app.quit=true;

case 'f'

FORCE = 100; % Disturbance force (N)

TIME_INI = toc; % Disturbance initial time (s)

TIME_END = toc + 0.5; % Disturbance final time (s)

case 'g'

FORCE = =100; % Disturbance force (N)

TIME_INI = toc; % Disturbance initial time (s)

TIME_END = toc + 0.5; % Disturbance final time (s)

end

% Catch slider limits

vmin = app.LinearspeedmsGauge.Limits(1); % m/s

vmax = app.LinearspeedmsGauge.Limits(2); % m/s

omin = deg2rad(app.AngularspeedradsGauge.Limits(1)); % rad/s

omax = deg2rad(app.AngularspeedradsGauge.Limits(2)); % rad/s

% Saturate v to slider limits

app.v = max(app.v,vmin);

app.v = min(app.v,vmax);

% Saturate omega to slider limits

app.om = max(app.om,omin);

app.om = min(app.om,omax);

% Update slider values with app.v and app.om

app.LinearspeedmsGauge.Value = app.v;

A.2 Matlab code 99

app.AngularspeedradsGauge.Value = rad2deg(app.om);

end

% Callback function

function VSliderValueChanging(app, event)

changingValue = event.Value;

app.v = changingValue;

end

% Callback function

function OmegaSliderValueChanging(app, event)

changingValue = event.Value;

app.om = deg2rad(changingValue);

end

end

% Component initialization

methods (Access = private)

% Create UIFigure and components

function createComponents(app)

% Create UIFigure and hide until all components are created

app.UIFigure = uifigure('Visible', 'off');

app.UIFigure.Position = [100 100 504 784];

app.UIFigure.Name = 'MATLAB App';

app.UIFigure.CloseRequestFcn = createCallbackFcn(app, @

UIFigureCloseRequest, true);

app.UIFigure.KeyPressFcn = createCallbackFcn(app, @UIFigureKeyPress,

true);

% Create ViewModeButtonGroup

app.ViewModeButtonGroup = uibuttongroup(app.UIFigure);

app.ViewModeButtonGroup.Title = 'View Mode';

app.ViewModeButtonGroup.BackgroundColor = [1 1 1];

app.ViewModeButtonGroup.Position = [57 490 152 102];

% Create FirstPersonViewButton

app.FirstPersonViewButton = uiradiobutton(app.ViewModeButtonGroup);

app.FirstPersonViewButton.Text = 'First Person View';

app.FirstPersonViewButton.Position = [11 56 115 22];

100 Source code

% Create ZenithalViewButton

app.ZenithalViewButton = uiradiobutton(app.ViewModeButtonGroup);

app.ZenithalViewButton.Text = 'Zenithal View';

app.ZenithalViewButton.Position = [11 34 93 22];

% Create ObliqueViewButton

app.ObliqueViewButton = uiradiobutton(app.ViewModeButtonGroup);

app.ObliqueViewButton.Text = 'Oblique View';

app.ObliqueViewButton.Position = [11 12 92 22];

app.ObliqueViewButton.Value = true;

% Create MetersAroundKnobLabel

app.MetersAroundKnobLabel = uilabel(app.UIFigure);

app.MetersAroundKnobLabel.Tag = 'Meters viewed around the robot';

app.MetersAroundKnobLabel.HorizontalAlignment = 'center';

app.MetersAroundKnobLabel.Position = [95 129 85 22];

app.MetersAroundKnobLabel.Text = 'Meters Around';

% Create MetersAroundKnob

app.MetersAroundKnob = uiknob(app.UIFigure, 'continuous');

app.MetersAroundKnob.Limits = [1 50];

app.MetersAroundKnob.Position = [105 181 65 65];

app.MetersAroundKnob.Value = 1.2;

% Create QuitButton

app.QuitButton = uibutton(app.UIFigure, 'push');

app.QuitButton.ButtonPushedFcn = createCallbackFcn(app, @

QuitButtonPushed, true);

app.QuitButton.Position = [91 39 95 46];

app.QuitButton.Text = 'Quit';

% Create CameraElevationKnobLabel

app.CameraElevationKnobLabel = uilabel(app.UIFigure);

app.CameraElevationKnobLabel.HorizontalAlignment = 'center';

app.CameraElevationKnobLabel.Position = [88 307 100 22];

app.CameraElevationKnobLabel.Text = 'Camera Elevation';

% Create CameraElevationKnob

app.CameraElevationKnob = uiknob(app.UIFigure, 'continuous');

app.CameraElevationKnob.Limits = [0 90];

app.CameraElevationKnob.Position = [105 357 66 66];

app.CameraElevationKnob.Value = 35;

% Create ControlPeriodGaugeLabel

A.2 Matlab code 101

app.ControlPeriodGaugeLabel = uilabel(app.UIFigure);

app.ControlPeriodGaugeLabel.HorizontalAlignment = 'center';

app.ControlPeriodGaugeLabel.Position = [91 627 83 22];

app.ControlPeriodGaugeLabel.Text = 'Control Period';

% Create ControlPeriodGauge

app.ControlPeriodGauge = uigauge(app.UIFigure, 'semicircular');

app.ControlPeriodGauge.Limits = [0 40];

app.ControlPeriodGauge.MajorTicks = [0 5 10 15 20 25 30 35 40];

app.ControlPeriodGauge.Position = [47 648 171 92];

% Create LinearspeedmsGaugeLabel

app.LinearspeedmsGaugeLabel = uilabel(app.UIFigure);

app.LinearspeedmsGaugeLabel.HorizontalAlignment = 'center';

app.LinearspeedmsGaugeLabel.FontWeight = 'bold';

app.LinearspeedmsGaugeLabel.Position = [308 569 115 22];

app.LinearspeedmsGaugeLabel.Text = ' Linear speed (m/s)';

% Create LinearspeedmsGauge

app.LinearspeedmsGauge = uigauge(app.UIFigure, 'circular');

app.LinearspeedmsGauge.Limits = [=3 3];

app.LinearspeedmsGauge.FontWeight = 'bold';

app.LinearspeedmsGauge.Position = [297 602 137 137];

% Create AngularspeedradsGaugeLabel

app.AngularspeedradsGaugeLabel = uilabel(app.UIFigure);

app.AngularspeedradsGaugeLabel.HorizontalAlignment = 'center';

app.AngularspeedradsGaugeLabel.FontWeight = 'bold';

app.AngularspeedradsGaugeLabel.Position = [303 383 129 22];

app.AngularspeedradsGaugeLabel.Text = 'Angular speed (rad/s)';

% Create AngularspeedradsGauge

app.AngularspeedradsGauge = uigauge(app.UIFigure, 'circular');

app.AngularspeedradsGauge.Limits = [=60 60];

app.AngularspeedradsGauge.FontWeight = 'bold';

app.AngularspeedradsGauge.Position = [299 416 137 137];

% Create Tau_RGaugeLabel

app.Tau_RGaugeLabel = uilabel(app.UIFigure);

app.Tau_RGaugeLabel.HorizontalAlignment = 'center';

app.Tau_RGaugeLabel.Position = [396 188 40 22];

app.Tau_RGaugeLabel.Text = 'Tau_R';

% Create Tau_RGauge

app.Tau_RGauge = uigauge(app.UIFigure, 'linear');

102 Source code

app.Tau_RGauge.Limits = [=20 20];

app.Tau_RGauge.MajorTicks = [=20 =10 0 10 20];

app.Tau_RGauge.Orientation = 'vertical';

app.Tau_RGauge.Position = [396 217 40 132];

% Create Tau_LGaugeLabel

app.Tau_LGaugeLabel = uilabel(app.UIFigure);

app.Tau_LGaugeLabel.HorizontalAlignment = 'center';

app.Tau_LGaugeLabel.Position = [300 188 38 22];

app.Tau_LGaugeLabel.Text = 'Tau_L';

% Create Tau_LGauge

app.Tau_LGauge = uigauge(app.UIFigure, 'linear');

app.Tau_LGauge.Limits = [=20 20];

app.Tau_LGauge.MajorTicks = [=20 =10 0 10 20];

app.Tau_LGauge.Orientation = 'vertical';

app.Tau_LGauge.Position = [299 217 40 132];

% Create ExternalForceKnobLabel

app.ExternalForceKnobLabel = uilabel(app.UIFigure);

app.ExternalForceKnobLabel.HorizontalAlignment = 'center';

app.ExternalForceKnobLabel.Position = [325 29 83 22];

app.ExternalForceKnobLabel.Text = 'External Force';

% Create ExternalForceKnob

app.ExternalForceKnob = uiknob(app.UIFigure, 'continuous');

app.ExternalForceKnob.Limits = [=200 200];

app.ExternalForceKnob.MajorTicks = [=100 0 100];

app.ExternalForceKnob.MinorTicks = [=100 0 100];

app.ExternalForceKnob.Position = [335 85 60 60];

% Show the figure after all components are created

app.UIFigure.Visible = 'on';

end

end

% App creation and deletion

methods (Access = public)

% Construct app

function app = Twinbot_app_neta_graphs_exported

% Create UIFigure and components

createComponents(app)

A.2 Matlab code 103

% Register the app with App Designer

registerApp(app, app.UIFigure)

% Execute the startup function

runStartupFcn(app, @startupFcn)

if nargout == 0

clear app

end

end

% Code that executes before app deletion

function delete(app)

% Delete UIFigure when app is deleted

delete(app.UIFigure)

end

end

end

A.2.2 Dynamics function

function y_dot = ydot_twinbot(t,y,u,pars,param)

% Evaluates the dynamics function ydot = g(y,tau)

% at state y and torque u.

%

% Input:

%

% t = time instant (scalar)

% y = (1 x 6) vector of position and velocities

% u = function handle

% pars = model paramaters of the twinbot (a tuple)

%

% Output:

%

% ydot = g(y,tau)

%

global u_val

% Compute actuation torque

u_val = u(t,y);

u_val = min(u_val,10);

u_val = max(u_val,=10);

104 Source code

% Compute value of the generalised disturbance force

Tau_dist = disturbance(t,y,pars);

% Compute ydot

nq=length(y)/2;

phi=y(1:nq);

phi_dot=y(nq+1:2*nq);

M = Compute_Mbar_symm(y,u,param);

C = Compute_Cbar_symm(y,u,param);

G = Compute_Gbar_symm(y,u,param);

Tf = Compute_Tf_symm(y,u,param);

Ta = [0 ; u_val];

Td = Tau_dist;

phi_ddot=M\(Ta+Tf+Td=C*phi_dot=G);

y_dot=[phi_dot;phi_ddot];

end

A.2.3 Torque calculation function

function tau = tau_wheels(t,y,y0,u0,K)

%

% Evaluates the input torque tau at (t,y). The hardcoded 'kind' variable

% allows to select whether the control law is 'ON', or 'OFF', or

% 'INTERMITTENT' (first ON, then OFF, then ON again).

%

phi = y(1);

phidot = y(2);

phi0 = y0(1);

phidot0 = y0(2);

aerr_p = y(1)=y0(1); % Angular error of phi_p

aerr_l = y(2)=y0(2); % Angular error of phi_l

aerr_r = y(3)=y0(3); % Angular error of phi_r

verr_p = y(4)=y0(4); % Velocity error of phidot_p

verr_l = y(5)=y0(5); % Velocity error of phidot_l

verr_r = y(6)=y0(6); % Velocity error of phidot_r

ctl_action = u0 = K * [aerr_p; aerr_l; aerr_r; verr_p ; verr_l ; verr_r];

A.2 Matlab code 105

kind = 'ON';

switch kind

case 'ON'

% Control law always on

tau = ctl_action;

case 'OFF'

% Control law always off

tau = 0;

case 'INTERMITTENT'

% Control is ON for t<3 and t>4 only

tau = (t<3|t>4)*ctl_action;

otherwise

% Default mode is no control

tau = 0;

end

end

A.2.4 Disturbance force

function Tau_dist = disturbance(t,y,pars)

global FORCE

global TIME_INI

global TIME_END

% Current angle of pendulum

varphi_p = y(1);

% Pars needed

l = pars.zG;

r = pars.r;

% Unfold parameters of disturbance force

phi = varphi_p; % Angle of disturbance force [rad] (hardcoded here)

f = FORCE; % Magnitude of disturbance force [N]

tdi = TIME_INI; % Initial time of disturbance force

106 Source code

tdf = TIME_END; % Final time of disturbance force

% Compute value of generalised disturbance force

Tau_dist = (t>tdi & t<tdf) * f * [r+l*cos(phi);r/2;r/2] ;

%FORCE = (t>tdi & t<tdf) * FORCE;

end

A.2.5 Torque calculation function

function [A,B] = AB_cdiff(y0,u0,param)

epsilon = 1e=6;

% === A ===

A = zeros(6,6);

incry = zeros(6,1);

for i=1:6

incry(i,1) = epsilon;

Fincr_forw = ydot_twinbot_linealitzacio(y0+incry, u0, param);

Fincr_back = ydot_twinbot_linealitzacio(y0=incry, u0, param);

A(:,i) = (Fincr_forw=Fincr_back) / (2*epsilon);

incry(i,1) = 0;

end

% === B ===

B = zeros(6,2);

incru = zeros(2,1);

for i=1:2

incru(i,1) = epsilon;

Fincr_forw = ydot_twinbot_linealitzacio(y0, u0+incru, param);

Fincr_back = ydot_twinbot_linealitzacio(y0, u0=incru, param);

B(:,i) = (Fincr_forw=Fincr_back) / (2*epsilon);

incru(i,1) = 0;

end

end

A.2.6 Dynamics linealization function

function y_dot = ydot_twinbot_linealitzacio(y,u,param)

% Compute ydot

nphi=length(y)/2;

phi=y(1:nphi);

phi_dot=y(nphi+1:2*nphi);

A.2 Matlab code 107

M = Compute_Mbar_symm(y,u,param);

C = Compute_Cbar_symm(y,u,param);

G = Compute_Gbar_symm(y,u,param);

Tf = Compute_Tf_symm(y,u,param);

Ta=[0 ; u];

% Compute Fcal

Fcal = Ta + Tf = C * phi_dot = G;

% Compute the acceleration qddot of the system

phi_ddot = M\Fcal;

y_dot=[phi_dot;phi_ddot];

end

A.2.7 URDF file

<robot name = "diffbot">

<!-- ============== -->>
<!-- links section -->>
<!-- ============== -->>

<link name = "link ground">

<!--
<visual>

<origin xyz = "0 0 -0.05" />
<geometry>

<box size = "4 4 0.1" />
</geometry>
<material name = "white">

<color rgba = "1 1 1 1" />
</material>

</visual>
-->>

 </link>

<link name = "link x">
 </link>

<link name = "link y">
 </link>

<link name = "link axis">

<visual>
<origin xyz = "0 0 0" rpy= "1.57079 0 0" />
<geometry>

<cylinder radius = "0.02" length = "0.65" />
</geometry>
<material name = "red">

<color rgba = "1 1 1 1" />
</material>

</visual>

 </link>

<link name = "link chassis">

<visual name = "chassis base">
<origin xyz = "0 0 0" />
<geometry>

<box size = "0.40 0.51 0.1" />
</geometry>
<material name = "grey">

<color rgba = "0.5 0.5 0.5 1" />
</material>

</visual>

<visual name = "chassis cylinder">
<origin xyz = "0 0 0.25" rpy= "0 0 0" />

<geometry>
<cylinder radius = "0.15" length = "0.50" />

</geometry>
<material name = "light grey">

<color rgba = ".8 .8 .8 1" />
</material>

</visual>

 </link>

<link name = "link right wheel">
<visual name = "right wheel tire">

<origin xyz = "0 0 0" rpy= "1.57079 0 0" />
<geometry>

<cylinder radius = "0.150" length = "0.050" />
</geometry>
<material name = "red">

<color rgba = "1 0 0 1" />
</material>

</visual>

<visual name ="right wheel radius exterior">
<origin xyz = "0 -0.022 0.110" rpy="0 0 0" />
<geometry>

<sphere radius = "0.020"/>
</geometry>
<material name = "white">

<color rgba = "1 1 1 1" />
</material>

</visual>

 </link>

<link name = "link left wheel">

<visual name = "left wheel tire">
<origin xyz = "0 0 0" rpy="1.57079 0 0" />
<geometry>

<cylinder radius = "0.150" length = "0.050" />
</geometry>
<material name = "red">

<color rgba = "1 0 0 1" />
</material>

</visual>

<visual name ="left wheel radius exterior">
<origin xyz = "0 0.022 0.110" rpy="0 0 0" />
<geometry>

<sphere radius = "0.020"/>
</geometry>
<material name = "white">

<color rgba = "1 1 1 1" />
</material>

</visual>

 </link>

<!-- ============== -->>
<!-- joints section -->>
<!-- ============== -->>

<joint name = "joint x" type = "prismatic">
<parent link = "link ground" />
<child link = "link x" />
<origin xyz = "0 0 0.150" rpy="0 0 0"/>
<axis xyz = "1 0 0" />
<limit effort="3000" velocity="100" lower="-10000" upper="10000" />

 </joint>

<joint name = "joint y" type = "prismatic">
<parent link = "link x" />
<child link = "link y" />
<origin xyz = "0 0 0" rpy="0 0 0"/>
<axis xyz = "0 1 0" />
<limit effort="3000" velocity="100" lower="-10000" upper="10000" />

 </joint>

<joint name = "joint theta" type = "continuous">
<parent link = "link y" />
<child link = "link axis" />
<origin xyz = "0 0 0" rpy="0 0 0"/>
<axis xyz = "0 0 1" />

 </joint>

<joint name = "joint phi_p" type = "continuous">
<parent link = "link axis" />
<child link = "link chassis" />
<origin xyz = "0 0 0" rpy="0 0 0"/>
<axis xyz = "0 1 0" />

 </joint>

<joint name = "joint phi_l" type = "continuous">
<parent link = "link chassis" />
<child link = "link left wheel" />
<origin xyz = "0 0.280 0" rpy="0 0 0"/>
<axis xyz = "0 1 0" />

 </joint>

<joint name = "joint phi_r" type = "continuous">
<parent link = "link chassis" />
<child link = "link right wheel" />
<origin xyz = "0 -0.280 0" rpy="0 0 0"/>
<axis xyz = "0 1 0" />

 </joint>

</robot>

B
Project budget

The budget presented below evaluates the cost of developing and documenting the software
implemented in this project, both in human and material resources.

B.1 Assumptions

In this section we specify the hourly costs we assume in this budget. We consider two types of
costs:

• The hourly cost of the staff devoted to develop the project.

• The hourly cost of using the equipment.

B.1.1 The hourly cost of the staff

We assume the following salaries:

Analyst −→ 20 EUR/hour
Programmer −→ 15 EUR/hour
Operator −→ 12 EUR/hour

B.1.2 Hourly cost of using the equipment

For the assessment of the hourly cost of using the equipment it is necessary to take into account:
its amortization, the cost of the personnel of the Institut de Robòtica i Informàtica Industrial
devoted to take care of the equipment, and maintenance contracts, if any.

The only equipment used in this project is a computer with the following associated costs:

1. Equipment cost: The used computer is an HP ProDesk 400 G4 PC tower, with 7200 rpm
SATA hard drive, 1TB 3.5", Intel HD Graphics 630 board, Realtek RTL8111 HSH GbE LOM
network card, 2 USB 3.1 Gen1 ports, 4 USB ports 2.0, 3.4GHz-3.8Ghz Intel Core i5-7500
CPU, 8Gb DDR4-2400 (1×8Gb) SDRAM, HP USB Business Compact Keyboard, HP USB
Optical Mouse, 19.5"HP 20kd Monitor (1440x900 at 60Hz), and Windows 10 operating
system. The cost of this computer is approximately 750 EUR. This amount also includes the

112 Project budget

installation costs of the machine. If we consider that we wish to amortize the equipment
in five years, with an interest rate of 15%, the yearly amortization cost is as follows:

C(equipment) = 750× 0.15× 1.155

1.155 − 1
= 223, 74 ≃ 224 EUR/year

2. Maintenance: The annual maintenance cost of the complete equipment is assumed to be
10% of its purchase price:

C(maintenance) = 750× 0.1 = 75 EUR/year

3. Power consumption: Its yearly cost is assumed to be

C(consumption) = 100 EUR/year

4. Cost of the IRI staff: We consider the costs of an operator working 0.5 hours per week
for 40 weeks each year:

C(IRI staff) = 240 EUR/year

Based on the above partial costs, the total annual cost will be:

C(equipment) 224 EUR/year
C(maintenance) 75 EUR/year
C(consumption) 100 EUR/year
C(IRI staff) 240 EUR/year
C(annual) 639 EUR/year

The hourly cost of CPU usage, considering that the equipment is working 8 hours/day, 5
days/week, 40 weeks/year, and that the CPU is working at 60% of its load on average, is:

C(CPU per hour) =
639

8× 5× 40× 0.6
= 0.67 EUR/hour

B.2 Development cost

Taking into account the prices stipulated in the previous section, we next calculate the cost
of developing the project, which includes the cost of the project staff, the equipment, and
documentation and printing expenses. It should be noted that the costs related to the fixed
assets of IRI are not taken into account. We only count those for the development of the project
in terms of human resources and computer equipment.

B.2.1 Project staff cost

We estimate that the time invested in the project has been 21 weeks with a full dedication of 15
hours/week. The project involved a person earning the salary of a computer analyst:

C(project staff) = 315 hours× 20 EUR/hour = 6, 300 EUR

B.2 Development cost 113

B.2.2 Cost of using the equipment

We estimate that 60% of the total project time has been devoted to implementing the programs.
During that time, however, the CPU has been inactive during 35% of the time approximately.
We also consider that, when the CPU is active, we actually use 80% of it (despite the PC allows
multiple users to be connected, the usage regime has been practically that of a single user).
Therefore, we calculate the following times:

Computer time 315× 0.60 = 189 hours,
Useful computer time 189× 0.65 ≃ 123 hours,
CPU time 123× 0.80 ≃ 98 hours,

so the CPU cost is
C(CPU) = 98× 0.67 = 66 EUR.

B.2.3 Documentation costs

We here consider the costs of bibliographic sources acquired during the project, which include a
book and two journal articles, and those of printing:

C(bibliography) 90.00 EUR
C(printing) 15.00 EUR
C(documentation) 105.00 EUR

B.2.4 Licence costs

We are going to consider the costs of the software used during the project.

C(MATLAB) 840 EUR
C(Creo Elements) 2, 118 EUR
C(Licenses) 2, 958 EUR

B.2.5 Total cost of development

The total cost of developing the project is finally the sum of the aforementioned costs:

C(project staff) 6, 300 EUR
C(CPU) 66 EUR
C(documentation) 105 EUR
C(Licences) 2, 958 EUR
C(TOTAL) 9, 429 EUR

C
Environmental impact

All research projects should always take into account the environmental impact that have gene-
rated. In our case, our project did not have a practical approach, no prototype was developed
and no waste was caused , therefore, the carbon footprint generated is minimal, and is only
caused by the electrical power consumed by the computer and the room’s lightning. The
environmental impact of this project will be quantified with the CO2 kg emitted by the electricity
that has been consumed.

C.1 CO2 kg generated

In the annex B, we estimated that this project signified 315 working hours, in which we can
consider we had a full time working computer. Moreover, we could estimate that half of this
time we needed external lightning in order to work. For the electricity calculations, we will
define there were 4 LED light bulbs in the room in order to cover the illumination.

The people form Sibelga [18] have studied the CO2 kg consumed by different kind of com-
puters, in our case we alternated between a desktop and a laptop, but programs used were
quite powerful, therefore, we are going to consider we were using a desktop all the time (for
calculation purposes), which has a higher consumption. They say that a computer working for
eight hours a day uses almost 600kWh, and emits 175kg of CO2 every year.

Environmental impact of the computer =
315× 175

8× 365
= 18.87 kg of CO2

In order to estimate the environmental impact of the illumination, we will take a look at the
analysis made by Towers IT Professional Services Ltd [19]. From there, we know that a standard
LED, with coal based power generation, consumes 22.23CO2 kg every year if is working 8 hours
a day. And we know that every coal based kWh of electricity, generates 870CO2 kg, whereas if
the source is natural gas, which was our case, it generates 487CO2 kg. With this data on the
table, powering 4 LED would imply:

Environmental impact of the illumination =
315× 22.23× 487× 4

2× 8× 365× 870
= 0, 27 kg of CO2

116 Environmental impact

The carbon foot-print generated by the project is therefore:

Environmental impact of the computer 18.87 kg of CO2

Environmental impact of the illumination 0, 27 kg of CO2

Total environmental impact 19.13 ≃ 19 kg of CO2

In this study we have seen that the environmental impact of the project is very low, which
should make us proud, but our future goal must be to reduce it into 0. For this reason we still
have to improve as a society in order to make all the electricity come from renewable sources if
we want to significantly minimize the carbon foot-print generated.

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Project objectives
	Scope of the project
	Document structure
	Notation

	Kinematic model
	Reference frames and vector bases
	Configuration and state coordinates
	Rolling contact constraints
	Holonomic and nonholonomic constraints
	The configuration and state spaces

	Dynamic model
	Lagrange's equation of motion
	Mass matrix
	Coriolis matrix
	Generalized gravity force
	Generalized force of actuation
	Generalized force of friction
	Generalized disturbance force

	The x model
	The y model
	Odometry
	Particularized y model

	Optimal Control Theory
	The finite horizon LQR controller
	The infinite horizon LQR controller
	Stabilization of a given trajectory

	Controller design
	A feedback law for a twinbot
	The control loop algorithm
	Initializations
	Control loop

	Grafical Interface
	Simulation Results
	Twinbot's ability to recover from unbalanced configurations
	Response to a v0 step input
	Response to a step input
	Reaction to a force pulse
	Reaction to a constant force

	Conclusions
	Contributions
	Future work

	Bibliography
	Source code
	Matlab liveScript
	Matlab code
	Graphical interface application
	Dynamics function
	Torque calculation function
	Disturbance force
	Torque calculation function
	Dynamics linealization function
	URDF file

	Project budget
	Assumptions
	The hourly cost of the staff
	Hourly cost of using the equipment

	Development cost
	Project staff cost
	Cost of using the equipment
	Documentation costs
	Licence costs
	Total cost of development

	Environmental impact
	CO2 kg generated

