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Abstract

This work contributes with new algorithms for line drawing interpretation. A line drawing
is a 2D diagram of vertices and straight edges aiming to depict a polyhedral 3D scene.
Given one such drawing we usually want to test whether it is a correct projection. If it is,
then we wish to reconstruct all possible scenes it can depict. Otherwise, we attempt to
correct the drawing so that it becomes reconstructable. These problems find applications
in image understanding and shape-from-image in monocular vision, and to the design of
man-machine interfaces for solid modeling, based on the reconstruction of 3D shapes from
hand-sketched line drawings.

Traditionally, the Machine Vision approach to line drawing interpretation has been
mainly algebraic. Although computer scientists have discovered graphical techniques like
the reciprocal diagrams, these have not been fully exploited or sometimes left apart,
arguing that they only provide necessary —but not sufficient— conditions for realizability.
However, a careful investigation of related areas of Geometry reveals the existence of
complete and purely geometric tools that, using just pencil and straightedge, are able to
decide the correctness of certain families of drawings. A first goal of this work has been
to select one such tool, the so-called cross-section diagram, and extend its validity to a
broader class of drawings; namely, those of polyhedral surfaces generated by scenes of
opaque polyhedra.

At present, however, no general realizability test using pencil and straightedge alone
has been devised for general drawings so that relying on algebraic methods seems un-
avoidable. A second goal of the work has been to exploit a known mapping between
spatial polyhedra and the instantaneous motions of an articulated mechanism, due to
Whiteley. Based on this mapping, we give a concise realizability test that has several
advantages over the classic algebraic approach by Sugihara: it is simpler, numerically
stable, straightforwardly implementable in floating-point arithmetic, and yields a linear
parameterization of all possible reconstructions of the drawing. Additionally, this gives a
model of the Necker reversal phenomenon and, in some cases, it allows obtaining all con-
cavity /convexity patterns of the edges, neither resorting to consistent labelling techniques,
nor consulting junction dictionaries.

A correction module is usually necessary, since drawings with a general geometry are
seldom correct. In practice, for example, if a drawing is got from a hand-made sketch or
by filtering a real image, the coordinates of its vertices will seldom lie in the right places,
and reconstruction will not be possible. The third goal of the work has been to efficiently
solve this problem. To this end, we have devised the first algorithm for line drawing



correction that allows the simultaneous movement of all the vertices. This yields better
solutions than existing approaches, which only allowed the displacement of a subset of the
vertices, or failed to correct some combinatorial structures. Moreover, we have provided
a second correction strategy that keeps the vertices fixed but alters the combinatorial
structure.
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Notation

Spaces

R™  The m-dimensional vector space over the reals.
P™  The m-dimensional projective space.
V  The (m + 1)-dimensional vector space associated with P™.

U,U;
U, U;

Affine subspaces of R™.
Vector subspaces of V, associated with U and U;, respectively.

V) The vector space of all k-extensors, and their linear combinations.

A(V)

Elements

C,M,...
cP
C—P
PQR

a)ﬁ)W/)"'
l,m,n,...
X,CCiPp,--.

AV)=VO VD @ .. .@VM,

Points of Euclidean 2 or 3-space.

The Euclidean line along the points C' and P.

The oriented line-segment from C' to P.

The Euclidean plane through the points P, @), and R.
Planes of Euclidean 3-space.

Lines of Euclidean 2 or 3-space.

Vectors of R™ or V, points of P™,

or l-extensors. Distinguished by context.

Coordinates of a vector or a point.

The jth coordinate of the vector x;.

k-extensors, k > 2.

The (j1, jo, - - -, Ji)-th Pliicker coordinate of an affine subspace.
The Pliicker coordinate vector of the affine subspace U.
Matrices.

The (4, j)-th entry of the matrix M.

A matrix M with m rows and n columns.



Operators

Ordinary dot-product of two vectors.

Standard cross-product of two vectors.

The product of two matrices A and B.

The transpose of a vector or a matrix, respectively.
The join of the Grassmann-Cayley Algebra.

The meet of the Grassmann-Cayley Algebra.

The support of the k-extensor A.

The direct sum of two vector spaces.

=~ >
e

<

@ P> <

Kinematics

Cij 1-extensor representing the instantaneous center of
rotation of the ith body (or reference frame),
relative to the jth reference frame (in planar motion).
2-extensor representing the absolute instantaneous screw
axis of the ith rigid body (or reference frame),
relative to the jth reference frame (in spatial motion).
M, ;(P) Motion of the Euclidean point P of the i-th

rigid body (or reference frame),

relative to the jth reference frame.
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Chapter 1
Introduction

“Most of the fundamental ideas of science are essentially
simple, and may, as a rule, be expressed in a language
comprehensible to everyone”.

Albert Einstein —The Evolution of Physics, 1967 [30].

1.1 Line Drawing Interpretation

Emulating and explaining a human’s ability to mentally recover the spatial shape of ob-
jects from the images received on the retina has been a major goal of Machine Vision and
Artificial Intelligence along the past decades. As explained by Barrow and Tenenbaum
in their influential papers [7, 8], an important function of the early stages of our visual
processing appears to be the transformation of brightness information in the input image
into an intermediate representation that describes the intrinsic characteristics (depth, ori-
entation, reflectance, color, and so on) of the three-dimensional surface element at each
point in the image [45, 6, 64]. Support for this idea comes from several sources. Among
them are the observed ability of humans to determine these characteristics, regardless of
viewing conditions or familiarity with the scene; the direct value of such characteristics
to applications like manipulation and obstacle avoidance; and the utility of such a repre-
sentation for facilitating higher-level processing (like segmentation or object recognition)
in computer vision systems, to name a few.

In principle, information about surfaces can be obtained from many sources like, for
example, stereopsis, motion parallax, texture gradient, or shading. Each of these cues,
however, is valid only for a particular class of situations. For example, stereopsis and
motion parallax require multiple images. Determining surface shape from texture re-
quires statistical regularity of the textural elements. Analytic techniques for determining
shape from shading require accurate modelling of the incident illumination and surface
photometry, which is difficult to do for most natural scenes.

However, even in the abscence of such powerful cues, much valuable information about
surface structure is still available. In particular, much is conveyed by brightness disconti-
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nuities, which occur wherever there are discontinuities in incident illumination (at shadow
boundaries), reflectance (at surface markings) or surface orientation (at surface bound-
aries). The significance of surface discontinuities alone is evident from our ability to infer
the three-dimensional structure of objects depicted in line drawings, such as the one in
Figure 1.1. Boundary information is such a fundamental cue to tri-dimensionality that
it is hard for humans to suppress it. While an exhaustive investigation of the effect of
qualitative brightness events on perceived surface shape has not yet been completed, sev-
eral experiments suggest that in many cases boundary information is the principal shape
cue, even dominating shading, perspective and motion parallax [7]. This observation was
probably the principal motivation that triggered the extraordinary boom in research on
line drawing interpretation, from the late sixties to the middle eighties. Given that the
ability to interpret drawings is also observed on pictures of polyhedral scenes (Figure 1.2),
it seemed reasonable to focus on this class of simplified images to study the phenomenon.
Over the years, research has been done to answer the following questions:

1. Why do we see 3D scenes rather than flat drawings? When presented with a rough
sketch of a polyhedral scene, humans are able to reject “impossible figures” (Fig-
ure 1.2, a, b and c¢), and recover 3D shapes from correct ones (Figure 1.2, d, e,
and f), despite the reduced information they offer, without textures on the surfaces,
illumination patterns, or extra views. Why do we see volumetric objects and not
just flat diagrams on a paper?

2. How does the human visual system actually recover a spatial shape? Which are the
mechanisms used by the visual cortex to process the image information entering the
retina and extract mental representations of the surrounding scene?

3. How does a 2D-projection constrain the set of possible spatial interpretations that can
be derived? What plausible spatial information can be extracted by just analizing
the combinatorial and geometric structure of the drawing alone?

4. Can we mimic the human performance on a machine? Humans frequently commu-
nicate spatial shape information by exchanging 2D line diagrams on a blackboard,
on a paper, or other flat surfaces. This diagrammatic means of communication is
quite remarkable as, contrary to spoken languages, line drawings of spatial objects
can be understood without much training by almost anyone in any country. Is it
possible to emulate this capability on an electronic device, even if this emulation
does not explain the human process at all?

As recognized by several researchers in the areas of Human Cognition and Brain Sci-
ences (see e.g. the book by Ullman [117, page 150]), despite all efforts, we still have
a narrow view of the psycho-physiological mechanisms used by a human in performing
visual interpretation tasks. Thus, we still seem to be far from having a complete theory
that satisfactorily answers the first two questions. On the other hand, as summarized in
Chapter 3, significant progress has been made towards a complete answer to the third
question and a positive one to the fourth. However, there are still several gaps to be filled
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in and this Thesis’s efforts are a contribution in this direction. Specifically, we have se-
lected the following three problems and provided alternative algorithms for solving them
that outperform previous existing ones:

e Realizability: given a drawing, decide whether it is a correct projection of some three-
dimensional scene of polyhedral objects . Figure 1.2 illustrates this: the algorithm
must be able to classify (a), (b) and (c) as incorrect drawings, and (d), (e) and
(f) as correct ones. These examples look simple, and indeed one can check simple
conditions to accept them as correct or discard them as incorrect (see Chapter 4).
However, what are the conditions for a general scene? How can we detect that
Escher’s waterfall in Figure 1.3 cannot be physically constructed?

Figure 1.1: A line drawing of a three-dimensional scene (adapted from [7]).

AP E
AP b

Figure 1.2: The realizability problem. Figure (a) is adapted from Penrose and Pen-
rose [79], (b) from Draper [27], and (c) from Huffman [47].
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e Reconstruction: if the drawing is correct, obtain all 3D polyhedral scenes that
project onto it. As an example, Figure 1.4 shows some reconstructions of the trun-
cated tetrahedron in Figure 1.2d. Obviously, a correct drawing can be generated
from an infinite number of scenes, and a logic desire is to get a parameterization of
this infinite set of possibilities. Note that this is actually all the spatial information
that can be inferred from a 2D line drawing.

e Correction: if the drawing does not correspond to the projection of some scene, try
to modify it so that it does. Figure 1.5 shows an incorrect truncated tetrahedron
(a), and the two types of corrections considered in this Thesis: one that slightly
moves all vertex positions (b) and another that splits some faces (c).

s
'.%........-
7
i

e,

Figure 1.3: Escher’s waterfall. Classify it as impossible!
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Figure 1.4: The reconstruction problem. The sequence shows how a plane drawing is
lifted to reconstruct the spatial shape.

Figure 1.5: The correction problem.

The spatial interpretation of a line drawing can be done by combining modules that
solve these three problems. We first take an input drawing and detect whether it is
realizable or not with the first module. Then, we either get a parameterization of the
whole infinite family of interpretations using the second module, or we could just select
one among them if extra constraints on the 3D shape were added by the user. On the
contrary, if the drawing is incorrect, we run the third module and apply the reconstruction
process on the corrected drawing it produces.

When seeking a solution we have adopted an engineering point of view. We have used
whatever mathematical tools that are useful to produce a system that can actually be
implemented on a computer, without paying much attention as to whether the resulting
methods keep some similarity or not with the corresponding visual and mental processes.
Actually, it is the author’s opinion that due to the highly symbolic nature of the approach,
the developed algorithms have probably no relationship with their cognitive counterparts.
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1.2 Objectives and Contributions

Geometric Realizability. Traditionally, the Machine Vision approach to line drawing
realizability has been mainly algebraic. Although computer scientists have discovered!
graphical techniques like the reciprocal diagrams?, these have not been fully exploited
or sometimes left apart, arguing that they only provide necessary (but not sufficient)
conditions for realizability. However, a careful investigation of results from related areas
of Geometry reveals the existence of complete and purely geometric tools to decide the
correctness of whole families of drawings. A first goal of this Thesis has been to further
exploit this geometric side, to clarify which of these tools are useful to our ends, and
to complement them with additional ones where needed. Specifically, using Structural
Geometry, Walter Whiteley proved in the eighties that a drawing of a spherical polyhedron
is a correct projection if, and only if, one can draw a line diagram compatible with it,
the Mazwell reciprocal. Further research led him to discover the cross-section, another
reciprocal diagram whose existence is a necessary and sufficient condition for realizability
of this type of drawings. However, usual scenes of opaque polyhedra yield line drawings
with the topology of a polyhedral surface instead of a closed spherical polyhedron and these
tests seem inappropriate at first glance. To overcome this limitation, we have selected the
cross-section diagram and proved its validity also for this broader class of drawings. Along
the way we have found a simpler proof of Whiteley’s result, using elementary arguments
of synthetic geometry, and we show that a pencil and a straightedge are the only necessary
elements to decide the correctness of drawings of trihedral polyhedral surfaces.

Algebraic Realizability. At present, however, no general realizability test using pencil
and straightedge alone has been devised for general drawings so that relying on algebraic
methods seems unavoidable. The most popular algebraic approach known so far is due
to Kokichi Sugihara, who translated the basic problem to one of Linear Programming.
Nevertheless, further improvements are still possible here. A second goal of the Thesis
has been to exploit a known mapping between spatial polyhedra and the instantaneous
motions of an articulated mechanism associated with their projections: a panel-and-hinge
framework. The mapping was discovered by Whiteley and his colleagues within the Cana-
dian Structural Topology Group and seems to be unknown to Machine Vision scientists
working in these problems. As we will see, though, it yields a concise realizability test
only involving elementary linear algebra. Specifically, one can decide the correctness of
a drawing by simply computing a vector basis of the kernel of a matrix, made up from
vertex coordinates of the drawing. As opposed to Sugihara’s, this method is numerically
feasible and straightforwardly implementable in floating point arithmetic, as it can be
made robust to the so-called superstrictness problem with a simple technique: the use of
the singular value decomposition to get a basis of the aforementioned kernel.

LActually rediscovered, as explained in Section 3.2.2.
2 Also known as the gradient space approach or the dual diagram technique. See for example [58, 48, 28].
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Reconstruction. Moreover, the mapping above also elegantly solves the reconstruc-
tion problem. It can be shown that the instantaneous motions of the panel-and-hinge
framework are linearly parameterizable and, since they are in one-to-one correspondence
with the spatial reconstructions, these are also linearly described. This parameterization
has other advantages as well. For example, under certain circumstances, one can obtain
the {4, —}-labellings of the drawing without solving a constraint satisfaction problem,
and without consulting a junction dictionary. These labellings correspond to the different
shapes that the spatial reconstruction can have, according to the concavity (+) or con-
vexity (—) of their edges, and we will give an algorithm to enumerate them all. Finally,
another derived result is a model explaining the Necker reversal phenomenon: given a spa-
tial reconstruction there is always a mirror reconstruction that reverses the edge types,
converting convex edges to concave ones and vice versa.

Correction. A correction module is usually necessary, since drawings with a generic
geometry are seldom correct. This means that if we take the combinatorial elements of a
drawing (the abstract vertices, edges and faces it depicts) and we give them an arbitrary
geometric position, say by fixing the vertices, then the drawing will most probably be
incorrect, because the only coordinates yielding correct drawings lie on a zero measure set
of R?” (if v is the number of vertices). This happens on most (but not all) combinatorial
structures, and Sugihara and Whiteley found combinatorial criteria that classify them.
In practice, if a drawing is got from a hand-made sketch or by filtering a real image, we
have the same effect: the coordinates will seldom lie in right places, and reconstruction
will not be possible. The third goal was to efficiently solve this problem. To this end,
we have devised the first algorithm for line drawing correction that allows the movement
of all the vertices simultaneously. This yields better solutions than existing approaches,
which only allowed the displacement of a subset of the vertices, or failed to correct some
combinatorial structures. Moreover, we have provided a second correction strategy that
keeps the vertices fixed but alters the combinatorial structure, with the side-effect of
relaxing the constraints over the set of possible reconstructions.

1.3 Outlook at the Dissertation

The Dissertation is structured in three parts. Part I groups the introduction, basic back-
ground and a historical perspective of related work. Then, Part II presents the solutions
to the realizability and reconstruction problems, which are intimately linked. Finally,
Part III contains two chapters, each one of them devoted to a different drawing correction
strategy. Each chapter’s contents can be outlined as follows.

Chapter 2 starts with formal definitions of the realizability, reconstruction and correction
problems. We then proceed with the basic background and vocabulary needed in later
explanations. A basic assumption of the Thesis is that we already know the incidence
structure of the drawing. This structure is formally presented, and methods to obtain it
are briefly reviewed, with pointers to the literature for details on them.
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Chapter 3 gives an account of previous work in the area. We have made an effort not
only to survey the well-known contributions due to the Machine Vision community, but
also several applicable results from Structural Geometry that seem to be ignored by our
community.

Chapter 4 treats the realizability problem from a synthetic geometric perspective. The
cross-section test is presented in detail and a proof of its validity for polyhedral disks is
given. Then we delimit the class of trihedral drawings and show that their correctness is
decidable just using pencil and straightedge.

Chapter 5 is an introductory exposition to the Grassmann-Cayley algebra and its ap-
plication to the kinematic analysis of mechanisms. The algebra is presented in the least
abstract way possible, having an engineering audience in mind. To make the presentation
self-contained, the chapter begins with an introduction to projective spaces and Pliicker
coordinates.

Chapter 6 uses the tools from the previous chapter to describe the algebraic algorithms
for realizability and reconstruction, and follows their application on simple examples. The
enumeration of all feasible {+, —}-labellings is then considered, and we see that it can be
reduced to finding the sign vectors of all cells in a hyperplane arrangement. Computational
Geometry has already developed efficient algorithms for this canonical problem, and one
is described there.

Chapter 7 provides a solution to the correction problem that only involves the modifi-
cation of the vertex coordinates, while keeping fixed the combinatorial structure of the
drawing.

Chapter 8, on the contrary, solves the correction problem with a rather opposite strat-
egy. The numerical part remains fixed and only the combinatorial structure is conve-
niently modified. This approach is developed for trihedral drawings in the context of an
application to 3D robust modelling, but is equally applicable to any type of line drawing.

Chapter 9 concludes the Thesis and suggests several points for further research.

Author and keyword indices. We include author and keyword indices at the end. For
each author, the former lists the pages of the manuscript that contain citations to one
of his/her publications. The latter gives pointers from key concepts to the places where
they appear in the text.



Chapter 2

Basic Background

“The individual mathematician feels free to define his
notions and set up his axioms as he pleases. But the
question is: will he get his fellow mathematician interested
in the constructs of his imagination?”

Hermann Weyl, 1951 [71].

2.1 Realizability, Reconstruction and Correction

Before we give precise definitions for the three problems stated above, we must first decide
how a line drawing is described to a computer —i.e. what information is supposed to be
known about such a diagram of lines. Actually, it is useful to distinguish between two types
of descriptions, a more primitive one, which we call raw line drawing, and a richer one,
called augmented line drawing. Informally speaking, a raw line drawing is a 2D diagram
made up of two entities, called segments and junctions, corresponding to the spatial edges
and vertices of a polyhedron, respectively. Also, one can give additional information
about which junctions correspond to vertices of a same face of the spatial polyhedron.
This information is usually collected in a bipartite graph, called the incidence structure
and we call a drawing where this structure is provided an augmented line drawing. In
general, given a raw drawing, one can identify several incidence structures on it, and
hence several augmented line drawings can correspond to one raw line drawing. Next, we
formalise these concepts.

A raw line drawing is a triple D,q, = (J,S,r), where J is an abstract set of junctions,
S is an abstract set of segments, with S C J x J, and r is a plane location map that
assigns a point of the XY plane to every junction in J:

r:J — R
r(Ui) - (xzaylao) .

An incidence structure is a triple S = (V, F, I), where V' = {vy,...,v,} is an abstract
set of vertices, F = {fi,..., fm} is an abstract set of faces, and I C V x F is called the
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incidence set. When we refer to the vertices of face f;, we mean all vertices v; € V' such
that (v;, fi) € I. Two faces f; and f; are adjacent if they share at least two vertices, say

Vg and U —i.e., (Uk, fz); (vka fj)? (Ula fz)) (vla f]) €l

An augmented line drawing Dy, is an incidence structure S = (V, F, I) plus a plane
location map q that assigns a point of the XY plane to every vertex in V:

q:V —R
q(UZ) = (xzaylao) .

A lifting or interpretation of D,,, is a spatial location map p that assigns a point
(xi, yi, z;) to every vertex v; of V on the vertical line through q(v;) = (x;, y;, 0),

p:V—R
P(Ui) = (xiayiazi)a

and such that for every face f; € F, all its vertices lie on a same plane of R?, called the
face plane of f;. The lifting is trivial if p maps all the vertices to a same plane of R*. The
lifting is sharp if every two adjacent faces receive different face planes.

The realizability problem is to decide whether the vertices of D,,, can be “vertically
lifted” to produce a sharp lifting. The drawing is said to be correct , or realizable, if
such a lifting exists, and incorrect otherwise. The reconstruction problem is to obtain a
parameterization of all liftings of Dy, including the trivial ones. The correction problem
is to minimally alter D,,,, either modifying the incidence structure or the vertex positions
q(v;), to produce a correct line drawing as close to Dg,, as possible, under some pre-
specified criterion.

Normally, we want to feed a computer with just a raw line drawing, and let it derive
all spatial shapes that can be inferred from it, if any. This would be the use if the
computer is, for example, interpreting a designer’s hand-made sketch . In this Thesis,
however, we will assume that an incidence structure has already been identified on such a
raw drawing and that the input is actually an augmented line drawing. Here, an obvious
question is how one can derive all augmented drawings that could correspond to a raw
drawing. Although it is not our concern to develop efficient methods for this purpose, in
Section 2.3 we shortly comment how this can be done and point the reader to existing
literature on the topic. Hereafter, the term line drawing (or drawing, for short) will refer
to an augmented line drawing, unless otherwise stated.

Moreover, although the definition of incidence structure leaves plenty of room for the
topology of the spatial liftings that can be derived, in this Thesis we will be primarily
interested in the incidence structures induced by usual scenes of opaque polyhedra . These
are described in Section 2.2.
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Figure 2.1: Some valid topologies for a polyhedral surface: a sphere (a), a disk (b), a disk
with one hole (c¢) and a disk with one handle (d). Some excluded topologies: a Mdbius
band (e) and two intersecting sheets (f). Right: a triangulated polysurface with two holes.

2.2 Polyhedral Surfaces

Polyhedral scenes are typically made of solid objects. However, we employ a more con-
venient model for the liftings of D: we assume that these are polyhedral surfaces home-
omorphic ! to a disk with any number of holes. These and other surfaces used along the
Thesis are defined next.

A polyhedral surface, or polysurface for short, is a piecewise linear and continuous
2-manifold, made up with planar polygons called faces, glued in pairs along their edges.
(A 2-manifold is a two-dimensional orientable surface in 3-space where the neighbourhood
around any point is homeomorphic to a disk.) Figure 2.1 depicts some possible topologic
shapes that a polysurface can have, differing only in the number of holes and handles they
have. The shapes in Figures 2.1 e and f are not included in our definition, as they are
not 2-manifolds: a Mobius band is not orientable, and 2 intersecting sheets have points
where the neighbourhood is not homeomorphic to a disk.

A polyhedral sphere, or polysphere for short, is a polysurface homeomorphic to a
sphere. Analogously, a polyhedral disk, or polydisk, is a polysurface homeomorphic to a
disk. A polydisk with n holes is a polysurface homeomorphic to a disk with n holes. We
say that a polysurface is trihedral if each of its interior vertices has exactly three incident
faces. Trihedral polysurfaces yield the so-called trihedral drawings, when projected.

The faces of a polysurface are the maximal 2-dimensional planar subsets of points on
it. The edges are the maximal 1-dimensional linear subsets of the boundaries of the faces.
The wvertices are the endpoints of the edges. Two faces are adjacent if they share at least
one edge. Also, an edge is said to be adjacent to the faces it belongs to. We distinguish
between interior and boundary edges, depending on whether they have two or just one

'Homeomorphic means “topologically equivalent”.
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Figure 2.2: Drawings of opaque polyhedra are spatially interpreted as a collection of
polysurfaces.

adjacent face, respectively. We call boundary vertex one that has at least one incident
boundary edge, otherwise the vertex is said to be interior.

The polydisk with holes is an accurate model to represent the spatial shapes that
can be recovered from D. Indeed, since typical objects are opaque, the drawing does
not usually display the projections of the hidden vertices, edges, and faces. Actually,
it only provides information on the “topmost” viewed part of the scene, which, as seen
from the center of projection, can be regarded as a collection of polyhedral disks, possibly
containing interior holes. This is illustrated in Figure 2.2. The line drawing to the left
is a vertical projection of the scene in the center, where hidden parts below the topmost
surface are clearly revealed. But all we can recover are spatial liftings as the one to
the right, with five polysurfaces. Observe the holes on the half-torus, produced by the
shadows of the floating objects above.

2.3 Obtaining Incidence Structures

We outline how a candidate incidence structure can be obtained from a raw line drawing.
As above, we focus on drawings of opaque polyhedra, showing only the visible edges. The
case of drawings depicting also the hidden edges is thoroughly studied in the works by
Marti et al. [66], Sugihara [112, chapter 4] and Lipson et al. [57].

S ={V, F, I} is derived with the following process. We start adding a vertex in V" for
every junction of D and a face in F' for every polygonal region. Initially, I is empty. The
process continues by replacing some vertices in V' by new ones, and by adding incidence
pairs in [I.

First, note that a line segment of D arises either as the projection of an edge of
the spatial object (one where the two faces coincide in 3-space), or as the projection of
a polyhedral part occluding another behind (and the two regions at both sides of the
segment are actually separated faces in space). In correspondence with the polysurface
model introduced above these two types of edges will be called interior and boundary,
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(a) (b)
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I={(v,f1),(v,f2),.-., (v, f5)} I = {(v1, f2), (v1, f3), (v2, f4), (v2, f5), (v, f6), (v3, f1), (v3, fr)}

Figure 2.3: Incidence structure around a vertex with (a) and without (b) boundary edges.

respectively.

Assume that every segment type is known. If all the incident segments at a junction
are interior, then the vertex v of this junction actually lies on all faces around it in 3-
space, and we simply add an incidence pair (v, f) for every face f around v. On the other
hand, if v has n incident boundary edges, then it can be thought of as n aligned spatial
vertices vy, vg, ..., v, that coincide when projected, but they lie at different depths when
seen from the center of projection. Figure 2.3 illustrates this. The n boundary edges
divide the faces around v into n “connected” sectors: inside every such sector, the faces
are separated by interior edges and if we travel from one face to the other, no discontinuity
of height is encountered. To construct the incidence structure around v we substitute v
by v1,vs,...,v, in V and we add an incidence pair (v;, f;) for every face f; around the
connected sector of v;.

It remains to see how an edge can be classified as either interior or boundary. This
would depend on the application. For example, if the drawing comes from a hand-made
sketch, the designer may have included easy-to-recognize symbols on the edges, to indicate
their type. If this is not possible, we can use any of the methods that obtain a consistent
labelling of the drawing, one that assigns either a convex (4), a concave (—) or an occlusive

Concave Convex Occlusive

Figure 2.4: Types of edge labels.
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(—, <) label to every edge, according to some consistency constraints. Figure 2.4 gives the
meanings of these labels. An edge is convex (concave) if it can be spatially interpreted
as a convex (concave) edge between two spatial faces. An occlusive edge indicates a
discontinuity of height from one face to the other, with the arrow pointing to the direction
where the face to the right is closer to an observer at the center of projection.

There is extensive literature on methods that produce such labellings. Although Sec-
tion 3.1.1 will expand more on this topic, let us mention here that the techniques of
Huffman [47], Clowes [18] and Waltz [118] are quite celebrated in the literature. See for
example [112, chapter 2] for a survey of results until 1986. Recent developments due
to Parodi show that it is possible to quickly get consistent labellings once the vanishing
points of the scene are known [76, 77, 73]. The computation of vanishing points is itself a
thoroughly studied problem in Computer Vision. A recent publication comparing several
methods is [102].

Once a {+, —, —, < }-labelling has been computed, a {boundary, interior}-labelling
is simply obtained by replacing 4+ or — labels by an interior label, and — or < labels
by a boundary label.

The process outlined so far will generate an augmented line drawing D whose incidence
structure, in fact, can be seen as the union of the incidence structures of possibly several
polydisks with holes. Actually, it is not necessary to deal with D as a whole to decide
its correctness. It suffices to divide D into several drawings, say Dy, Do, ..., Dy, each
depicting the projection of one of the polydisks, and then individually test each of these
drawings. Clearly, the whole drawing is realizable if and only if all of the derived drawings
D,,Dy,...,D,, are realizable too. Moreover, the liftings of D are simply found by lifting
individually each of the D;’s. Given these observations, and without loss of generality,
we will hereafter assume that the input line drawing depicts the projection of a single
polydisk, with any number of holes.



Chapter 3

Historical Development

“We all live in the great, dynamic web of change. It links
us to one another and, in some ways, to everything in the
past. And in the way that each of us influences the course

of events, it also links us to the future we are all busy
making, every second”.

James Burke —The Pinball Effect. How Renaissance
Water Gardens Made The Carburetor Possible, 1996 [15].

The spatial interpretation of line drawings has drawn attention from mainly two sci-
entific communities: Machine Vision and Structural Geometry. However, one appreciates
a considerable separation in their respective works, as can be seen from the scarce collab-
oration they have maintained, with a few exceptions. This is probably due to the rather
different applications they pursue: while the former want to construct a theory of vision,
the latter concentrate on the kinematic and static rigidity of articulated frameworks. Nev-
ertheless, along the years several threads connecting both problems have emerged, which
justify an exchange of ideas and results. This chapter offers a historical perspective of
them, to aid delimiting the research frontiers we found when we started this work. Along
the way, we describe the previous existing techniques and point the reader to related
sections of the Thesis where an enhancement is achieved or an alternative is given.

3.1 Results from Machine Vision

3.1.1 Labelling algorithms

In Machine Vision, the interest in line drawing interpretation starts with the pioneering
work by Guzman [39, 40], who tried to automatically decompose a drawing of a pile
of objects into regions, so that each region corresponds to one object, without any a
priori knowledge of the models present in the scene. He used configurations of lines at
junctions to achieve such a decomposition and succesfully tested the method on several
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Figure 3.1: Possible convex (—) and concave (+) configurations around a trihedral vertex.

complicated drawings. However, his algorithms are strongly based on heuristic rules for
which no logical or geometric foundation is provided, and one can easily find examples
that cheat them [4].

In 1971, Huffman [47] and Clowes [18] directly attack the realizability problem in a
more organized way, exploiting the fact that there is only a limited number of different
feasible assignments of concave (—), convez (+) or occlusive (—, <—) labels to the segments
around a given junction. (See Section 2.3 and Figure 2.4 for the meaning of these labels.)
This can be seen in Figure 3.1, where a trihedral junction with exactly three incident
faces is depicted, along with its feasible and impossible {4, —}-labellings. If the junction
is “Y-shaped” then either all three edges are convex or all three are concave, but mixed
configurations are not possible. Analogously, only two configurations arise when the
junction is “W-shaped”. By inspection, we can enumerate all configurations and register
them in a junction dictionary extending the one in Figure 3.1. Obviously, a drawing is
only correct if it has a consistent {+, —, —, <—}-labelling, one that assigns a configuration
in the dictionary to each junction, while ensuring that the two junctions of a segment yield
the same label for this segment. Then Huffman and Clowes see that the set of all valid
labellings can be found by solving a constraint satisfaction problem with the junctions as
variables and the entries in the dictionary as possible values for them.

Several other authors refined this scheme to accept a more complex input. For example,
in 1975 Waltz treated pictures with shadows and cracks [118]. His algorithms for obtaining
consistent label assignments were extended by Mackworth in 1977 [59] and nowadays both
works are considered among the pioneers of Constraint Programming . Procedures to treat
pictures with hidden segments were provided by Sanker in 1977 [91], and Sugihara in 1978
[106]. Drawings of paper-made objects were considered in 1980 by Kanade in his theory
of the Origami World [52, 53]. Quite recently, algorithms for testing the realizability of
line drawings of curved objects have also been investigated by Cooper [19].

The main drawback that arises with the labelling scheme is that line drawings having
consistent {4+, —, —, < }-labellings are not guaranteed to be a projection of a polyhedron.
For example, although all correct drawings have a consistent labelling (Figure 3.2a) and
many incorrect drawings cannot be legally labelled (Figure 3.2, b and c¢) the drawings in
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Figure 3.2: The existence of a consistent edge labelling does not guarantee the correctness.

Figure 3.2d, e and f, are incorrect but admit the indicated consistent labellings.

A second drawback is the need of pre-computed junction dictionaries. Indeed, it is
impossible to enumerate all feasible label configurations for the junctions because, in
principle, any number of faces can meet on them. But even if we assume a maximal
amount of copunctual faces, the dictionary is not easy to construct since, as pointed out
in [112, pag. 33], it is difficult to list all possible junctions having a given number of faces,
simply by inspection. Nevertheless, this second limitation is overcome for a subclass of
drawings in Chapter 6. Namely, for line drawings of polysurfaces without boundary edges
the realizability can be decided just finding a vector base of the kernel of a matrix, without
solving a constraint satisfaction problem nor consulting a dictionary.

Finding a consistent labelling is NP-complete in general. This was proven in 1988 by
Kirousis and Papadimitriou, who reduced the labelling of drawings of trihedral opaque
polyhedra from an instance of the boolean satisfiability problem 3-SAT! [54]. However,
there are particular cases where the labelling can be found in linear time in the number of
edges or junctions. In [54] Kirousis and Papadimitriou also show that this happens when
the drawing depicts a “Legoland scene”, where all edges take only one of three known
orthogonal directions. Alevizos proves in 1991 that the same complexity holds for scenes
of polyhedra where the hidden edges are provided and identified [2]. In 1994, Parodi
and Torre enlarge the class of drawings labellable in polynomial time, proving that if the
vanishing points of the scene are known, then a labelling can be found in O(Nn), where

13-SAT is the problem of finding a truth assignment for the variables occurring in a boolean expression
in 3-conjunctive normal form —i.e., with at most three literals per clause.
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(a) (b) (c) (d)

Figure 3.3: The Necker reversal phenomenon.

N is the number of edges, and n is the number of vanishing points [77, 76, 75, 73]. Several
methods for computing the vanishing points are surveyed and compared in [102].

Despite the difficulty of finding a consistent labelling, the human brain seems to grasp
at a glance the 3D structure associated with a line drawing. Kirousis and Papadimitriou
note that a possible explanation of this discrepancy is that the worst-case complexity
does not reflect the real difficulty of labelling line drawings, which might be far less in
the average or “typical” cases. In 1998, Parodi et al. provide an empirical analysis that
supports this conjecture [74]. They generate many random instances of polyhedral scenes,
project them, and label the resulting drawings. The analysis certainly reveals that the
median-case complexity is linear in the number of junctions.

An intriguing psychologic phenomenon related to the labelling of drawings is that of
the Necker reversal. An illustrative example is the famous Necker cube, named after his
creator, the Swiss crystallographer Louis Albert Necker (Figure 3.3a), who in the mid-
1800’s saw cubic shapes spontaneously reverse in perspective. The image that such a cube
projects onto the retina may be interpreted by the brain in two different ways, depending
on which square is thought to be in the foreground and which in the background. The
human mind is unable to decide which is the true lifting of the cube and keeps switching
between one interpretation and the other. This may happen virtually in any line drawing,
but there are other famous examples where it easily arises, such as the cubic structure
in Figure 3.3b, the reversible staircase by the German mathematician Ernst Schroder
(Figure 3.3¢), or the reversible book by the Austrian physicist Ernst Mach (Figure 3.3d).
In all cases the inferred liftings seem to come in pairs: if we see a lifting where some edges
are convex and some others concave, then there exists a “mirror” lifting that reverses the
edge types converting convex edges to concave ones and vice versa. In Chapter 6 we will
provide a mathematical justification of this empirical fact, together with an algorithm
that computes all Necker reversals of a line drawing. Although a need to characterize
them has been recognized [60, 56], we believe this is the first time that an explicit process
to compute all Necker reversals is given.
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‘ Triple type ‘ Relationship | Translated to constraint |

(v ON f) (Uﬂwvyﬂvml)'(Af7Bf717Df)t:0
(v ABOVE f) (va, vy, vz, 1) - (A, By, 1, Dy)* > 0
(v BELOW f) (Ve vy, vz, 1) - (Afan717Df)t <0

vertex-face (v STRICTLY ABOVE f) | (vz,vy,v,1) - (A, By, 1,D5)t > 0
(v STRICTLY BELOW f) | (vg,vy,v,,1) - (Ay, By, 1,Df)t < 0
(v; ABOVE wvj) v, — U2, 20

vertex-vertex (v; BELOW ;) v, — vy, <0

Table 3.1: Translation of incidence triples.

3.1.2 Sugihara’s Algebraic Test

After several other attempts to provide not only necessary but also sufficient conditions
(98, 99, 96, 97|, within the period 1982-1984 Sugihara finally proposes a complete set
of constraints that characterizes realizable line drawings [108, 111, 110, 109]. These are
derived as follows. First, the Huffman/Clowes approach to get a {+, —, —, < }-labelling
of the edges is used. Then, the spatial structure is derived from the edge labels: a set of
abstract triples expressing position relationships between vertices and faces. There are
two types of triples:

e Vertex-face triples of the form (v, r, f), where v is a vertex of the drawing, f is a
face, and r is a relationship giving the position of v relative to f. The possible
values for r are “ON”, “STRICTLY ABOVE”, “STRICTLY BELOW”, “ABOVE”,
and “BELOW?” | according to whether v must lie exactly on the face plane f, or
strictly above/below f, or above/below f but possibly on f too, respectively.

e Vertex-vertex triples of the form (v;,r,v;), where v; and v; are vertices and r is a
relationship giving the position of v; relative to v;. The possible values for r are,
“ABOVE”, and “BELOW?”, depending on whether the z-coordinate of v; is greater
than that of v; or conversely.

According to the labels every vertex and edge produce a number of such triples (see
Figure 3.4), and the final step is to translate them into an algebraic constraint, as indicated
in Table 3.1. There, v,, v, and v, are the coordinates of vertex v, and Ay, By and Dy
are the plane coefficients of face f. These constraints are linear, since v, and v, are
known and equal to the coordinates of the corresponding junction in the drawing. If we
have n vertices and m faces, then there are 3m + n unknowns. We can collect them in a
(3m + n)-tuple w, and write all equations in matrix form as

8 } (3.1)

where A and B are constant matrices made up of vertex coordinates. Sugihara proves
that a drawing is correct if and only if this system has a solution, which can be efficiently

A-w
B-w

AV
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Feature Spatially interpreted as Triples added

(Ul, ABOVE, U2)
(Uz, ABOVE, Ug)
(’U3, BELOVV, ’Ul)

f
j/k f & (v, STRICTLY BELOW, f)
v v

f> (v,ON, )
. ¢ (v, STRICTLY ABOVE, f,)

Figure 3.4: The spatial structure.

decided using linear programming. (Actually there are some strict inequalities in B-w > 0,
and linear programming is not directly applicable, but Sugihara translates the system to
an equivalent one, without strict inequalities.)

It is worth mentioning that in 1982 Sugihara already thought having defined a set
of necessary and sufficient conditions for realizability [107], but in 1984 Shapira gave a
counterexample proving that the test, as defined in [107], was still giving only necessary
conditions [95]. This impelled Sugihara to refine his equations in [111], changing the defi-
nitions of A and B to the ones given above. It is easy to follow Shapira’s counterexample
on Figure 3.5. First, she draws the labelled line drawing in the center and notes that
it is correct, as it can be obtained projecting the scene on the left. Hence, Sugihara’s
equations for this drawing, A -w =0 and B-w > 0, do have a solution, say w*. However,
if we add just one edge e between v; and v, labelled as shown in Figure 3.5-right, we get
an incorrect line drawing, because the label “<—” on e asks for a discontinuity of height
when we cross from one side of e to the other, but, at the same time, both sides are part
of the same planar face, which is impossible to accomplish. The point is that the addition
of e does not add nor remove any equation to the system A-w = 0 and B-w > 0, because
the spatial structure of both drawings, as defined by Sugihara in [107], is the same. Since
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Figure 3.5: Shapira’s counterexample.

we saw that these equations have a solution (w*), they classify the drawing on the right
as correct, contrarily to what is expected. In particular, for e to be interpreted as a true
occlusive edge, the equations A - w = 0 and B - w > 0, should include the constraints “v;
must be above face f”, “vy must be above face f” and “the midpoint of e must be above
face f. These relations are neglected in the spatial structure proposed in [107], but they
are properly introduced in [111].

Despite the attempts to establish broader theories of line drawings [70, 69], it seems
that after the appearence of Sugihara’s book, the interest in the realizability problem
decayed among the Machine Vision community, partly because his test was considered a
definite solution, and partly due to the gradual turn of the efforts to the interpretation
of real images, instead of perfect line drawings of ideal polyhedral worlds. However,
improvements are still possible and the method in Chapter 6 is a simpler alternative that
avoids linear programming and permits a simultaneous test of several labellings of the
drawing, among other advantages.

3.1.3 Generic Realizability

Usually, a drawing is only correct for very specific positions of its vertices. This can be
illustrated on the truncated tetrahedron of Figure 4.1a. At the depicted configuration the
drawing is correct, since the three edge lines [, m, and n are concurrent to a common point
—the apex of the (imaginary) original tetrahedron—, but just a slight perturbation of any
vertex will destroy the concurrence and yield an incorrect drawing. This characteristic
is common to many drawings since their correctness is usually expressible as a set of
concurrence conditions on groups of three lines (see Chapter4).

Sugihara notes that not all drawings are so sensitive to slight perturbations of the
coordinates. Certain drawings are always realizable if the vertices lie at generic positions
in the plane. The vertices are said to be in a generic position when there is no meaningful
algebraic relationship between their coordinates. That is, if (z1,41), (x2,y2), -, (Tn, Yn)
are the coordinates, seen as variables, there is no polynomial

PER[xlaylax%y%"'7xn7yn]7 P%Oa
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such that

P(x1,y1,22,Y2, - -+, Ty Yn) = 0

when evaluated at the current values of the coordinates. (Note that demanding that
the vertices are in a generic position is stronger than demanding they are in a general
position.)

A drawing is said to be generically realizable (or generically correct) if it is realizable
whenever its vertices are in generic position. A triangulated drawing —one where all faces
are triangles— is a trivial example of such drawings.

Sugihara argues, convincingly, that a usual drawing obtained by processing an image or
a hand-made sketch will certainly use generic positions for the vertices, since any algebraic
relationships among the coordinates will be lost during the digitalization or any further
processing. Thus, it would be useful to have a test deciding when a drawing is generically
realizable or not. Sugihara realizes that such a test must be strictly combinatorial, only
depending on the incidence structure, and in 1982 he gives the following characterization
[107]:

Theorem 3.1. Let S = (V, F, R) be the incidence structure of a drawing D. Then, D is
generically realizable if, and only if, for any subset X C R such that |F(X)| > 2,

VX +3[F(X)] = [X] + 4, (3.2)

where F(X) and V(X)) are, respectively, all faces and vertices involved in the incidence
pairs of X.

Sugihara proved the theorem for incidence structures of trihedral or convex polyhedra
[107], and in 1984 Whiteley extended its validity to arbitrary incidence structures [132].
Although from this theorem it seems that deciding whether a drawing is generically re-
alizable takes O(2/%l) time, Sugihara gives a graph-flow algorithm that efficiently checks
the conditions in O(|R|?) time (see [112, Chapter 8]).

3.1.4 Superstrictness

Unfortunately, usual drawings of general scenes are not generically realizable, because
their incidence structures rarely satisfy the above combinatorial conditions (3.2). For
example, for the truncated tetrahedron in Figure 3.6, and assuming that every vertex is
incident to three faces, the counts give:

|R| =18, |[V(R)|=6, F(R) =75,
[V(R)|+3|F(R)| =21 < 22=|R|+4.
This proves that in general it is not possible to decide the realizability only using com-

binatorial counts, but it has another important consequence: a drawing with vertices
in generic positions will always be classified as incorrect by equations (3.1), unless it is
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Figure 3.6: Sugihara’s correction strategy.

generically realizable, which seldom occurs. This test is said to be superstrict in the sense
that it classifies “almost correct” drawings as incorrect.

To overcome this difficulty, Sugihara provides a correction strategy that takes an
incorrect line drawing D¢ as input and outputs a corrected version of it D" [112,
Chapter 7]. D®" has the same incidence structure as D, but its vertex positions have
been modified so that it is realizable. Then, although D¢ is incorrect, it is judged as
practically correct if the vertex positions of D" are not too far from the original ones in
DlTLC‘

Roughly speaking, Sugihara’s correction method works as follows. Think about the
truncated tetrahedron in Figure 3.6a. We see that fixing the heights of vy, v9, v3 and v, is
enough to determine the heights of the others, as we can use the coplanarity constraint
of each face to derive them. However, the height of vs is overconstrained, as it can be
deduced from both the coplanarity of f; and fo. Only when the projection is correct,
this height will be identical when computed from both faces. As Figure 3.6a is incorrect,
a possibility is to drop out the constraint that vz must lie on f; (Figure 3.6b), fix the
heights of vy, vy, v3, v4, compute the resulting planes for the faces, intersect fi, fo, f1 to get
a corrected position for vs in 3-space, and project vs onto the XY -plane to get a corrected
position for it. Summarized, the steps are:

1. Take D¢ with its incidence structure (V, F, R) and remove some incidence pairs
(v, f) from R, until a generically realizable drawing appears, with a new incidence
set R*.
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Figure 3.7: Sugihara’s correction strategy can not be applied on these examples (adapted
from [131]). The arrows indicate occlusive edges.

2. Mark all vertices in V' that are involved in some of the removed incidence pairs.
3. Lift the new drawing to 3-space, computing the spatial planes of all faces.

4. Derive new spatial positions for the vertices marked in step 2, by computing the
intersections of the planes around them. Project these vertices to the XY -plane.

5. Output the incidence structure of the original drawing, but replace the original
vertex coordinates by the corrected ones.

For step 1, Sugihara provides an efficient graph-flow algorithm that removes the least
possible number of incidence pairs, finding a maximal generically realizable drawing. For
example, in Figure 3.6, it would only remove the incidence pair (vs, fi) from R, getting
R* = R — {(vs, f1)}, for which the counts are satisfied. For example, if X = R*:

|[R*| =15, [V(R)|=5, [F(R")|=5,
V(R)|+3|F(R)] =20 > 19 =|R*|+4.

However, as already noted by himself, this correction is possible provided that the removed
vertices lie on at most three non-triangular faces. (If a vertex lies on more than three
non-triangular faces, the intersection of their planes is not a single point in general,
and step 4 above cannot be performed.) Unfortunately, as Whiteley notes in [131], one
can find drawings where this does not happen. Figure 3.7a shows a superstrict drawing
(IV(X)| + 3|F(X)| < |X]|+ 4 for the subset X in Figure 3.7b). Removing one of the
vertices a, b or ¢ we get a generically reconstructible drawing, but these are incident
with four non-triangular faces. Figure 3.7c shows a second ‘bad’ example: the corrected
drawing must make the lines ad, be, ¢f concurrent, but all six vertices are incident with
at least four non-triangular faces.

Also, another problem of Sugihara’s technique is that the corrected drawing may
deviate substantiously from some original vertices, when, moving all of them just a bit,
one can find drawings that fall in a smaller neighbourhood (compare Figures 3.6¢ and d).
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In Chapter 7 we will present an alternative scheme that avoids these two inconvenien-
cies: all drawings with the incidence structure of a polydisk will be correctable, and we
will allow the movement of all vertices to get correct drawings closer to the input incorrect
one.

In 1992, Ponce and Shimshoni propose a different approach to overcome the super-
strictness problem [82, 100]. They define a system similar to (3.1) but, unlike Sugihara,
they do not eliminate constraints that lead to a superstrict set of equations, but explic-
itly introduce uncertainty in these constraints. Specifically, they consider that a vertex’
true position (z;,y;) is unknown in the drawing, but that must fall in a square of side 2¢
around the measured position (Z;, ;). Then, they take Sugihara’s linear equations (3.1),
they perform the change of variables x; = Z; 4+ p;, y; = v; + v; for every vertex (x;,y;), and
add the constraints |p;| < €, |v;] < e. This leads to a system of nonlinear equalities and
inequalities that, after a clever addition of gradient-space constraints, and some algebraic
manipulation, they are able to linearize again. The linearization, however, is gained at
the cost of the sufficiency of the test and, as they note, the resulting constraints are only
necessary for a drawing to be correct. Our drawing correction strategy, though, will not
suffer from this drawback (see Chapter 7).

3.2 Results from Structural Geometry

3.2.1 Maxwell’s Theorem

Given a drawing D with the incidence structure of a spherical polyhedron, we can also
build D as a plane bar-and-joint framework F%, putting a universal joint for each vertex
and a rigid bar for each edge. A self-stress on F% is an assignment of a force to every
bar of F% so that every vertex is in equilibrium —i.e., the sum of all forces from bars
incident to the vertex is zero. The self-stress is strict if all bars receive non-null forces.
Now, we can ask two very different questions:

e Are the vertices well positioned so that D can be lifted to 3-space as a correct
spherical polyhedron with plane faces and non-zero dihedral angles at the edges?

e Does F% support a strict self-stress?

Surprisingly, both questions lead to identical answers: a drawing is a picture of a
spherical polyhedron if, and only if, the framework supports such a self-stress. This two-
way connection was already discovered (but not completely proved) more than a century
ago by James Clerk Maxwell, when seeking a graphical tool to calculate the internal forces
of a bar-and-joint framework in equilibrium and avoid the explicit use of systems of linear
equations [67, 68]. He found that such a tool exists, in the form of a reciprocal figure, which
is constructed as follows. First, a framework is abstractly seen as a diagram of wvertices
(the joints), joined in pairs by straight edges (the bars), and dividing the plane into several
regions (the polygonal areas). The reciprocal figure is also a diagram of vertices and edges:
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it has a vertex for each region of the framework, and an edge joining two vertices if their
corresponding regions are adjacent. Hence, every edge between two vertices, say v; and
vy, of the reciprocal diagram corresponds to an edge of the original: the edge separating
the regions corresponding to v; and v,. The reciprocal diagram must accomplish the
additional property that each of its edges must be orthogonal to its corresponding edge
in the original framework. Figure 3.8a shows the framework of a tetrahedron and one of
its reciprocals, overlaid.

Maxwell proves that a reciprocal figure can be constructed if, and only if, there exists
an assignment of forces to the bars of the framework that keep it in equilibrium —i.e.,
a self-stress. This can be graphically seen in Figure 3.8 b, ¢ and d. Every edge of the
reciprocal represents a force on the corresponding bar of F% and since all bars incident
to a joint of F% have a corresponding closed polygon of forces in the reciprocal, by the
parallelogram rule all vertices are in equilibrium.

The diagram is called “reciprocal” because exactly the same property holds when the
roles of “framework” and “reciprocal diagram” are interchanged: if either diagram is taken
as representing the framework, the edges of the other diagram will represent a self-stress.
However, Maxwell went one step further and proved the following:

Theorem 3.2 (Maxwell, 1864). If a drawing D represents the plane projection of a
spherical polyhedron where all adjacent faces have different planes, then its framework F°
has a strict self-stress (and, hence, a reciprocal diagram,).

F;
4 \V
/7
F P
Fy Turning F; 90 degrees
counterclocwise

Figure 3.8: Maxwell’s reciprocal.
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The converse result was conjectured to be true and even accepted in some texts, but it
was not until 1982 that Whiteley gave a formal proof (see Theorem 3.3 below). This large
time-span between both proofs is probably symptomatic of the evolution of Structural
Mechanics and related areas like Kinematics and Geometry along the 20th Century: with
the advent of computers, problems were gradually approached via large-scale numerical
calculations, usually disregarding the wealth of applicable results in many 19th century
treatises on these matters [114, 25, 3]. The situation is gradually changing though, after
recognising that Geometry is essential to many human activities and it is so deeeply
embodied in how humans think [136].

3.2.2 Structural Geometry

Although for half a century the reciprocal diagram was the method of choice when study-
ing the static behaviour of frameworks (for example, it was extensively used to design
the Eiffel tower), Maxwell’s theorem remained completely unnoticed until a Canadian
group working on Structural Topology realized its value. Inspired by the conjectures of
a structural engineer, Janos Baracs, this group has been working since the late seven-
ties to construct a new theoretic body known as Structural Geometry, a new geometry
that unifyies projective geometry with structural engineering. This field has developed
out of one fundamental problem: which frameworks of rigid bars and flexible joints are
infinitessimally rigid (i.e., no assignment of velocities to the joints infinitesimally deforms
the structure) or statically rigid (the framework is able to absorb all external forces in
equilibrium)?

The genesis of the group took place in the 1974-1977 period [22]. During those years
Baracs was able to pass on his interests to an interdisciplinary group of geometers, ar-
chitects and engineers. Some of the regular members included Walter Whiteley, Henry
Crapo, Ethan Bolker, Ben Roth, Neil White, Anton Kotzig and Tiong Seng Tay. Baracs
was argumenting that it should be possible to use a single two-dimensional projection to
determine both the spatial realizability of a drawing, and the static and kinematic proper-
ties of its associated bar-and-joint framework. Clearly, Baracs was mentioning Maxwell’s
theorem without knowing it.

Stimulated by this conjecture, the group found a treatise on Graphical Statics by
Luigi Cremona in 1975 [25], which contained all relevant references to the literature of the
1864-1888 period, from the discovery of the reciprocal figures by Maxwell and his colleague
Rankine, to the establishement of a science of “Graphical Statics” by the German engineer
Culmann. With this, they quickly found Maxwell’s papers in the initial volumes of the
Philosophical Transactions [67] and the Royal Society Proceedings [68]. Maxwell’s theorem
was then rediscovered and used as the starting point that confirmed Baracs’ suspects.

After realising that the rigidity of a framework is a projectively invariant property —if
a framework is rigid, then a projective transformation of itself is rigid too—, it became
clear that the most suitable language to describe the static and kinematic behaviour of
frameworks was projective geometry [23]. Then, it was necessary to reformulate the whole
theories of statics of forces and kinematics of rigid bodies with this new vision in mind.
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Several articles collect this formulation, along the period 1977-1982 [128, 129, 23, 130].
At an algebraic level, it seemed that the ideal tool for symbolic manipulation was the
Grassmann-Cayley algebra, developed by Doubilet, Rota and Stein in the early seventies
[26].

Using the Grassmann-Cayley algebra, forces and moments could be modelled in a
homogeneous and compact way. A force f applied to a point p can be represented as a
2-extensor F = f V p in this algebra. Also, a couple of two forces f and —f, respectively
acting on points p and ¢, is represented by a 2-extensor P = f V (p — ¢). Surprisingly,
a couple turns out to be just a special kind of force: one acting on a point at infinity.
Hence, the equations of static equilibrium can be summarized saying that a system of n
forces {F,---, F,}, each seen as a 2-extensor F; = f; V p;, is in equilibrium if and only
if Y F, = 0, and the usual separate sums of forces and moments are here reduced to a
single expression.

The kinematics of rigid bodies also received a similar treatment. The velocity M (p) of
a point p on a body can be expressed as M (p) = SVp,, where S is the 2-extensor S = a Vb,
built up from two projective points a and b on the instantaneous screw center of the body.
In this way, translational velocities are a particular case of rotational ones, since a point
p under translation is actually rotating about a screw center at infinity, represented by a
2-extensor of two improper points Sy, = oo V bso, With velocity M(p) = Sy V p.

Thanks to this formulation, it was possible to relate the static behaviour of a bar-and-
joint framework F% associated with the skeleton of a spherical polyhedron P —where
each edge corresponds to a rigid bar and each vertex to a universal joint— with the
kinematics of an associated panel-and-hinge framework FP* —with a rigid panel for each
face of P, and a hinge articulating two panels if their faces are adjacent in P. Indeed, in
[23] Crapo and Whiteley see that FP" has an infinitessimal motion if, and only if, F% has
a self-stress, and this was the fundamental piece that led Whiteley to prove the converse
of Maxwell’s theorem [130]:

Theorem 3.3 (Whiteley, 1982). Let F% be a bar-and-joint framework with the com-
binatorial structure of a spherical polyhedron. Let D be the corresponding drawing. D s
realizable as a spherical polyhedron with different planes for every two adjacent faces if,
and only if, F has a strict self-stress (i.e., with non-null forces on all bars).

Note that this theorem gives a criterion to tell whether a drawing is realizable: we just
need to check whether the associated bar-and-joint framework has a self-stress and this
can be done either algebraically, or by constructing a reciprocal diagram. This technique,
however, has two drawbacks. On the one hand, as the theorem reads, the test is only valid
for drawings with the incidence structure of a spherical polyhedron. On the other hand,
the test is superstrict in the sense given in Section 3.1.4. For example, we clearly see that
while a correct truncated tetrahedron has a proper reciprocal diagram (Figure 3.9¢), a
slight perturbation of it does not (Figure 3.9f).

It must be noted that the use of Maxwell’s reciprocal as a test for realizability has
been rediscovered and repeatedly used by the Machine Vision community. For example,
Mackworth in 1973 [58], Huffman in 1977 [48], and Draper in 1981 [28] use this tool under
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U1

Figure 3.9: A correct truncated tetrahedron (a), with two compatible diagrams: the cross-
section (b), and Maxwell’s reciprocal (c). If vg is slightly moved (d), the diagrams are not
compatible anymore (e and f).

the name of a dual diagram embedded in a gradient space. Some of these authors insist
that the existence of a reciprocal figure is only a necessary condition for realizability,
whereas from Theorem 3.3 we now know that it is also sufficient when the drawing has
the structure of a spherical polyhedron. We observe a general confusion in the Machine
Vision literature were the sufficiency in such cases is seldom recognized or even negated.

3.2.3 The Cross-Section test

In 1991, Whiteley presents another reciprocal diagram known as the cross-section [134]%.
Although in Chapter 4 we will explain it in full detail, let us roughly anticipate how it
works.

Like Maxwell’s, the cross-section reciprocal offers necessary and sufficient conditions
for correct drawings of spherical polyhedra: the drawing is correct if, and only if, it is
possible to draw a cross-section “compatible” with it. The cross-section has a straight line
Ly, corresponding to every face f; of the drawing. Every line L, must be interpreted as the
intersection of the face plane for f; with an arbitrary cutting plane. The cross-section is
compatible if the line of any edge between a pair of faces contains the point of intersection
of the cross-section lines of these faces. Figure 3.9b depicts a cross-section (in bold grey)
for a correct truncated tetrahedron. In this example, to simplify, the background face f5
is taken as the cutting plane.

2 Actually, this diagram was already anounced in 1987 [131], but the full development appears in [134].
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The cross-section reciprocal is an elegant tool that graphically allows to test the cor-
rectness of a drawing by just verifying concurrence conditions of lines on it. However,
there are three difficulties that must be overcome before it can be thoroughly applied:

1. First, in its original form the test can only be used on drawings of spherical poly-
hedra, while we saw in Section 2.2 that most scenes of opaque objects generate
drawings of polydisks, possibly with holes.

2. On the other hand, as recognized by Whiteley himself “inspite of the long history of
graphical statics, including numerous engineering textbooks, no classical or modern
theory of reciprocals has solved the fundamental problem of algorithms to generate a
reciprocal or to show that no reciprocal exists. The abscence of general algorithms is
a fundamental difficulty in using such geometric methods on computers” [131, page

447].

3. Finally, like Maxwell’s, this is a superstrict test. This can be seen in Figure 3.9e:
slight perturbations of the vertices destroy the compatibility of the cross-section
with the drawing.

We proposed a way around the first drawback in [88] (see Chapter 4) where we ex-
tended the validity of the cross-section test including the case of polydisks with any
number of holes. This extension is fully explained in Chapter 4. The second difficulty is
solved in Chapter 6, where an algorithm is given to generate all cross-sections, if there are
any. Finally, the superstrictness can be overcome with our methods [89, 90] and [85, 84].
These are fully explained in Chapters 7 and 8, respectively.

3.2.4 Algebraic Geometry

The algebraic side of structural geometry was also studied using Invariant Theory [126,
127]. For example, in 1983 White and Whiteley find a polynomial condition that must
be verified by the vertex coordinates of an isostatic bar-and-joint framework® so that
it can have a self-stress in equilibrium (see [126] and the related works [127] and [78]).
This polynomial is called the pure condition, and can be compactly written using bracket
algebra. For example, the pure condition that guarantees the existence of a self-stress on
a truncated tetrahedron is

[abc][a’b' ] ([abb ][a'c ] — [a'bb'][ac’c]) = 0, (3.3)

where a, b, ¢, and o', V', ¢’ are the vertices of the two triangles, and a bracket [pgr] represents
the 3 x 3 determinant of the vertices p, ¢ and r, all written in homogeneous coordinates.
Now, thanks to Theorem 3.3 above, if an isostatic framework has the combinatorial struc-
ture of a spherical polyhedron, and accomplishes the pure condition, it has a self-stress.
If the self-stress is strict , the corresponding drawing is realizable.

3A framework is isostatic if it is infinitesimally rigid, and the deletion of any arbitrary bar makes the
bar infinitesimally flexible [78, 128].
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The pure condition alone, however, does not tell whether the self-stress is strict —there
could be bars with null forces— and has the additional drawback that it has only been
developed for isostatic frameworks, which limits its use to drawings where the number of
edges is exactly 2v — 3. However, the potential applications of this formalism are clear
from the work by Crapo [21], where he obtains the bracket polynomials that define the
correctness of several line drawings.

Although a pure condition is a bracket expression difficult to interpret in terms of
synthetic geometric conditions, it is possible to apply a Cayley factorization algorithm to
translate it into a Grassmann-Cayley expression involving joins and meets [121, 105]. If
we do this for the polynomial (3.3), we get:

(avbVve)-(dvivd) - ((avd)ANDBVY)A(ev)) =0, (3.4)

This makes the condition directly interpretable, since every factor is a smaller condition
with a known geometric meaning (see the tables in [125]). For example, Equation 3.4
reads:

“the bar-and-joint framework of a truncated tetrahedron has a self-stress if,
and only if, either the triangles a,b,c and a',b',c are collinear, or they are
perspective from a common point”.

In 1991, White gave a Cayley factorization algorithm for the multilinear case [122], i.e.,
when every point of the bracket polynomial occurs exactly once in each monomial. This
algorithm is practical up to about 20 points. Although no practical algorithm is known
for Cayley factorization in general, this is a promising tool in the field of Geometric
Reasoning, since, as it has been done in this example, it might be possible to recover the
geometric meaning of any bracket-polynomial expression as (3.3), in terms of meaningful
sentences of natural language. Other potential applications include Automated Geometric
Theorem-Proving and the detection of singular configurations of mechanisms [123, 125].
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Interpretation of Drawings






Chapter 4

Synthetic (Geometric Tools

“The knowledge at which geometry aims is the knowledge of the eternal”.

Plato —The Republic, Book VII, 427-347 BC.

“Plato seems to have foreseen, on the basis of what must have been very
sparse evidence indeed at that time, that: on the one hand, mathematics
must be studied and understood for its own sake, and one must not demand
completely accurate applicability to the objects of physical experience; on the
other hand, the workings of the actual external world can ultimately be
understood only in terms of precise mathematics”.

Roger Penrose —The Emperor’s New Mind, Chapter 5, 1991 [80].

Using Structural Geometry, Whiteley showed that a line drawing is a correct projection
of a spherical polyhedron if, and only if, it has a cross-section compatible with it [134]. We
here enlarge the class of drawings to which this test applies, including those of polydisks
and polydisks with holes. This constitutes a helpful extension, making the test applicable
to common scenes with opaque polyhedra where, due to the occlusions, the topology
of each object is seldom recognized as spherical in the drawing (see Section 2.2). The
proof is constructive, showing how to derive all spatial interpretations, and it relies on
elementary synthetic geometric arguments. Also, as a by-product, it yields a shorter
proof of Whiteley’s result. In addition, the result illustrates two important properties of
line drawings. On the one hand their realizability is a projective invariant property: if
a drawing is realizable, any projective transformation of itself is realizable too. On the
other hand, when a drawing is realizable, it is so independently of the type of projection
assumed—either orthogonal, parallel oblique or central. Also, it is worth mentioning that,
as the test in [134] and its extension here are purely geometric, they offer an alternative
approach to line drawing interpretation, when compared to the algebraic-combinatorial
treatment of the classic work by Sugihara [112]. Finally, an application of this test’s
conditions to checking the correctness of line drawings under uncertainty can be found in
183].
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4.1 The Cross-Section Test

It is well known that the problem of deciding whether a line drawing is realizable was solved
by Sugihara in his series of papers [111, 110, 109], where he reduced it to an instance of
linear programming. What is less known, however, is that for spherical polyhedra the
correctness can be decided by only checking the concurrence of groups of three lines
derived from the drawing itself. Although we independently proved this in [86], we later
found that a neater version of the result had already appeared in [134], due to Whiteley.

Some examples provide support for this fact. The truncated tetrahedron in Figure 4.1a
is only correct when its three edges [, m, and n meet at a common point. The 4-calotte in
Figure 4.1b, a configuration of a quadrilateral face and its four neighboring faces, is only
correct when the three lines [, m, and n are concurrent or, equivalently, when the three
bold points are aligned, because they all lie at the line m of intersection of the planes «

Figure 4.1: To be correct, the drawings to the left must verify the indicated concur-
rence conditions, since they hold on any of their spatial interpretations (center). These
conditions allow to classify the drawings to the right as incorrect.
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line-drawing

compatible
cross-section

Figure 4.2: The cross-section test.

and (. Likewise, the 5-calotte in Figure 4.1c is only correct when [, my, ny, and [, mo, ns
are concurrent too. These are all necessary conditions for realizability, since they hold in
any spatial reconstruction of the drawing (Figure 4.1, center) and projection preserves all
incidence relations between points and lines. Although these conditions are already useful
to discard some incorrect drawings (Figure 4.1, right), the challenge was to characterize a
set of also sufficient concurrence conditions for realizability. The cross-section test, which
is next described, identifies one such set for spherical polyhedra.

Consider a spherical polyhedron in 3-space such as, for example, the tetrahedron in
Figure 4.2, top. Now, obtain the intersections of the planes of its faces with an external
plane ¢ in general position. The resulting arrangement of lines is called a cross-section
of the polyhedron. It is clear that the edge line e between two faces, say f; and fo, must
be concurrent to the point of intersection of the lines Iy, and [y, of intersection of the
planes of f; and fy with ¢. These trivial concurrence conditions in 3-space will clearly
hold too when projecting the whole construction onto the plane ¢, because projection
preserves collinearity of points and all incidence relations (Figure 4.2, bottom-left). Hence,
we have a set of concurrence constraints that are necessary for a drawing to correctly
represent the projection of a spherical polyhedron: the drawing can only be correct if we
are able to draw a compatible cross-section diagram, one where these concurrences hold
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(Figure 4.2, bottom-right). Whiteley’s theorem states that the converse is also true: if
the concurrences hold, the drawing can be reconstructed to a spherical polyhedron.

We will also prove the following extension for polydisks, where the word “compatible”
now has a slightly different meaning: that only the interior edges of the polydisk must be
concurrent to their corresponding point in the cross-section (leaving the boundary ones
unconstrained). Proposition 4.3 below will extend its applicability to polydisks with holes.

Theorem 4.1 (Cross-section test for polydisks). A line drawing of a polydisk is
realizable if and only if it has a compatible cross-section such that the cross-section lines
Ly, and Ly, of every two adjacent faces f; and f; are non-coincident.

For the proof, we need the following definition. On a polydisk P in 3-space, we say
that a face f of P is sequentially adjacent to faces f;,, fi,, ..., fi,, of P if the edges between
f and these faces are sequentially linked, meaning that if (f, f;, ) denotes the edge between
faces f and f;,, then in the sequence s = {(f, fi,), (f, fir), - - -, ([f, fi,.)} every edge shares
a vertex with the previous and the next one, except for the first and last edges in s, which
only share a vertex with the next and the previous edge, respectively.

Proof. (<) We will prove the “if” part using the drawing and its compatible cross-section
to explicitly construct a polydisk £, one whose face planes generate the given cross-section
when intersected with the plane of the drawing.

The proof proceeds using induction. To start with, take any of the faces of the drawing
and consider its cross-section line. A lifting of this face can be fixed by giving an arbitrary
height to any one of its vertices not in the cross-section line. The cross-section line and
the lifted vertex define the plane of the face, and all edges and vertices of the face are
then lifted vertically to lie on this plane.

Now, as induction hypothesis, we assume that a polydisk £, with k faces has already
been correctly lifted to 3-space and prove that any other face that is sequentially adjacent
to some faces in L can be properly lifted too, to form a lifted polydisk £y, with £ + 1
faces. Note that since Ly is correctly lifted, for every edge between two faces, its line
meets the point where the cross-section lines of these two faces intersect. This applies to
all interior edges of L, but also to those on its boundary that do not lie on the boundary
of £. The hypothesis is true if £; only contains the first lifted face.

Now, we can lift an additional face fy, not in L, that is sequentially adjacent to m
faces fi,..., fm of Ly (and to no other face of L) through m edges PQ,QR, RS, ... (see
Figure 4.3, where we represent the case m = 3). We will prove that these edges and the
cross-section line Ly, of f, are all coplanar, and define a plane « that is different from all
planes assigned to the faces fi,..., fm.

To see this, note that, as the edge line P() is incident with Ly, (by induction hypoth-
esis), PQ and Ly, are coplanar. Let us call « the plane they define. Moreover, the edge
line QR is also coplanar with «, as it contains two points of this plane: the point where
it intersects with Ly, and the point ) of line P(). The same applies to line RS as it is
incident with R and Lg,. Clearly, the argument can be iterated to prove that all other
edges between fy and faces of £, are coplanar with a.
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Figure 4.3: Lifting an intermediate face.

With the plane for f; already fixed, all other edges between f, and faces not in £, can
be fixed too by lifting them vertically to lie in this plane. For every such edge, say between
face fy and face f;, we must prove that its line of support meets the point 7" where the
cross-section lines Ly, and Ly meet. Clearly, this line is defined by the intersection of the
plane o and a vertical plane containing the projection of the edge. But both planes meet
T: « meets T because T is a point of Ly, and the vertical plane meets T because the
projection of the edge meets 1" in the cross-section.

It remains to prove that the plane « is different from all the planes given to the faces
fiy--., fm. But this is trivially true, as the only way for a to coincide with one of such
planes would be that their corresponding cross-section lines were identical, which is not
the case, by the premises of the theorem.

(=) Conversely, if the line drawing can be lifted to a polydisk, then we can construct a
cross-section just by extending the face planes of the lifted polydisk and intersecting them
with the plane of the drawing. The resulting lines define a compatible cross-section since,
clearly, any interior edge of the spatial polydisk, when extended, will be incident to the
intersection of the cross-section lines of its two adjacent faces, and the same concurrence
will hold when extending the projections of these interior edges. O

By further extending the reasoning of the previous proof, we can come up with a short
proof of the cross-section test for spherical polyhedra, as follows.

Theorem 4.2 (Cross-section test for polyspheres, Whiteley 1991). A line drawing
of a spherical polyhedron is realizable if and only if it has a compatible cross-section such
that the cross-section lines Ly, and Ly, of every two adjacent faces f; and f; are non-
coincident.
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Figure 4.4: Evolution of L.

Proof. The spherical polyhedron can be constructed from the cross-section by generating
a sequence of lifted polydisks, adding one face at a time. At the end, a last face fy will
close the polyhedron, but all its edges will be coplanar, as f; is sequentially adjacent to
the previous polydisk (Figure 4.4). O

So far, the cross-section test has only been proved for orthogonal projection. However,
its validity is easily extended to any type of projection due to the following two properties
of line drawing realizability.

Proposition 4.1 (Projective invariance of realizability). Let D and D* be two line
drawings with the same incidence structure and such that D* has been obtained from D
by applying a non-singular projective transformation to its vertices and edges. Then, D
15 realizable if and only if D* is realizable.

Proof. This is easily proved by realizing that the transformation can be used not only to
transform D but also to convert any lifting of D to one of D*. Indeed, without loss of
generality, we can assume that D lies on the XY plane. Now, if T is the 3 x 3 matrix of a
non-singular projective transformation of the XY plane, a vertex of D with homogeneous
coordinates p = (z,y, 1) is projectively transformed to a vertex of D* with homogeneous
coordinates p* = Tp. Now, if the lifting of p is a point p; = (z,vy, 2z,1), the following
projective transformation can be used to transform p; to a lifting p; of p*:

tin tiz 0 ti3
tor Tz 0 o3

O 0 1 0 ’
t31 tz2 0 33

T, =

where t;; denotes the (7,j)-th element of T. Certainly, note that T, takes the lifted
vertices of D to points lying on the vertical lines through their corresponding vertices in
D* and, since it is a projective transformation, all coplanar points in the lifting of D will
be likewise coplanar after the transformation. O

We note that this projective invariance also stems from Theorem 4.1. Indeed, since
non-singular projective transformations of the plane map lines to lines and points of
intersection of two lines to the points of intersection of the transformed two lines [55,



4.2 Realizability for Other Topologies 41

page 92], if a drawing has a compatible cross-section, the transformed drawing will also
have one, obtained by transforming the lines of the original.

Proposition 4.2 (Independece of the assumed projection). A drawing is realizable
under orthogonal projection if and only if it is realizable under any central or parallel
oblique projection.

Proof. Suppose that a drawing D is realizable under orthogonal projection and we want
to see that it is realizable under central projection from a center at p. We can always
find a spatial projective transformation T that transforms p and D into a new center p*
and a drawing D*, respectively, such that p* lies at infinity, in a direction orthogonal to
the plane of D*. Since D was realizable, the new D* is realizable too by Proposition 4.1,
and we can find a lifting of it. This lifting can be converted to a lifting of the original
drawing under central projection from p by simply transforming it through T~!. This
proves that D is realizable under central projection. Parallel oblique projection is just a
special case of central projection, where the center p is located at infinity, in an oblique
direction with respect to the plane of D. O

Again, this property is also reflected in Theorem 4.1. If we follow its proof and
we observe Figure 4.3, we see that the same proof works for central or parallel oblique
projection, the only difference being that the vertices P, @, R, S ..., are lifted along lines
that meet at the center of projection in the former case, or at a point at infinity in a
direction oblique to the plane in the latter.

4.2 Realizability for Other Topologies

So far, the sufficiency of the cross-section test has been proved for drawings of polyhedral
surfaces homeomorphic to a disk (Theorem 4.1) or a sphere (Theorem 4.2). Can we extend
the test to surfaces of other topologies? The following considerations will depict its full
range of applicability. They are summarized in Table 4.1.

First, note that there is no trouble in considering surfaces having self-penetrations, or
with self-intersecting faces (Figure 4.5). As long as the underlying combinatorial structure
has the topology of a disk or a sphere, these intersections or penetrations do not change
any of the proofs given above, as they do not produce any new faces, vertices, or edges.
From now on, we will use the topology of the combinatorial structure, rather than that
of the spatial object itself.

At a topologic level, an orientable surface S can be fully characterized by two quan-
tities: the number p of its boundary curves, and the number p of closed cuts that do
not separate it into parts—also called the genus of S. In fact, a necessary and sufficient
condition for two orientable surfaces to be homeomorphic is that these two numbers shall
be the same for both surfaces [55, page 106].

Note that, if C), , denotes the class of all orientable homeomorphic surfaces with genus
p and p boundaries, what we have done so far is to prove the validity of the cross-section
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test for surfaces in the classes Cpy and C} .

For polyhedral surfaces in C), o, p > 2, i.e., polydisks “with holes”, the cross-section
test cannot directly be applied. For such objects, the proof of Theorem 4.1 would fail, as
their drawings cannot be lifted by subsequently adding faces that are sequentially adjacent
to a previous polydisk. See this, e.g., for a topologic disk with one hole in Figure 4.6a. For
a specific counterexample, consider three pairwise adjacent faces with a triangular hole
(Figure 4.6b): this drawing always has a compatible cross-section, but it is not realizable
unless the three non-boundary edges, [, m and n, are concurrent. However, a useful
modification allows cross-sections to be used even in such cases.

Proposition 4.3. If D, is a drawing of a polydisk P with holes, we can triangulate every
hole to produce a new drawing Dy whose incidence structure has the topology of a disk.
Then D; s realizable if and only if Dy is realizable.

Proof. 1f Dy is realizable, it has at least one lifting £; and a lifting of Dy can be found
by spatialy triangulating the holes of £;. Conversely, a lifting of D; can be found from
one of Dy by removing the triangles that cover the holes. This argument also shows that,

Class . P Example Applicability
(n. boundaries) (genus) of cross-sections
es, wit iteley’s theorem
Co,o 0 0 @ Yes, with Whiteley’s th
1 0 Yes, with Theorem 4.1
o S
p=>1 2 0 paeal N Yes, after triangulating
) o 1 — 1 holes
0 1
p=>1
: :
Cup 1 1 & No, but reducible to
pw>1 Co,p, triangulating the
p>1 ) 5 boundaries

Table 4.1: Applicability of cross-sections for several topologies.
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actually, there is a one-to-one correspondence between the liftings of D; and those of
Ds. O

In sum, the cross-section test can be used for objects in the class C), o, > 2, as long
as they are converted to the class C, by the triangulation of ;1 — 1 boundaries.

No synthetic geometric test using cross-sections has been found for the rest of topologic
objects in C,, ,, for 4 > 0 and p > 1. Actually, Crapo and Whiteley prove in [24] that the
cross-section test is not valid for checking drawings of a prismatic torus, made up of three
triangular prisms glued together in pairs through their bases. They show a compatible
cross-section that does not correspond to a correct spatial lifting of this torus.

(a)

Figure 4.5: (a) Self intersecting face. (b) Self-penetrating polysurface.

(a) (b)

Figure 4.6: The cross-section test is invalid for non-simply connected objects. (a) If the
polysurface has holes, then there will be some face f; that is not sequentially adjacent to
a previous polydisk L. (b) A simple incorrect drawing with a compatible cross-section.
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4.3 Construction of Cross-Sections and Liftings

4.3.1 Trihedral Polyspheres and Polydisks

Although the existence of a compatible cross-section is a necessary and sufficient condition
for realizability, we still need some graphical process to find all compatible cross-sections
or otherwise show that none exists. For drawings of trihedral polyspheres or polydisks we
give the following method, called the incremental construction.

First, note that when lifting the vertices of any correct drawing, one can always choose
the heights of four vertices independently; namely, those of the two vertices of an interior
edge e, and the height of one vertex in each of the adjacent faces of e. Thus, these two
faces can receive arbitrary planes, provided that their intersection line projects onto their
edge. This means that, when constructing a cross-section, the lines of two adjacent faces
can be chosen with arbitrary orientation, as long as they are different and concurrent
to the same point of their common edge line. For drawings of trihedral polyspheres and
polydisks these two initial lines completely determine the rest of the cross-section. We
see this in Figure 4.7a, where, after fixing lines Ly and Ly, for faces fi and fy, Ly,
can be automatically deduced as it must contain P and (), the points where the edge
lines between f3 and f;, and f3 and f; meet with the cross-section lines of f; and fs,

Figure 4.7: Testing a trihedral drawing with pencil and straightedge.



4.3 Construction of Cross-Sections and Liftings 45

Figure 4.8: Checking Penrose’s triangle.

respectively. We can obtain lines for the other faces iterating this process, and construct
the cross-section. If at some point a concurrence condition does not hold, we conclude
that the drawing is incorrect. If we complete the construction, then it is correct by
Theorems 4.1 or 4.2. Clearly, this algorithm runs in linear time with the number of faces,
since it adds one cross-section line at a time, and each line is determined by two previously
obtained points, thus proving the following.

Proposition 4.4. Realizability of drawings of trihedral polyspheres and polydisks can be
checked with pencil and straightedge in linear time with the number of faces.

Figure 4.7b illustrates the incremental construction on a truncated tetrahedron. We
consider the outer triangle as a face too and, hence, the incidence structure is that of
a polysphere. We start fixing Ly and Ly, with arbitrary orientation, making them
concurrent to the edge line between faces f; and f,. The rest of lines are then fixed in
this order: Ly,, Ly, Ly,.

As another example, we employ the incremental construction on Penrose’s triangle
(Figure 4.8). A usual labelling of the triangle marks the bold edges in Figure 4.8a as
boundary, yielding a drawing of a polydisk with one hole (Figure 4.8b). Note that we can
cover the hole with a triangle to get the trihedral polydisk of Figure 4.8c. This does not
alter the realizability of the original drawing: any lifting of Figure 4.8b can be transformed
to one of Figure 4.8c by the simple addition of this triangle and properly removing the
2-valent boundary vertices. Conversely, any lifting of Figure 4.8b can be obtained from
one of Figure 4.8c by removing the triangle and properly extending faces fi, f> and f5.
If we now check this polydisk, we conclude that it is incorrect, since the three points on
the “weavy line” of Figure 4.8d are not aligned.
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4.3.2 Dealing with Holes

As shown in Section 4.2, when we have holes, we can simply triangulate them and apply
Theorem 4.1 to the newly derived drawing. Nevertheless, after adding the triangles,
the new drawing will not be fully trihedral, which makes the incremental construction
unsuitable to obtain all its possible cross-sections. The following result, though, gives two
cases where it is still a valid tool.

Proposition 4.5. Let D be a drawing of a polydisk with holes. If each hole has not more
than four boundary edges, the correctness of D can be checked with pencil and straightedge.

Proof. The trick is to construct “trihedral roofs” over the holes, to get a derived drawing
with the topology of a polydisk. Consider a triangular hole like the one in Figure 4.9a.
Note that we can remove the hole by extending its three faces f;, fo and f3, until the
common point of intersection of the edge lines ey, e and e3. If these lines do not concur
on a common point we can reject the drawing as incorrect. If they concur we get the
transformed drawing in Figure 4.9b, that retains the same realizability properties as the
original. In other words, the original drawing is correct, if and only if the transformed one
is. The new drawing is trihedral, it has the topology of a polydisk and, by Proposition 4.4,
it can be checked with pencil and straighedge alone.

If the holes are quadrilateral, we proceed as in Figure 4.9c. The point P of intersection
of the faces fi, fo and f; must lie on the intersection of the edge lines e; and e;. Analo-
gously the point where f5, f3 and f; meet is (), on the intersection of e; and e,. Clearly,

Figure 4.9: Testing polydisks with holes.
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Figure 4.11: Sweeping all cross-sections.
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PQ@ is the line of intersection of fy with f;. The hole is covered by extending fi, f2, f3
and f; until they hit the dotted lines. The resulting drawing is trihedral (Figure 4.9d)
and it is realizable if, and only if, the original one is. O

Unfortunately, the construction of trihedral roofs is not possible on holes with more
than four boundary edges, because the intersection lines between pairs of faces in these
roofs cannot be determined from the edge lines incident to the hole.

4.3.3 Generating all liftings

On trihedral drawings it is easy to generate the whole family of cross-sections. To this
end, we just need to launch the incremental construction repeatedly, each time starting
from two different initial lines, and draw the resulting diagrams. Figures 4.10 and 4.11
illustrate this on a regular dodecahedron.

A graphical reconstruction is also possible on trihedral drawings. Recall that a lifting
is fully determined after choosing a specific cross-section and the height of one vertex.
To view all liftings we repeatedly apply the reconstruction method in the proof of Theo-
rem 4.1, while simultaneously sweeping the cross-section lines and varying the height of
a selected vertex. As an example, we can do this for the tetrahedron and the starting
cross-section depicted in Figure 4.12. Keeping this cross-section and moving P upwards,
we have the liftings in Figure 4.13, top. We obtain other liftings by keeping P fixed, but
moving one of the three points (), R and S that determine the two initial lines of the
cross-section (Figures 4.13 and 4.14).

Figure 4.12: A tetrahedron with a compatible cross-section, lying on the XY -plane.
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Figure 4.13: Top: moving P to generate the liftings with a fixed cross-section. Bottom:
liftings with P fixed but a variable cross-section obtained by moving Q.



4.3 Construction of Cross-Sections and Liftings

51

Figure 4.14: Sweeping R (top) and S (bottom) with P fixed.
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4.3.4 General Drawings

The incremental construction is possible on drawings of trihedral polydisks and trihedral
polyspheres precisely because they have a determined cross-section, one where after the
initial choice of two lines, the remaining ones are fully determined. Actually, it would
be useful to characterize the whole class of drawings with determined cross-sections, to
delimit the full range of applicability of the incremental construction. Note that this class
is not only restricted to drawings of trihedral polydisks and polyspheres. The reader can
check, for example, that the drawings in Figure 4.15 also exhibit this property, but they
have vertices with more than three incident faces. Up to our knowledge, this characteri-
zation has not been pursued yet and remains an interesting open problem.

If we try to apply the incremental construction on a general drawing, it may happen
that an intermediate line remains undetermined. If this is the case, we can always choose
one among all possible positions for this line, and continue with the construction. If we are
able to complete the cross-section, the drawing is certainly correct. If we do not succeed
though, we cannot reject it as incorrect, since other locations for the undetermined lines
might still yield a compatible cross-section. Obviously, we could try all possibilities in a
generate-and-test fashion with backtracking, but this is clearly non-viable.

Unfortunately, no general method has been devised to generate all compatible cross-
sections, or otherwise show that none exists, using pencil and straightedge alone. This
constitutes another important and challenging open problem (if solvable at all). On
the contrary, if algebraic tools are used an algorithm does exist. Before we present it in
Chapter 6, we need the tools of Grassmann-Cayley algebra and Instantaneous Kinematics,
which are next introduced.

(a) (b)

Figure 4.15: Non-trihedral drawings with determined cross-sections. (a) is generically
realizable, while (b) is not.



Chapter 5

Kinematics in the
Grassmann-Cayley Algebra

“As I tell my students, algebra is cosmetics, not surgery:
change the appearance but not the substance”.

Walter Whiteley —The Decline and Rise of Geometry
in 20th Century North America, 1999 [136].

To properly understand the connections of line drawing realizability with the kinemat-
ics of frameworks we need some algebraic tools. As already seen in the previous chapter,
the realizability of a drawing is a projective property: if a drawing is realizable, then
any non-singular projective transformation of it provides another realizable drawing. In a
similar fashion, although it is not generally emphasized in mechanical engineering courses
and textbooks, many kinematic properties of a mechanism are also projective. There
is a suitable modern language to algebraically analyse these properties, the Grassmann-
Cayley Algebra, developed during the seventies by Rota, Doubilet and Stein [26], and
later popularized by the Structural Topology Group in Canada [22, 128, 129, 130].

In this chapter, we will see how to represent velocities using this algebra, translat-
ing their usual Euclidean treatment to a projective setting. To begin with, we recall
several basic concepts about projective spaces and Pliicker coordinates, then we review
a concrete version of the Grassmann-Cayley Algebra, based on this coordinates. The
reader is referred to [26, 124] for a more exhaustive introduction to the topic, and to
(128, 129, 123, 125, 103] for several applications of the algebra, including statics and
kinematics of mechanisms and robotic systems. For the sake of conciseness we will often
present the theorems without a full proof. This will be done when the proof does not
provide essential insight for further developments. In such cases, however, we provide
references to the literature for further details.
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5.1 Projective Spaces

Although we will primarily work in the 3-dimensional space, it is useful to consider an
arbitrary m-dimensional space R™. For our application, a projective space can be basi-
cally viewed as a means of representing (coordinatizing) all points of R™, even those that

are infinitely distant from the origin. To this end, if (x1,2s,...,z,) are the Cartesian
coordinates of a point in R™, the vector (z1, xa, ..., Ty, 1) is defined as its homogeneous co-
ordinates . If X is a non-zero scalar, the vector A(x1, 29, ..., Ty, 1) = (Az1, ATa, ..., ATy, A)

is said to define the same point. If we also allow (m + 1)-tuples with the last coordinate
equal to 0, which we regard as representing points at infinity, then we have the standard
construction of the m-dimensional projective space P™. With this, we have actually rep-
resented R™ with some extra points thrown in by an (m + 1)-dimensional vector space V,
in such a way that we have the following correspondences:

points of R™ <> 1-dimensional subspaces of V

lines of R™ < 2-dimensional subspaces of V

planes of R™ <> 3-dimensional subspaces of V
(k — 1)-dimensional <« k-dimensional

affine subspaces of R™ subspaces of V

We call V the associated vector-space of the m-dimensional projective space P™. The
points of P™ whose last homogeneous coordinate is different from zero are called proper
points. The points at infinity are also called improper points.

One can easily see the relationship between P™ and V for the case m = 2 using the
construction in Figure 5.1. We think of P? as the plane z = 1 of R®. A finite point
of P? is represented by a straight line [ through the origin O, not contained in the XY
plane of R*. All points on this line represent the same Euclidean point: the point where

(a,b,0)

Figure 5.1: The relationship of P? with R3.
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[ intersects with z = 1. Assume we move [, keeping its incidence with O and with a line
m of z = 1. we get different Euclidean points P over m. As [ approaches the XY plane,
the corresponding Euclidean point moves to infinity towards the direction of the vector
(a,b,0). When, eventualy, [ lies on the plane z = 0, [ is said to represent the point at
infinity in the direction (a,b).

The following theorem provides another way of “visualizing” a projective space: we
can think of it as a sphere that has been folded upon itself by identifying antipodal points.

Theorem 5.1. The space P™ is topologically equivalent to the unit sphere S™ of R™*!
in which antipodal points have been identified.

The proof can be found in many textbooks on Algebraic Topology (see for example
[35]), but we can develop an intuition about what is going on as follows. A point x of 8™
is represented by a vector (xy,xa,. .., Ty 1) such that Z?:Jrll x? = 1. This also represents
a point of P™. The vector —x represents the antipodal point of x, which is also on 8™,
but represents the same point of P™.

5.2 Plucker Coordinates

Let U be a (k — 1)-dimensional affine subspace of R™. U corresponds to a k-dimensional
vector subspace U of V, the associated vector-space of P™. Let {uj,uz,...,ux} be a
basis of U. When these vectors are arranged as rows of a matrix, we obtain:

Uyp U2 - Uim 1
P— Ug,1 U2 -+ Um 1
U1 Uk *** Ugm 1

The (41,2, -+, ji)-th Pliicker coordinate of the subspace U, denoted by P, i .. . isthe
k x k determinant obtained from the k£ columns of the matrix P with indices ji, j2, ..., Jk.
Since we have a Pliicker coordinate for each combination of the £ columns, the total

number of Pliicker coordinates is (m;l)

Definition 5.1 (Pliicker coordinate vector). The Plicker coordinate vector Py of U
is the (m,jl)—tuple obtained by listing all Pliicker coordinates of U in some predetermined
order. Since U is associated with the affine subspace U, we feel free to write Py instead
of Py, when needed.

We next give three examples of Pliicker coordinate vectors (or Plicker vectors, for
short) that are thoroughly used in what follows. The Pliicker vector of a proper line [ in
3-space will be used to represent the rotational motion of a rigid body B around [. The
Pliicker vector of an improper line will represent a pure translational motion of B and,
finally, the Pliicker vector of a plane will represent the velocity of a specific point of B.
Details are given in Sections 5.4 and 5.5.
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Figure 5.2: Interpretation of the Pliicker vectors of a line (a) and a plane (b).

5.2.1 Proper Lines in 3-Space

The Pliicker coordinate vector of the line [ along two proper points a and b, represented
in homogeneous coordinates by the rows of

(a1 a2 as 1
P= <b1 by b3 1> ’
is defined as:

El = (21,4:22,4,23,4722,3723,1721,2):

= (b1 — a1, by — ag, by — as, asbs — asby, azby — arbs, aiby — Cl2bl)-

Note that the first three components of P, are the coordinates of the vector s = b—a, and
that the three last ones represent the moment! of this vector with respect to the origin,
a x s. See Figure 5.2a.

The point at infinity on [ is the homogeneous coordinate vector (by—ay, by—as, bs—as, 0)
and its scalar multiples. It can be thought of as infinitely far away in the direction given
by s. The same point at infinity lies on every line parallel to [, but non-parallel lines have
distinct points at infinity. Notice that P, may be computed from any two distinct points
on [, including the point at infinity.

5.2.2 Lines at Infinity

A line at infinity is determined by two distinct points at infinity, say ¢ and d, represented
by the rows of

[ C2 C3 0
B_<d1 dy ds o)’

!The engineering convention is to compute the moment of a line-bound vector s about the origin as
s X r, where r is any point on the line. We here take the opposite convention, computing the moment as
r Xs.
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and its Pliicker coordinate vector is
Bl = (07 07 07 02d3 - C3d27 C3d1 - Cld?,, CldQ — Cle).

These lines will be used to model translational velocities of a rigid body as rotations about
an axis at infinity.

5.2.3 Planes in 3-Space

The Pliicker coordinate vector of a plane m, determined by three finite points whose
homogeneous coordinates are the rows of

ay Gz das 1
P=1|b b by 1],
p1 p2 ps 1

is defined as
P = (22,3,4: _21,3,47 21,2,4: 21,2,3) = (n,r-n),

where n is a vector orthogonal to m and r is the position vector of any point on 7. See
Figure 5.2b.

5.2.4 Coordinatizations of Affine Subspaces

The following theorem guarantees that the Pliicker vector of a subspace totally charac-
terizes this subspace [123]. Thus, Pliicker coordinates really offer a way to coordenatize
vector spaces of V, and their associated counterparts, the affine subspaces of R™.

Theorem 5.2. The vector subspace U uniquely determines Py up to a scalar multiple.
Moreover, if P is a (m;rl) -tuple of real numbers and if P = Py for some subspace U, then
P uniquely determines U.

Proof. To verify that U uniquely determines Py up to a scalar multiple we can proceed

as follows. Instead of {uy,...,u;} we choose a different basis {vy,..., v} and construct
all the minors for the Pliicker coordinates induced by {vy,...,vi}. Then we can write
every vector v; in these minors as a linear combination of the original basis {uy, ..., u;}.

But, using the multilinearity property of determinants, we can develop every such minor
into a sum of other determinants. The reader can check that many determinants in this
sum are zero, the result is the original determinant multiplied by a factor, and that this
same factor affects all the other minors.

A proof that a (m,:rl)—tuple of real numbers, made up of the k£ x k£ minors of a real
matrix containing the basis of a subspace U uniquely determines U can be found in [44,
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Chapter VII]. However, we check this for a simple example. If Py = (Py3, P53, P ,) is
made out of the 2 x 2 indicated minors of

(a1 a2 1
P= <b1 by 1) ’
then Py uniquely determines the line along (ay, as) and (b, by), since the equation of this
line can be writen as

z oy 1
a; Qo 1| = 0,
by by 1
or, equivalently, P, ;2 + Py ,y + P, , = 0. 0

A closely related result follows. If we have a k-dimensional vector space U the signed
k-volume of k vectors pi, pa, ..., pr of U is defined as det(p1, po,- .-, Pr). Then, [26]:

Theorem 5.3. Two Pliicker vectors are equal if and only if they are constructed from
bases of the same subspace and define equal signed k-volumes in this subspace.

5.3 Grassmann-Cayley Algebra

The Grassmann-Cayley algebra is defined as a vector-space A(V) with two operations on
the elements of A(V): join and meet. Informally speaking, A(V) can be defined in the
following way. If V is the (m + 1)-dimensional vector space R™™! (which we regard as
the vector space associated with P™), then we can construct a collection of spaces V()
k =0,..,m+ 1, where V*) is the space generated by all possible Pliicker coordinate
vectors of k-dimensional subspaces of V, and their linear combinations. Then A(V) is the
‘union’ of all V®)| k =0, ...,m + 1. This union will be defined as the usual direct sum of
linear vector spaces.

Also roughly speaking, the join operation takes two Pliicker coordinate vectors Py,
and Py, representing the subspaces U; and U, of V, and derives a Pliicker coordinate
vector for the smallest subspace of V containing both U; and U,. The meet operator takes
the same input, but produces the largest subspace of V contained both in U; and Us. Let
us formalise this a bit more.

Let V be an (m+1)-dimensional vector space over the field R. Let U be a k-dimensional
subspace of V, and A be the Pliicker coordinate vector of U, obtained from a basis
{ui,uy,...,ux} of U. Then, we symbolically write the vector A as

A=u Vu V... Vu,

and refer to u; Vuy V...V u; as a k-extensor . The number k is called the step of the
extensor. We say that U is the support of A, which we write as U = A. Moreover,
u VuyV...Vu is an element of a (m,jl)—dimensional vector space, hereafter referred to
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as V). V*) is defined as the space containing all k-extensors of k-dimensional subspaces
of V and their linear combinations.

In general, a sum of k-extensors is not another k-extensor, since the resulting vector
may not be expressible as the Pliicker coordinate vector of some subspace. An (m,jl)—tuple
of numbers is decomposable as a vector of ("/') k x k minors of a k x (m + 1) matrix
if, and only if, it satisifies the so-called quadratic p-relations [44, pag. 309]. For example,
if m = 3 and V = R, the p-relation that a sextuple P = (P14, Py s, Py, Py3, Py Py y)
must accomplish is

21,422,3 + 22,423,1 + 23,421,2 =0.

The elements of V*) that are not k-extensors are called indecomposable k-tensors and
they can always be written as a sum of k-extensors. The general term antisymmetric
k-tensor refers either to k-extensors or indecomposable k-tensors.

Before we formally define A(V), we recall the definition of the direct sum operator ‘@’
between vector spaces. If E and F are two vector spaces over a same field K, the direct
sum of E and F is the set E x F with the operations

(u,v)+ (u,vy) = (u+ug,v+vy)
k(u,v) = (ku,kv),

where u,v € E, u;,vy; € F and k£ € K. With these operations E x [ is a vector space,
which we denote as E @ F. It is a basic result of linear algebra [16] that dim(E @ F) =
dim(E) + dim(F).

Definition 5.2. The vector space A(V) is the direct sum of all V*):

AV =VO v g .. oV,

We note that dim(A(V)) = erol (m]:rl) =",

5.3.1 Join

Let A=a;VayV...Va,and B=0b; Vb V...Vb; be two extensors. The join product
(or join, for short) of A and B is defined as the (j + k)-extensor

AVB:aIVaQV...Vakalngv...vbj. (51)

Theorem 5.4. If the vectors ay,as,...,ax,bi,be, ..., b; are linearly dependent, then AV
B = 0. If they are independent, then the support of AV B is the union of the supports of
A and B: AVB = A + B = span(A UB).

Proposition 5.1. The join operator has the following properties.

e Associativity: AV (BVC)=(AVB)VC, where A and B are extensors of any
step k € {0,...,m+ 1}.
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e Distributivity over addition: AV (B+C) =AVB+ AV C, where A and B
are extensors of equal step.

e Anticommutativity: AVB = (—=1)*BV A, where A and B are extensors of step
k and j, respectively.

If we are given the Pliicker coordinate vectors, say A and B, of two k-extensors and
want to compute their join product A V B, then we can decompose them as the join
of several projective points and use Formula 5.1. However, such a decomposition is not
necessary and there is a direct formula working with the Pliicker coordinates of A and
B. See [21]. We give the formula for the case m = 3 and the join product of a 2-extensor
(a line) and a 1-extensor (a point), since this product is needed in next chapter. If the
line is L = (91,4’92,4’93,4’92,3’93,1’91,2) and the point is p = (p1,p2, 3, p4), then
Lvp= (22,3,4723,4,1721,2,4722,3,1)7 where

Py;,= p2g374 - 203&2’4 + p4g2,3, Py, = p3g471 - p4g371 + p1g3,4,
Pioa= p1g2,4 - ngm + p4g1,2’ Posi= p2g3,1 - p392,1 + p1g2,3‘
5.3.2 Meet

Although the meet operator is not strictly necessary for the purposes of this Thesis, we
briefly introduce it here for the sake of completeness. Let A = a; Vas V...V a; and
B =0, VbyV...Vb; be two extensors, with k + j > m + 1. The meet of A and B is
defined as:

ANB= Z Sgn(O') [ag(l), ey Og(m—j+1), bi,..., bj]ag(m_j+2) oo Qg (k)

where the sum is over all the permutations o of {1,2,...,k} such that
o(l)<o(2)<---<o(m—j+1),

and
om—j+2)<o(m—j+3)<---<oa(k).

Theorem 5.5. If A # 0 and B # 0 and AUB spans V, then A A B = ANB, otherwise
ANB=0.

Proposition 5.2. The meet operator has the following properties:

e Associativity: AA(BAC)=(AAB)AC, where A and B are extensors of any
step k € {0,...,m+ 1}.
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e Distributivity over addition: AA (B+ C)=AAB+ AAC, where A and B
are extensors of equal step.

e Anticommutativity: A A B = (—1)"F1-RHm-1=0B A A where A and B are
extensors of step k and 7, respectively.

5.4 Kinematics in the Plane

The goal of this section is to give a simplified projective notation for the motion of a point.
We will see that it is possible to treat both translations and rotations using exactly the
same algebraic representation. This is due to the fact that a translation can actually be
interpreted as a rotation about a center at infinity. We assume that the reader is familiar
with the basic concepts of plane and spatial kinematics. In particular, the notions of
instantaneous center of rotation, for motions in the plane, and instantaneous screw azis,

for motions in 3-space, will play an important role. For the sake of conciseness, the
adjective instantaneous will often be omitted and we will simply talk about the center of
rotation and the screw axis, respectively. Detailed definitions of these concepts, as well as
applications, can be found in [104, 103] and the books by Agullé [1], Hunt [49] or Bottema
and Roth [13], to name a few. We will first introduce the kinematics of motions on a plane
to ease the development of the same concepts for general motions in 3-space.

5.4.1 Instantaneous Motion of a Point

We start with a projective definition for the instantaneous motion of a point (that is,
its velocity) and then see that the concept is transparent to the type of motion: it can
either be used to represent rotational or translational velocities. Since we only deal with
velocities the adjective ‘instantaneous’ will be omitted for conciseness.

Definition 5.3 (Motion of a point). For a point P on a body B, undergoing a velocity
v(P) = (v1,vs), we define the motion of B at P, Mp(P), as the vector

Mg (P) = v . (5.2)

Unless otherwise stated, the velocity v(P) and the motion Mp(P) are assumed to
be relative to an absolute frame. If we work with several frames, we usually designate
them with numbers, reserving frame 0 for the absolute frame. In such cases, we will write
Mgp i(P) to indicate the motion of P relative to the ith-frame, assuming that P is rigidly
attached to body B.
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5.4.2 Pure Rotations

Suppose that B is undergoing a rotation about its instantaneous center of rotation, say the
point C, at an angular velocity w (Figure 5.3). Then, the induced velocity at P = (py, p2),
v(P), is a vector of length w||P — C|| turned 90 degrees counterclockwise from P — C.
Thus, v(P) = (v1,v2) = w(ca — pa,p1 — ¢1), —V(P) - P = w(e¢1pa — cop1) and the motion
at P can be written as

U1 Co — P2 223
MB(P) = () =w p1—C = 231 )
—V(P) -P Cip2 — G2 P

where
E _ (wq wWCeCy w) .
P ope 1

As indicated, the coordinates of Mgz (P) can be seen as the three 2 x 2 minors of a
2 X 3 matrix whose two rows are the homogeneous coordinates of the center of rotation,
weighted by w, and the point P, respectively. These three minors are Pliicker coordinates
for the line C'P, and by Theorem 5.3 they define a segment on this line, with the same
length and orientation as P — wC has (see Figure 5.3a). Thus, in Grassmann-Cayley
algebra we can represent the motion of P with the 2-extensor

Mjg(P) = we V p,

and the instantaneous center of rotation is represented by the weighted projective point
we. The 1-extensor wc is simply called the center of the motion. Usually, we will assume
that the angular velocity is absorbed inside a weighted point cg, letting cg = wc, and we
will simply write

Mjz(P) =cz V p,

weV p

‘e

Center a%\

(b)

Figure 5.3: Rotations (a) and translations (b) seen as 2-extensors.
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assuming that the third coordinate of cz represents w.

In Kinematics, the concept of instantaneous center of rotation is always relative to
a reference frame and cg is meant with reference to the absolute frame. When we need
to specify the frame for a center we will write cg; to indicate the center of rotation of
body B with respect to the ith frame. We can speak of the center of rotation of a given
reference frame j too, assuming that the points in this frame move rigidly together. The
center for such a frame, relative to the sth frame, will be written as c; ;.

5.4.3 Pure Translations

When B is undergoing a pure translation, with all its points at a velocity v = (t1,t2), it
is also possible to see the motion of one of its points as a 2-extensor, since we can write

U1 t 223
MB(P) = (%) = W tz = 231 y
—v-P —t1p1 — topo P,
where
p— (—tg t 0) |
pi p2 1
and hence

MB(P) = (_t27t170) \ (p17p27 1)

By analogy to the rotational case, we can view the translation of P as a rotation with an
infinitesimal angular velocity about the center cg = (—tq,1,0), a point at infinity in the
direction (—t9,t;) of the plane. Here, the components of (—tq,t1,0) V (p1,p2, 1) can also
be regarded as representing an oriented line segment from the point P to the center at
infinity (Figure 5.3b).

5.4.4 Composition of Motions

Assume we have two reference frames from where we can measure the velocity of P: the
“absolute” frame, and the “relative” frame. From the law of composition of velocities of
Kinematics we know that the absolute velocity of P equals the sum of its relative velocity
plus the absolute velocity that P would have if it was rigidly attached to the relative
frame. If we work with projective motions instead of Euclidean velocities, we have an
analogous relationship:

Proposition 5.3. Let Mg o(P) and Mg (P) be the motions of a point P on a body B
with respect to the absolute frame 0 and the relative frame 1, respectively. Let My o(P)

be the motion that P would have if P was rigidly attached to frame 1, as measured from
frame 0. Then,

Mpgo(P) = Mp 1 (P) + M o(P). (5.3)



64 Kinematics in the Grassmann-Cayley Algebra

Proof. 1t is straightforward to verify this by substituting every motion in Equation 5.3
by its definition in terms of the point P and its velocity, as in Equation 5.2. The law
of composition of velocities confirms the equality, row by row, in the resulting vector
equation. 0

When we work with points in the 2-dimensional projective space P2, the sum of
2-extensors is another 2-extensor . That is, it is a 3-tuple that can be decomposed as
the join product of two points of P2. This can be seen if we let Mg (P) = c¢z1 V p and
M, o(P) = c1,0 V p and write Equation 5.3 in terms of these 2-extensors:

Mgo(P) =cg1 VP +cigVDp,
or, equivalently,
Mjo(P) = (cg1 + C10) V P,

and since cg; + €1 is a new projective point of 2 Mpg(P) is a 2-extensor . This also
proves the following well-known theorem of Kinematics.

Theorem 5.6. Every composition of translational and/or rotational velocities in the plane
1s equivalent either to a pure rotation or a pure translation. The former corresponds to
a projective rotation about a proper point, and the latter to a projective rotation about a
point at infinity.

In general, the sum of k-extensors made up with points in P™, n > 2, is not again a
k-extensor and, as seen below, for motions in 3-space it will not be possible to rewrite a
composition of motions as a pure rotation about an axis or a pure translation along it.

5.4.5 Centers of Two Hinged Bodies

If we have two rigid bodies By and B, in the plane, hinged at a point P with a rotational
joint, then the centers of their motions are related as follows.

Proposition 5.4. Let ciy and co be the centers of By and B,, respectively, relative
to the absolute frame 0. The center of By with respect to a relative frame 1 on By is
CB,,1 = WB, 1P, where wg, 1 1s the angular velocity of By measured from frame 1. Then,

CB,,0 = CB,,1 + C1,0,

Proof. For a point Q on Bs:
M,.0(Q) = Mpg,,1(Q) + M 0(Q),

or, equivalently
CB,0VQq=2Cp,,1 Vq+CipoVQ.
And eliminating q, we see that

CB,,0 = CB,,1 + C10-
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Figure 5.4: (a) The instantaneous center of rotation is represented by a 2-extensor wrV q
(a), and the motion at a point by a 3-extensor wr V q V p (b).

This leads to a well-known result of planar Kinematics, the theorem of the three
centers by Kennedy and Aronhold.

Theorem 5.7 (Kennedy and Aronhold). For two moving bodies By and Bs, linked by
a rotational joint P, their two instantaneous centers of rotation must be aligned with P.

Proof. The equation cg, o = €p,1 + €1 says that the homogeneous points ¢z, o, €5,1 and
c1 are linearly dependent, or equivalently, that their Euclidean versions are aligned. [

5.5 Kinematics in 3-Space

5.5.1 Instantaneous Motion of a Point

As for the 2-dimensional case, the following definition for the instantaneous motion of a
point will allow to express its velocity as an appropiate extensor in the Grassman-Cayley
algebra, independently of whether it is a rotation or a translation.

Definition 5.4 (Motion of a point). Given a rigid body B and a point P on it,
undergoing a velocity v(P) = (v1, ve, v3), we define the motion of B at P, Mg(P), as the
vector

Mz (P) = V2 . (5.4)

U3

—v(P)-P
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5.5.2 Pure Rotations

Suppose that B is instantaneously rotating about an axis defined by two points, say ) and
R, with angular velocity w, as indicated in Figure 5.4a. The line QR is the instantaneous
screw axis of B under this motion. From Kinematics we know that the induced velocity
at a point P of B can be computed as the cross-product v(P) = w(R — Q) x (P — Q),
where P and () have been properly selected so that the vector R — () has a unit length.
Thus:

. g T op1 ot

U1 m—q¢ P1r—q¢@ 1 G T2 Py j
viP)=|v| =w|lro—¢ p—q¢ jl=w ,

g3 13 p3s k

U3 s —q3 p3—qs k 1 1 1 0

and the three components of the velocity are the minors associated with ¢, 7 and & in the
last determinant. Also, note that —v(P) - P is actually the determinant

qgi "1 P1 P1

r qgpr 1 D1

—v(P)-P=—w|? T2 P2 P2l pyl,
qgs T3 P3 P3 Gs s P
1 1 1 0 308

and, hence, the motion of P can be written in terms of Pliicker coordinates as,
T
MB(P) = (22,3,47P3,4,1a£1,2,4:£2,3,1) )

where
wqy wqz WwWqs w
E = 1 T2 T3 1
pi p2 p3 1

Thus, in Grassmann-Cayley algebra we can represent Mg (P), as the 3-extensor
Mg(P)=wqVrVp.

The “first half” of this motion (wq V r) is a 2-extensor representing the instantaneous
screw axis of the rotation, as it is a 6-tuple of Pliicker coordinates representing the line
QR. However, like in the planar case, it is more than this. By Theorem 5.3 wqVr uniquely
determines an oriented line segment on this axis, with the same length and orientation
as the segment R — w( and, thus, it also determines the direction of the rotation and
its angular velocity. Following Forder [31, pag. 14] we call wq V r a rotor, although other
classical texts call it a dyname [55, pag. 32]. This rotor will be compactly written as Sg
and, hereafter, we will often write the motion of P compactly as

MB(P) = SB V P
If no other subindex is specified, Si is taken to represent the instantaneous screw axis of
B relative to the absolute frame. When we need to specify the frame we will write Sz ;

to indicate the screw axis of B with respect to the ith frame and let S; ; denote the screw
axis of the ¢th frame relative to the jth frame.

Finally, we note that the 4-tuple Mg(P) = (Py34, P31, P54, Pys;)” can also be
represented geometrically as an oriented section of the plane through P, perpendicular to
v(P), with an area equal to the length of v(P) (Figure 5.4b).
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5.5.3 Pure Translations

If the velocity of B is translational, say v(P) = (t1,t2,t3) for all points P of B, we can
also express the motion as a 3-extensor. Indeed, note that we can always find two vectors
a' = (al, bg, bg) and b’ = (bl, bg, b3) of R?’, such that

a'xb = (tl,tg,tg).

Then, if a = (ay, as, a3,0), b = (b, bs, b3,0) and p = (p1, p2, ps, 1), the motion of P can
be written as

MB(P):avb\/p,
since if

ay Gz das 0

B == b1 b2 b3 0 y
p1 p2 p3 1
then,
a2b3 — b2a3 tl
Py azby — bza; to
_ | B | _ | @b —baz | _ a' xb B ts
avbve = Po| ||l ax az)| \~(@xb)-P) t i ’
Py by by b3 —t2] | P
D1 P2 D3 t3 D3

and we see that the velocity of P can be seen as a rotation about an axis at infinity, defined
by the two projective points a and b. By analogy to the translational case Sy =aV b is
called the rotor of this motion and we write

MB(P) = SB\/p.

5.5.4 Composition of Motions

As for motions in the plane, Proposition 5.3 is also valid in 3-space, and the composition
of motions corresponds to the addition of the associated 3-extensors. Thus, using the
same notation, we can write

Mg (P) = Mp 1 (P) + M, o(P).

If Mp1(P) and M, o(P) are pure rotations or translations, then there are rotors Sg; and
Sl,g for which MB,I(P) = SB,I V P and Ml,O(P) = Sl,g V P, which y1€ldS

Mpo(P) =S1 Vp+SioVp=(Ss1+Sio) Vp.

In the planar case a composition of rotations or translations did always reduce to a single
rotation (possibly about a center at infinity). However, this is not possible in 3-space
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Figure 5.5: Screws associated with two hinged bodies.

because the sum of rotors Sg; + S o is not in general a new rotor. (Recall that, in general,
a sum of k-extensors is not decomposable as the join of k points.) Such a composition of
rotors is called a screw and it can be proved that any instantaneous rigid motion of a body
can be represented by such a 6-tuple [128, Section 4.2]. Moreover, every screw motion
can be decomposed as a rotation about an axis and a translation parallel to it, i.e. as the
sum of two rotors. This is known as Poinsot’s Central Axis Theorem in Kinematics and
an explicit process for such a decomposition is given by Whiteley in [128, Section 3.3].

5.5.5 Screws of Two Hinged Bodies

Let B; and B; be two moving bodies articulated by a hinge on a line [ (Figure 5.5). Let
H; ; be the Pliicker coordinate vector of [ computed as H; ; = a V b, where a and b are
two points on [, separated by a unit distance. Also, let Sp, o and Sg, o be, respectively,
the screws of B; and B; relative to the absolute frame. Sp, o and Sp, o cannot be arbitrary
and the following proposition (the spatial analogue of Proposition 5.4) shows that they
are restricted by H,; ; and the law of composition of velocities.

Proposition 5.5. There is a scalar w;; for which

Ss;0 = wijH;; + Sg; 0- (5.5)

iy

Proof. 1f we take a point P on B; and fix a reference frame j on Bj, we can write

Mg, o(P) = Mg, ;(P) + Mo (P),
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or
Ss.0VP=Ss,;VP+Ss,0VDP,

where Sg, ; is the screw of B; relative to frame j. But Sp, ; = w; jH; ;, for some scalar
Wi,j, and thus SBi,O = wi,jHi,j + SBj,O- ]

Also, there is the following spatial analogue of Kennedy’s theorem of the three centers
(Theorem 5.7 above):

Theorem 5.8. For two bodies articulated along a hinge, each of them is instantaneously
following a pure rotational motion with respect to a reference frame if and only if the
instantaneous axes of rotation of the two bodies are coplanar and copunctual with the axis
of the hinge.

Proof. Equation 5.5 expresses a linear dependence between the two screws of the two
bodies and the extensor associated with the line of the hinge. When all motions are pure
rotations, these screws are rotors (2-extensors). It can be seen that this happens if and
only if the three lines of these rotors are coplanar and copunctual [23]. O
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Chapter 6

Realizability and Reconstruction
through Instantaneous Kinematics

“Illusion consists in the conviction that there is only one

way to interpret the visual pattern in front of us. We are
blind to other possible configurations because we literally

cannot imagine them”.

E. H. Gombridge —Art and Illusion, 1960.

There is a bijective mapping between the liftings of a line drawing D and the instanta-
neous motions of an associated articulated mechanism: a panel-and-hinge framework with
a panel for every face of D and a hinge for every edge. This was discovered by Whiteley,
who used it to prove the converse of Maxwell’s theorem in [130]. In this chapter we will
see that this mapping permits a concise and efficient solution for the realizability problem;
namely, a drawing will have a sharp lifting if and only if the kernel of a related matrix
contains a vector with nonzero components. Despite its importance, we believe that the
correspondence between liftings and motions has never been exploited by the Machine
Vision community investigating the problem, probably because it came to light in the
context of Structural Geometry [128, 129] and Rigidity Theory [34], a usually unnoticed
source of results for our problems.

We develop further on this mapping and see that it allows us to define a linear param-
eterization of all liftings of a correct drawing, thus solving the reconstruction problem in
a simple way. As a by-product we also get a linear parameterization of the compatible
cross-sections, a tool we demanded in Chapter 4. Also, the sign patterns of the vectors
in the mentioned kernel directly tell which edges are convex and which concave in the
spatial interpretation. This will provide a nice mathematical model of the Necker reversal
phenomenon and will allow a way to compute all {+, —}-labellings of the drawing, with-
out resorting to the use of a junction dictionary. Overall, the solutions we describe have
several advantages over the best ones provided so far [112].
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6.1 Panel-and-Hinge Frameworks

A panel-and-hinge framework is a pair FP* = (P, H), where P is a collection of planar
polygonal panels { Py, P,, ..., P,}, all rigid, and H is a collection of hinges {...,H;,...},
each articulating a pair of panels. H;; denotes the hinge articulating P; and P;. We
represent a hinge by a 2-extensor of its supporting line, that is, H; ; = aV b, where a and
b are two points on the rotation axis of the hinge. It will be advantageous to redundantly
represent each hinge and we will include both H; ; =aVv b and H;; = bV ain H. Note
that Hi,j = —H]J

A path between two panels of FP" say P;, and P, , is an alternate sequence of panels
and hinges {P,,, H; ;,, Pi,, Hi4s, ..., P, Hi, i, P}, such that no panel is
repeated, and every panel P, is adjacent to the next one P;, | through the hinge H;, ; .
A cycle of FP" is a closed path that begins and ends in the same panel, i.e., P, = P; .
Figure 6.1 shows a panel-and-hinge framework with two cycles.

As in any mechanism, a usual question is to ask what are the possible instantaneous
motions undergone by the panels of FP", more precisely, which are the possible instanta-
neous screw axes S; that every panel P; can have, with respect to an absolute reference
frame, here labelled as frame 0. This motivates the following definitions.

An instantaneous motion for FP" is an assignment of a screw axis S; to each panel
P; € P such that for each H;; € H, S;o — S;o = w;;H;; for some choice of scalars
wj ;. Such an assignment induces velocities on the points of the panels that are actually
satisfying the kinematic constraints imposed by the hinges. In other words, the fact that
Sio — S;jo = w;;H;; guarantees that the induced motions on points p of the hinge H; ;
will be the same either if we compute them as S; V p, or as S, V p (see Section 5.5.5).
We note that, since

wjiHj; =80 — Sip = —wi;jH;j = w;;Hj;,

then w; ; = w;; and there is a single scalar assigned to each hinge.

Figure 6.1: A panel-and-hinge framework with two cycles. Hinges are indicated as thick
black segments.
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A motion assignment for FP" is an assignment of a scalar w; ; to each hinge H;; €
H, such that w;; = w;; and ZHM&C wi; + H;; = 0 for every cycle C' of panels and
hinges in FP". If every hinge is a 2-extensor of two points on the axis, separated by a
unitary distance, then w; ; can be interpreted as the angular velocity between P; and P;
(See Section 5.5.2), and the following theorem guarantees that a motion assignment is
equivalent to an instantaneous motion for F?".

Theorem 6.1. For a panel-and-hinge framework FPh = (P,H) with a selected panel
Py designated as the absolute reference frame, there exists a one-to-one correspondence
between instantaneous motions relative to this panel and motion assignments.

Proof. If we are given an instantaneous motion, then the scalars w; ; satisfying the equa-
tions S; o — S;0 = w; jH;; already define a motion assignment. Certainly, if we consider
any cycle C of panels and hinges, write down the equations S,y — S;o = w; ;H, ; for all
hinges in C, and sum them all, we conclude that > w; ; - H; ; = 0. This gives one half of
the correspondence.

If we are given a motion assignment, we can define a corresponding instantaneous
motion as follows. We let Sqy = 0, as the panel F; is not moving with respect to itself.
Then, to compute S;, for any other panel P; we select an arbitrary path 7" of panels and
hinges from P to P; and let:

Sio=— Z wi ;H; j, (6.1)
H;; €T

where the sum is along all hinges of 7. We note that the value of S, is independent from
the chosen path T, because any two different paths, say 7 and 715, from Py to P; will
form a closed cycle C' on which the sum is zero. That is, taking into account that a hinge
H; ; in T5 corresponds to the hinge H;; of C' we can write

0= > wyH,= Y wH; - > w;H,

H;; €C H;; €T} H;; €T
and hence,
> wiHij = ) wiHiyg,
H;; €T H;; €T
which completes the other half of the correspondence. O

6.2 A Kinematic Test of Realizability

6.2.1 A Correspondence between Liftings and Motions

If D is a line drawing with incidence structure S = (V| F, I), we can associate D with a
panel-and-hinge framework FP"*(D) by putting a panel for each face f € F, and a hinge
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(a) (b)

Figure 6.2: A line drawing (a) and its associated panel-and-hinge framework (b). (c¢) Ori-
entation of the hinges.

articulating two panels if their associated faces are adjacent in D. Figure 6.2 shows a
projected truncated tetrahedron (a) and its associated framework (b). It will be helpful to
give a common orientation to the hinges as follows. Assuming that the incidence structure
has the topology of an orientable surface, we can orient the faces in F', designating an
outer and inner side for each of them. Let the outer side be the one facing an observer
placed at the center of projection. Then, for the hinge H; ; = a V b, we select a and b
so that the vector b — a turned 90 degrees clockwise points from face f; to face f;. See
Figure 6.2c.

The following theorem reveals one sense of the anounced relationship between the
liftings of D and the motion assignments of F?"(D).

Theorem 6.2 (Whiteley, 1982). If D is the correct projection of a polysurface P with-
out vertical faces (but possibly with holes and handles), then FP"(D) has a motion assign-
ment that assigns a non-null angular velocity w; ; to every pair of adjacent panels whose
corresponding faces of P lie on different planes.

Proof. Let m denote the plane where D lies. An instantaneous motion can be found as
follows. First, we take every panel P; of FP*(D) and assign a velocity vector to every
point p of P;: the vector from p to the lifted position of p on the polysurface P in 3-space
(see Figure 6.3). Since all these velocities are orthogonal to 7, the instantaneous screw
axis of P; must be a straight line on 7. Moreover, let 8 be the plane of the lifted face
of P;. Actually, the velocities of the points on P;, as defined, are all proportional to the
distance between p and the line r of intersection of = with 3. Thus, r is the instantaneous
screw axis of ;. Let S; 5 be a Pliicker coordinate vector for ;. For any panel P; adjacent
to P; through a hinge H; ; it will be

Si,[] - Sj,[) = wi,jHi,j (6-2)

for some scalar w; ;, since the three lines of S;o, S;o and H;; are concurrent to a point
(see Theorem 5.8). This means that, as defined, the assigned screw axes S, are an
instantaneous motion of F?"(D). By Theorem 6.1 the scalars w; ; directly give a motion
assignment. If f; and f; are two adjacent faces of P, and f3;, 3; are their respective planes,
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Figure 6.3: A motion assignment on FP"(D).

we observe that:

o If 3; = 3;, then the lines of S;, and S; coincide, meaning that the only scalar w; ;
that satisfies Equation 6.2 is zero.

o If 5; # [B;, then the lines S; and S;, are different and S;y — S, is non-null in
Equation 6.2, meaning that w; ; # 0,

which proves the theorem. O

The converse of this theorem is also true:

Theorem 6.3 (Whiteley, 1982). For a line drawing D with the incidence structure
of a polysurface, and its associated panel-and-hinge framework FPR(D), if FP*(D) has a
motion assignment, then D is a correct projection of a polysurface P, with different planes
for adjacent faces on each edge where w;; # 0.

Proof. We verify the theorem by constructing a lifted polysurface P of D. If FP*(D) has a
motion assignment, then there are scalars w; ; assigned to the hinges of F?"(D) such that
> wij - Hij = 0 for every cycle of panels and hinges in F?P*(D). Thus, by Theorem 6.1
we can find an instantaneous motion of FP*(D) that assigns a screw axis S, to every
panel P;. These axes will all lie on the plane 7 of the drawing, since their 2-extensors
are all linear combinations of the 2-extensors H, ; of the hinges. Hence, every vertex of
the framework is instantaneously moving with a velocity vector that is orthogonal to 7.
The tips of these vectors are now taken as the liftings of the corresponding vertices of D.
As defined, for each face of D its lifted vertices will all be coplanar, since their height is
proportional to the distance between the vertex and the corresponding screw axis. Also,
along a hinge H; ; articulating two panels F; and P; the velocity vectors induced by S;
and S;, will be exactly the same, meaning that the lifted faces for F; and P; coincide

along their common edge. We conclude that the tips of the velocity vectors provide a
lifting of D.
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The defined lifting will be sharp if every two adjacent panels, say P; and P;, receive
non-coincident planes. Since S;o — S; ¢ = w; ;H; ;, this happens when w; ; # 0. O

Now, we can gather all scalars w; ; for all edges of D into a tuple w = {...,w;;,...} €
R?, where e is the number of edges of the drawing. If we collect all vector equations
S wij - H;; = 0 for all cycles of FP*(D), we can express them in matrix form as

R, w=0, (6.3)

where R, is called the rigidity matriz and contains as many rows as cycles in FP"(D),
and as many columns as there are hinges in F?*(D). Let Ker(Ry,) denote the kernel of
R,. With these definitions and Theorems 6.2 and 6.3 we finally have a set of necessary
and sufficient conditions for D to be realizable.

Theorem 6.4 (Realizability of D). A line drawing D with the incidence structure of
a polysurface has a sharp lifting if, and only if, there is some vector w € Ker(Ryp) all of
whose coordinates are different from zero.

Proof. (=) If D is realizable, there exists a sharp lifting P with all pairs of adjacent faces
lying on different planes. By Theorem 6.2 P defines a motion assignment with non-null
scalars w; ; on all hinges of FP"(D), and these scalars are the required non-null coordinates
of a vector w of Ker(Rp).

(<) If there is a vector w € Ker(Rp) with all coordinates w; ; different from zero,
by Theorem 6.3 every pair of adjacent faces will lie on different planes of the spatial
lifting. O

This theorem is of central importance, as it directly solves the realizability problem in
an efficient way. Indeed, one can check that there exists a vector w € Ker(Rp) with all
its coordinates different from zero by first computing a basis {uy,...,u,} of Ker(Ry),
arranging these vectors as columns of a matrix

Uy U2 Up1
U2 Ua2 Up2
Ure Ue Upe

and then checking that there are no null rows in it.

6.2.2 Topologic Considerations

It is not necessary to put an equation in Rp - w = 0, for every cycle of panels of FP"(D).
Actually, if we regard FP"(D) as a graph G where the vertex and edge set are the panels
and hinges of F?"(D), respectively, it suffices to put a cycle equation for every independent
cycle of G. It is a well-known result of Graph Theory that the set of all cycles of a graph
has the structure of a vector space. Then, a set of independent cycles is just defined as
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(a) (b) (c)

Figure 6.4: Independent cycle equations.

a basis of this vector space [10, 9]. For example, suppose that the line drawing has the
incidence structure of a polysphere. Then, we only need an equation > w; ;- H; ; = 0 for
every cycle of panels and hinges around a vertex. The equations of other larger cycles are
dependent on these. This can be seen with the aid of Figure 6.4a. The equation of a large
cycle C' on the polysphere can be obtained as a sum of cycle equations around individual
vertices inside C, because the cycles are oriented and the hinges not in C' appear two
times in the sum, with opposite signs, and their terms w; ;H; ; are cancelled. The same
reasoning justifies that if D has the structure of a polydisk, cycle equations around the
vertices will suffice for the test.

For other topologies, though, extra cycle equations are required. Clearly, if D depicts
a polydisk with holes, one cycle equation will be needed around each hole (Figure 6.4b).
If the depicted polysurface has handles, then two extra equations per handle are needed,
involving the cycles in Figure 6.4c.

6.3 Reconstruction by Sweeping the Kernel

An important corollary of the previous results which directly solves the reconstruction
problem, is the following.

Corollary 6.1 (Reconstruction of D). There is a one-to-one correspondence between
vectors w € Ker(Ryp) and the liftings of D.

Proof. By Theorem 6.1 there is a one-to-one correspondence between a vector w of motion
assignments and instantaneous motions S; of FPM(D). Different screw axes S;,0 induce
different velocity vectors on the panel P; and hence different liftings of its vertices. O

Consequently, we need only to sweep Ker(Rp) to generate all liftings of D: from a
motion assignment we compute its instantaneous motion, which gives a screw for each
panel. The join product of this screw and a point P on the panel gives the motion
of P. This motion will be a velocity orthogonal to the plane of the drawing, and its
Z-coordinate will provide the height of P in the lifting. If the starting motion assignment
is written as a linear combination of a basis of Ker(Rp), then this process provides a
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(b)

Figure 6.5: Testing a truncated tetrahedron. (a) Cycles involved. (b) Paths to compute
the instantaneous motions. (c¢) A perturbation that slightly moves all vertices takes the
drawing out of this realizable configuration. The proximity to a correct drawing, though,
can be detected with the singular value decomposition of Ry,.

linear parameterization of all liftings of D. Next section applies this process to an example,
and Section 6.5 shows how it can be implemented in floating-point arithmetic, avoiding
superstrictness problems via the singular value decomposition.

6.4 An Example

The coordinates of the truncated tetrahedron in Figure 6.5 are

a=(0,0,0,1), d= (4, 3,0, 1),
b = (16, 0, 0, 1), e=(12, 3, 0, 1),
c=(8, 12, 0, 1), f = (8, 10, 0, 1).
The 2-extensors of the hinges H; ; between each pair of faces f; and f; are:
—4 4 0
-3 -3 2
0 0 0
HI,ZZan: 0 3 H2’3:b\/e: 0 y H3,1:C\/f: 0 ,
0 0 0
0 48 —16
—4 8 4
_7 0 7
0 0 0
Hi,=dVvf= o |2 Hea=evd= o |- Hsa=fve= o |
0 0 0
16 24 —-96
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H175:c\/a: H2,5:a\/b: y H3,5:b\/C:

C oo o N ®

|

—_

cocoococoo
o

192

The rigidity matrix will have the following block form, where each zero entry is a
column sextuple of zeroes:

-H;, 0 0 0 0 0 Hi; -Hys O
0 -Hy3 0 0 0 0 0 H,; -Hjjs

R. 0 0 -Hz; O 0 0 -His O Hj 5

=P Hip 0 0 -H;;, Hy, 0 0 0 0
0 H,; 0 0 -Hys Hsy 0 0 0
0 0 H;; Hiy, 0 -Hzy O 0 0

If we substitute the hinges, we get the following matrix. Here, we omit the third,
fourth and fifth components of the sextuples H; ; since they are null when the hinges lie
on the XY plane:

4 0 0 0 0 0 8 16 0

3 0 0 0 0 0 12 0 0

0 0 0 0 0 0 0 0 0

0 —4 0 0 0 0 0 —-16 -8

0 3 0 0 0 0 0 0 12

0 —48 0 0 0 0 0 0 —192

0 0 0 0 0 0 -8 0 8

0 0 -2 0 0 0 —12 0 —12

R 0 0 16 0 0 0 0 0 192
=D 4 0 0 4 8 0 0 0 0
-3 0 0 7 0 0 0 0 0

0 0 0 —16 24 0 0 0 0

0 4 0 0 -8 —4 0 0 0

0 -3 0 0 0 7 0 0 0

0 48 0 0 —24 —96 0 0 0

0 0 0 —4 0 4 0 0 0

0 0 R 0 -7 0 0 0

0 0 —16 16 0 96 0 0 0

Using, for example, the singular value decomposition of R, (see the next section) we
can see that its rank is 8, and that a basis of its 1-dimensional kernel is the vector
—24 —16 —24
T7T 7

w=(—8,-8,—24, 12,1,2). (6.4)
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Clearly, no component of w is null and, consequently, D has a sharp lifting. If p is a free
parameter, the motion assignments have the form

w = (w1,2,w2,3,w3,1,w1,4,w2,4,w3,4,w1,5,w2,5,w3,5)
—-24 —16 —-24
= —8, -8, —24, , , ,2,1,2).
w( = T T )

According to the proof of Theorem 6.1, we compute the motion of a Panel P; by choosing
a path from a reference panel P, to P; and then applying Equation 6.1. Choosing the
paths in Figure 6.5b, where the background panel is taken as the reference frame, we get:

52,5 = W5 H2,5,
Si5 = wos Hos+wig Hio,
S3,5 = W25 H2,5 — W23 H2,3,
S4,5 = W2p H2,5 — Wa 4 H2,4-
That is,
—16 p 16 p
0 24
0 0
82,5 — 0 Y Sl,5 - 0 )
0 0
0 0
16
16 p T H
—24 p 0
0 0
S3,5 - 0 ) S4,5 - 0
0 0
384
384 .

Then, the motion of each vertex v of D is computed from the screw of a panel P, incident
with v as M;5(v) = S;5 V v. The third coordinate of M,5(v) gives the Z coordinate of
this vertex on the lifted polysurface.

Zo = 0,
Zy = 0,
Z. = 0,
Zg = 48 p,
Z, = 48 u,
Zy = 32 .

Finally, we can check that every quadrilateral face lifts coplanarly to 3-space verifying
that the determinant of its four lifted vertices is identically zero. Also, every edge must
have non coplanar incident planes and the determinant of the two end-vertices of the edge
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and two other points, each on an adjacent face, must not be identically null. For example,
for face abed and edge fc:

00 0 1 8 10 32p 1
4 3 48p 1) (8 12 0 1l
detabcd = 8 10 32 [ 1 = 0, detfmb = 0 0 0 1 = 6144 M.
8§ 12 0 1 16 0 0 1

6.5 Testing Realizability in Floating-Point Arithmetic

Given that line drawings are seldom generically realizable, a common issue that any
realizability test must face is that of superstrictness (see Sections 3.1.3 and 3.1.4). That
is, even when a drawing is correct, any small perturbations introduced in the coordinates
will take the vertices out from a realizable configuration. In practice, this means that it is
difficult to implement a realizability test on a computer using floating-point arithmetic,
because small round-off errors will produce such perturbations, and there is low probability
that a correct drawing would be properly classified. However, the fact that it suffices to
analyse the kernel of a matrix to determine a drawing’s correctness, allows an easy way
around this problem, using the singular value decomposition of R,,. We briefly introduce
the concept and follow its application with an example. Additional material on the
singular value decomposition can be found in [32, Chapter 9] and [137, Chapter 1.10].

The singular value decomposition (or SVD for short) provides a powerful technique
for dealing with sets of equations or matrices that are either singular or else numerically
very close to singular. SVD methods are based on the following theorem of linear algebra.

Theorem 6.5. Any m X n matriz A whose number of rows m is greater than or equal

to its number of columns n, can be written as the product of an m X n column-orthogonal

matriz U, an n X n diagonal matric W with positive or zero elements wy,...,w,, the
singular values, and the transpose of an n x n orthogonal matriz V,

t

Anin = Unin W Vi

such that U and V have orthonormal columns. That is, if I is the identity matriz,
UU=IandV'V=L

The SVD can also be carried out when m < n. In this case, the singular values
Wypils - - -, Wy, are all zero, and the corresponding columns of U are also zero.

The SVD explicitly constructs orthonormal bases for the kernel and the image space of
a matrix. Specifically, the columns of U whose same-numbered elements w; are nonzero
are an orthonormal basis spanning the image space. The columns of V whose same-
numbered elements w; are zero are an orthonormal basis for the kernel. Hence, the rank of
the matrix is equal to the number of non-zero singular values in W. These properties can
be used to tell whether the rigidity matrix R, is singular or close to singular, indicating
the proximity of the vertices of D to those of a realizable drawing, say D*. The number
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of close-to-zero singular values will indicate the dimension of Ker(Rp.), and the columns
of V corresponding to these small singular values will be a reasonable approximation of
a basis of Ker(Rp.). Let us see this with an example.

Suppose we perturb the X-coordinates of the correct line drawing in Figure 6.5a, as
shown in Figure 6.5¢, letting the vertices as follows:

a=(—0.01, 0, 0, 1), d = (4.01, 3, 0, 1),
b = (15.99, 0, 0, 1), e =(12.01, 3, 0, 1),
c=(8.01, 12, 0, 1), f=(7.99, 10, 0, 1).

We get an incorrect drawing with the hinges:

—4.02 3.98 0.02
0 0 0
H172:a\/d: 0 , H2,3:b\/e: 0 , H3,IZCVf: 0
0 0 0
—0.03 47.97 —15.78
—3.98 8 —4.02
0 0 0
H1,4:d\/f: 0 , H2,4:e\/d: 0 , H3’4:f\/e: 0 ,
0 0 0
16.13 24 —-96.13
8.02 —16 7.98
12 0 —12
0 0 0
Hi;=cva= o | Hs=avb= o | His=bve= e
0 0 0
0.12 0 191.88

which yield the following rigidity matrix (again, zero elements of H; ; are omitted):
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4.02 0 0 0 0 0 802 16.00 0

3 0 0 0 0 0 12 0 0

0.03 0 0 0 0 0 0.12 0 0

0 -3.98 0 0 0 0 0 —-16.00 —7.98

0 3 0 0 0 0 0 0 12

0 —47.97 0 0 0 0 0 0 —191.88

0 0 -0.02 0 0 0 —8.02 0 7.98

0 0 -2 0 0 0 -12 0 —12

R 0 0 15.78 0 0 0 —0.12 0 191.88
=P —4.02 0 0 3.98 8.00 0 0 0 0
-3 0 0 7 0 0 0 0 0

-0.03 0 0 —-16.13  24.00 0 0 0 0

0 3.98 0 0 —-8.00 —4.02 0 0 0

0 -3 0 0 0 7 0 0 0

0 4797 0 0 —24.00 -96.13 0 0 0

0 0 0.02 —3.98 0 4.02 0 0 0

0 0 2 -7 0 -7 0 0 0

0 0 —-15.78 16.13 0 96.13 0 0 0

After a SVD of R, we obtain a decomposition Ry, = U, 4. g Wy..q Vi 4, and the singular
values:

W(1,1) = 274.5898, W (4,4) = 31.4712, W(7,7) = 12.7619,
W(2,2) = 142.9735, W (5,5) = 24.8156, W(8,8) = 4.3301,
W(3,3) = 52.6653, W(6,6) = 18.1010, W(9,9) = 0.03207.

We observe that W(9,9) is quite small, revealing that R, is close to singular and near
a configuration with a 1-dimensional kernel. The ninth column of V is a reasonable
approximation of a vector spanning this kernel:

(—0.2948, —0.2903, —0.8821, —0.1265, —0.0852, —0.1235, 0.07428, 0.03642, 0.07258).

Since no component of this vector is close to zero, compared to the rest, we conclude
that the input drawing, though incorrect, is near a configuration with sharp liftings. The
reader can check that this vector and that of Equation 6.4 are almost aligned.

6.6 Enumerating Concavities and Convexities

Traditionally, there has been a remarkable interest not only in getting a parameterization
of all liftings, but also in determining the possible shapes of the edges around a lifted
vertex, telling whether they are concave or convex, as seen from the center of projection.
See Section 3.1.1 for an introduction to this topic. From the following result, we will see
that all {+, —}-labellings can be found by simply enumerating the sign combinations that
the coordinates of the vectors w € Ker(Rp) can have, and we will provide a constructive
method to this end. In addition, this will yield a simple model for the Necker reversal
phenomenon .
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Proposition 6.1. For a given motion assignment of FP"(D), if w;; > 0 then the edge
between faces f; and f; is concave in the corresponding lifting of D. If w;; < 0 this edge
is convex. If w;; =0, then f; and f; are coplanar.

Proof. Let R be a point on the drawing, on the edge e between faces f; and f;. Let P
and () be two points, the first on f; and the seconf on f;, both lying on a line through R,
orthogonal to e. Suppose that the distance from R to P is the same that from R to Q).
The lifted positions for P, (), and R, are given by the velocities that P, () and R have
under the motion assignment (Figure 6.6). If these velocities are respectively v(P), v(Q)
and v(R), then e is concave if, and only if, v(R) < ”(H;A, or 2v(R) < v(P) +v(Q).
Since the velocities are the first three coordinates of the motion extensor, this is equivalent
to

2M;o(R) |3 < (Mio(P) +M;0(Q)) 3,

where the notation “|3” indicates the third coordinate of the 4-tuple to which it applies.
Expliciting the screws M, o(R), M, o(P) and M, (@), this is equivalent to

(2S;0Vr)]s < (SipVP+S,oVa)ls,
but, by the composition of motions, we have M, o(P) = w; j;H;; Vp + S,o V p, and thus
(2S;0Vr)]s < (wijHi; VP +S;0VP,+SjoVa)ls,
and reordering the terms:
(SjoV (2r —p —q))]s < (wi;Hi; V p)]s.
Now, since r = pTJrq, the left hand side of this inequality is zero:
0 < (w;;Hi;Vp)ls.

This means that the edge e is concave if, and only if, the relative velocity of P with respect
to panel P; has a positive third coordinate. This happens if, and only if, the line bound
vector of w; jH; ; has the same direction as the line bound vector of H; ; (see Figure 6.6),
which happens whenever w; ; is positive. With an analogous reasoning, e is convex if, and
only if, w; ; is negative. O

It is clear now why {4, —}-labellings come in pairs. As the signs of a motion assign-
ment directly indicate the edge types, whenever a lifting exists corresponding to a given
vector w € Ker(Rp), a mirror lifting exists with the edge types reversed, since —w also
lies in Ker(Rp). We give an algorithm to enumerate these pairs in next section.

6.6.1 Feasible Sign Vectors

Let a; denote the i-th coordinate hyperplane of R®. That is, a; = {w € R® : w; = 0}. We
can orient each of these hyperplanes and define the sets

af ={weR :w; >0}
a ={weR :w; <0}
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\

Figure 6.6: w;; > 0 implies that the edge between f; and f; is concave. If w;; < 0 the
edge is convex.

to be the positive and negative side of «;, respectively. If e = 3, there are three coordinate
planes and R? is partitioned into eight connected regions called octants. In general, R¢
is divided by e coordinate hyperplanes and, by an abuse of language, we will also refer
to the 2¢ connected regions in this partition as octants. For convenience it is useful to
regard the octants as open sets, not containing the points on their limiting hyperplanes.
Each octant O of R® can be characterized with a sign vector s(O) € {+1,—1}°. Namely,
the i-th component of s(O) will be “+1” if the points of O lie on the positive side of «;,
or “—1” otherwise. Clearly, the sign vectors of all octants containing points of Ker(Rp)
provide all consistent {4, —}-labellings of D. Before going into details, let us give a rough
overview of the method employed to enumerate them.

Let p be the dimension of Ker(Rp) and, to simplify, assume that Ker(Rp) is not
contained in any hyperplane «;. Then, the intersection of Ker(Rjp) with each «o; is a
linear subspace (; of dimension p — 1 (Figure 6.7, left). We can regard Ker(Rp) as the
p-dimensional vector space RP, instead of as a subspace of R®, which can be done by
constructing a bijective linear mapping s between points of Ker(R) and points of RP:

s: Ker(Rp) — R”.

This mapping converts the subspaces f; of R® into (p — 1)-dimensional hyperplanes
v; of RP. The collection of all v; defines a partition of RP into several convex cones, with
their apex at the origin (Figure 6.7, right). Clearly, each cone corresponds to an octant
of R® intersected by Ker(Rp) and, hence, after this transformation the problem reduces
to the enumeration of all these cones. This is an instance of a well-known problem in
Computational Geometry : the enumeration of all cells of the spatial partition induced
by a collection of hyperplanes. Several efficient algorithms are known to this end, but
before we give one in next section we examine the previous steps with further detail.

Without loss of generality, we can assume that Ker(Rp) is not contained in any co-
ordinate hyperplane w; = 0 and, thus, that 3; = Ker(Rp) N a; is a linear subspace of
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A
R®

RP

3
(p—1)-d

Figure 6.7: Feasible {+, —}-labellings correspond to cells of an arrangement A* of hyper-
planes in RP.
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Figure 6.8: Two different coordinate hyperplanes can yield the same intersection with
Ker(Rp).

dimension p—1. (If Ker(Rp) was contained in &k coordinate hyperplanes, say o, ..., o, ,
then the scalars wj,,...,w;, would be zero in all motion assignments w, and the corre-
sponding pairs of faces would lift coplanarly to 3-space in all liftings of D.) In this
case, we can always apply the remaining analysis considering Ker(Rp) as part of the
lower dimensional space R®* (instead of R®) made up with all coordinates of R®, except

Wipyeeey Wiy

Note that in general several coordinate hyperplanes can give rise to the same subspace
Bi, when intersected with Ker(Rp). This can be seen with the examples in Figure 6.8: if
e =3and p =1, Ker(Rp) is a line through the origin of R® and all subspaces j3; are a
single point; if e = 3 and the kernel is a plane containing the Z axis, ar; and ap intersect
with this plane over the same line. However, let us assume for the moment that no two
coordinate hyperplanes give the same intersection with Ker(Rp).

To compute the equation of each hyperplane v; C RP, corresponding to every 3; C R®,
we will employ the following two vector bases:

e Abasis {v{,v},...,v) ,} of B;. Since f; is the solution of the following homogeneous
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linear system, such a basis can be derived, for example, from the singular value
decomposition of its matrix:

ED'(,U — 0}

W; :0

e An orthogonal basis {uy,...,uy,...,u.} of R® where the first p vectors {uy, ..., u,}
are an orthogonal basis of Ker(Rp). {u1,...,u,} can be obtained from the singular
value decomposition of Ker(Ryp), while we easily get {u,41,...,u.} by completing
the basis {uy,...,u,} to one of R® using the Gram-Schmidt orthogonalization algo-
rithm.

Moreover, we will use the following two matrices:

1 ...0
Ui U21 Ue1
S = Urp U2 Ue2 . P= 0 ... 1
.............. 0 ... 0
Urte Ue Ueef | ... ... .
0 ... 0
Since S has the vectors {uy,...,u.} as columns, its inverse S~! converts a vector in the
canonical basis of R to the same vector in the basis {uy,...,u.}. P is an e X p matrix
where the upper p x p block is the identity, and the remaining entries are all zero.

Now, using S™" we can express the vectors {v{,v},...,v5_} in the basis {ui, ..., uc}.
After such a transformation, the last e — p coordinates of the resulting vectors will be
clearly zero, since the {u,41,...,u.} are all orthogonal to Ker(Rp). If for each such
vector we drop out these last e — p zero coordinates, we get a basis {w?,... ,wf,_l} of

the hyperplane v, C RP. In sum, the matrix S™' - P! defines the desired mapping s :

Ker(Rp) — R, and each vector w} is obtained from the v} as

i _ q—lpt,.i
wj—§ ij.

Finally, with the Gram-Schmidt method we can find a vector w; € RP that is simultane-

ously orthogonal to all vectors {w?, ..., w, 1}, which provides the desired equation for ~;,
since

%:{xERp:w;-x:@.

Each v; divides R? in two half-spaces, 7;" and v, , defined as follows:

o= {xeR:w, x>0}
7 = {xeR:w, - x <0}

The collection H of all hyperplanes 7; induces a decomposition of RP into several
p-dimensional cells, called the hyperplane arrangement of H, denoted A(#H). Each cell is
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a convex cone through the origin and, clearly, every octant intersected by Ker(Rp) is in
one-to-one correspondence with one such cone. Like the octants of R¢, every cone C' of
A(#H) can be characterized by a sign vector s(C) € {+1,—1}7, where ¢ is the number of
hyperplanes in H. The i-th coordinate of s(C') will be “+1” if the points of C' lie in v;",
or “—17 if they lie in 7, . Thus, the labelling problem reduces to the enumeration of all
sign vectors of the cones in A(H) for which a standard algorithm to construct hyperplane
arrangements will be used. Before we give it, we need to consider the following issues.

All algorithms for enumerating the cells in A(#H) require that all hyperplanes in H be
different. But we have seen that several hyperplanes «; can yield the same intersection
with Ker(Ryp). In general, there will be ¢ < e different subspaces f3;, which we will index
from 1 to q as i, ..., 3,. To these subspaces, there will correspond also a collection H of
q different hyperplanes ;, indexed as 71, ...,7,. Then, while the sign vector of an octant
of R® has e signs, the sign vector of a cone of A(#) will have ¢ < e signs, and we need
a way to tell the signs of the first given the signs of the second. This is given by the
following.

Proposition 6.2. Let C be a cone of A(H) and O its corresponding octant of R®. Let
Y be the hyperplane of H that corresponds to a, i.e. vy s the transformed subspace of
Br = a; N Ker(Ryp). Then, the j-th coordinate of s(O) is

5(0) = +1 ifﬁgsk(C)wgea;r,
! I .| ifﬁgsk(C)w’;Ga;,

where sx(C) is the k-th coordinate of s(C).

Proof. sj(O) is positive (respectively negative) if the points on C' correspond to points on
the positive (resp. negative) side of a;. This can be checked by selecting a point p of C,
transforming it back to R® by computing S P p, and testing whether the j-th coordinate

of the resulting vector is positive (resp. negative). One such point is p = s;(C)wk. O

6.6.2 Constructing a Hyperplane Arrangement

This section describes the incremental construction, a standard method for constructing
an arrangement. See [41] for a recent survey on this and other techniques related to
construction of arrangements and their applications.

We begin with some basic background. A p-cell in an arrangement A(#H ), is a maximal
p-dimensional connected region of RP | not intersected by any hyperplane in H. A k-cell in
A(H), for 0 < k < p—1, is a maximal k-dimensional connected region in the intersection
of a subset of the hyperplanes in H that is not intersected by any other hyperplane in
‘H. It follows that any cell in an arrangement is convex. An arrangement is called simple
if every p hyperplanes in H meet in a single point and if any p + 1 hyperplanes have no
point in common. There are cells with special names: a vertex, an edge, a face and a facet
are the 0, 1, 2 and (p — 1)-dimensional cells of A(#H), respectively. If C' is a curve of R,
the zone of C is the collection of p-cells of A(H) intersected by C.
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L

Figure 6.9: Adding the line [;;1 to the arrangement A(L;). The shaded region is the zone
of [;;1 in the arrangement of the other four lines.

To construct A(?) we need a way to represent the cells in it. A usual tool is the cell-
tuple structure, which consists of an incidence graph plus some order information between
the cells. The incidence graph (sometimes called the facial lattice) of A(H) is a graph
G = (V, E) where there is a node in V for every k — cell of A(H), and an arc between
two nodes if the corresponding cells are incident to one another. While the incidence
graph captures all the cells in the arrangement, and their connectivity, it misses order
information between cells. For example, there is a natural ordering among the edges
that appear along the boundary of a face in a planar arrangement. This ordering can be
generalized to any k-dimensional convex cell G. This information together with G' define
the cell-tuple structure [14], which is a generalization of the quad-edge structure of Guibas
and Stolfi [38] for the planar case.

The incremental construction starts with an empty space RP and proceeds by adding
one hyperplane after the other to the arrangement, while maintaining (a representation
of) the arrangement of the objects added so far. This approach yields an optimal-time
algorithm for arrangements of hyperplanes. We describe it next for a collection £ =
{li,13,...,1,} of n lines in the plane, assuming that the arrangement is simple. The same
approach extends to higher dimensions. See [29, Chapter 7] for the details.

Let £; denote the set {ly,...,[;}. At stage i + 1 we add [;;; to the arrangement
A(L;). We maintain the quad-edge representation for A(L;), so that in addition to the
incidence information, we also have the order of edges along the boundary of each face.
The addition of /;,; is carried in two steps: (i) we find a point p of intersection between
li+1 and an edge of A(L;), and split that edge into two, and (ii) we walk along l;; from
p to the left (assuming [;,1 is not vertical) updating A(L;) as we go; we then walk along
lix1 from p to the right completing the construction of A(L;y1). See Figure 6.9.

Finding an edge of A(L;) that [;;; intersects can be done in O(i) time by choosing
one line [; from £; and checking all the edges of A(L;) that lie on [; for intersection with
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l;+1. This intersection point p lies on an edge e that borders two faces of A(L;). We split
e into two edges at p. Next, consider the face f intersected by the part of [;;; to the
left of p. Using the order information, we walk along the edges of f away from p and
we check for another intersection p’ of [;;; with an edge € on the boundary of f. At
the intersection we split €' into two edges, we add an edge to the arrangement for the
portion pp’ of I;11, and we move to the face on the other (left) side of /. Once we are
done with the faces of A(L;) crossed by l;;1 to the left of p, we go back to p and walk
to the other side. This way we visit all the faces of the zone of l;;1 in A(L;), as well as
some of its edges. The amount of time spent is proportional to the number of edges we
visit, and hence bounded by the complexity of the zone. The following theorem gives the
complexity of the algorithm (see [29, Chapter 7] for a proof).

Theorem 6.6. If H is a set of n hyperplanes in R such that A(H) is a simple arrange-
ment, then A(H) can be constructed in ©(n?) time and space.
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Correction of Drawings






Chapter 7

Modifying Vertex Positions

“Geometry is the science of correct reasoning on incorrect figures”.

George Polya —How to Solve It, 1945 [81].

7.1 Introduction

This chapter presents a new algorithm for correcting incorrect line drawings —incorrect
projections of a polyhedral scene. There are at least two situations where these incorrect
drawings may arise:

e When a single camera is used to generate a 3D map of a polyhedral world. The
camera takes an image, on which an edge and vertex detection process is applied,
the straight lines are detected and, finally, a raw line drawing is obtained [112, pag.
179] (Figure 7.1).

e When a designer sketches a polyhedral part or scene on a sheet of paper, and he
wants to reconstruct it with the aid of a computer. This can be achieved by first
scanning the sketch, then processing the image to detect its vertices and edges to
produce a raw line drawing (Figure 7.2). There are several past and on-going works
pursuing such a man-machine interface for 3D Solid Modelling. See for example the
works by Marti et al. [65, 66], Lipson et al. [57, 101], Grimstead et al. [36, 37] and
Markowsky et al. [63, 119, 120].

In both cases, we may use the realizability and reconstruction algorithms given in Chap-
ter 6 to recover all 3D shapes that project onto the synthesized drawing. However, before
doing so, there is a problem that we must overcome. Note that even when the extracted
drawing has the appropriate incidence structure, the coordinates of its vertices will sel-
dom correspond to those of a correct 2D projection. The correct positions are invariably
perturbed by the roughness of the hand-sketching process, the digitalization errors, the
edge-detection algorithms and so on, and we end up with a drawing whose vertices are usu-
ally in generic position (see Section 3.1.3). As most drawings are not generically realizable
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(d)

Figure 7.1: A picture of an alarm device (a) can be processed to detect the sharp edges
(b), extract the straight lines (c), and derive a line drawing from it (d), which is usually
incorrect (the lines [, m and n should be concurrent, according to the conditions in
Chapter 4).

and most available algorithms for interpreting them are “superstrict” (see Sections 3.1.3
and 3.1.4), they will judge these noisy diagrams as incorrect and fail to reconstruct a
3-dimensional scene from them. We get around this problem with a new procedure that
keeps the incidence structure but moves the positions of all vertices until the closest cor-
rect drawing is found. This overcomes the superstrictness problem in a simple way: in
order to apply a superstrict method on an incorrect drawing D¢, the closest correct
drawing to it, say D", is first computed. If the vertices on D" are too far from those in
D¢ (according to a well-defined distance and a given tolerance), D™¢ is judged as incor-
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Figure 7.2: A line drawing extracted from a hand-made sketch is seldom correct (top
row). Using the correction algorithm, though, we can find the closest correct drawing
(top right) and apply the algorithms of Chapter 6 to reconstruct it. The bottom row
shows several views of a possible lifting.

rect, otherwise we accept it as “practically correct” and we can start the reconstruction
process from D", With this approach, any superstrict classic method for line drawing
interpretation is now practical, as it can be applied to the corrected version of the input
drawing (Figure 7.2, top right).

The key contribution of this chapter is a rational parameterization of the class of cor-
rect drawings for a given polyhedron (Sections 7.3 and 7.4), which allows to rephrase the
correction problem as an unconstrained minimization of a rational function (Section 7.2).
This minimization can be tackled using a conjugate gradient method which has proven
to be very effective in all experiments of our implementation (Section 7.5). Moreover, to
avoid falling into local minima, Section 7.6 presents a heuristic algorithm to find a good
starting point for the search. Finally, Section 7.7 points out how the technique can be
applied to line drawings of polydisks and Section 7.8 summarizes some points for further
attention.

7.2 The Overall Algorithm

To simplify, we will deal with drawings produced by orthogonally projecting a single
spherical polyhedron, onto the XY plane, showing all edges (even the hidden ones). This
is not too restrictive, and Section 7.7 explains how to extend the results to drawings of
polydisks, possibly with holes on them.

Given an incorrect drawing D™, our goal is to obtain a correct one D", with the
same incidence structure as D', which is as close to D' as possible. As a function
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measuring the distance between the two drawings, we have chosen the sum of the squared
Euclidean distances between pairs of corresponding vertices in D¢ and D".

The problem can be stated as follows. If v and v¢" denote, respectively, the 2D
coordinates of the ith vertex of D¢ and D", we want to minimize

n
S i =,
i=1

subject to the constraint that the vertices v{*" define a correct drawing D" with the same
incidence structure as D

However, we will show that it is possible to parameterize the 2D coordinates of the
vertices of all correct drawings with a given incidence structure. More precisely, given an
incidence structure I°" = (V, F, R), it is possible to write the coordinates (xf°", yf") of
every vertex v{’" € V as functions

cor

x; - Xi(p17p27"'7pn)7
yz_cor - wi(plap% "'7pn)7

in such a way that any tuple of parameters (p1,ps, ..., pn), pi € R* — F, Vi, where F is a
zero-measure subset of R”, fixes a correct drawing. Since y; and ); are rational functions,
our problem reduces to the unconstrained minimization of the rational function

n
Z ||Uzz:nc - (Xi(p17p27 "'7pn)7 77Z}Z'(p17]927 7pn))||27
=1

which can be solved numerically by a gradient search from an initial correct drawing that
estimates the final solution. Next section presents the resolvable sequence, the key concept
that leads to this parameterization.

7.3 Resolvable Sequences

Is there a set of independent choices that can be made to construct a polyhedron in
a consistent manner? To illustrate this question, let us focus on the square pyramid
of Figure 7.3a. The shape of this polyhedron can be fixed by, for example, giving the
coordinates of all its vertices or the face plane coefficients of all its faces. But care must
be taken in any of the two ways. If we arbitrarily fix all face planes, then fi, fo, f3 and f4
will not probably have a common point of intersection and vertex v; will be inconsistently
defined. On the contrary, if we arbitrarily fix all vertices, vy, v3, v4 and vs need not be
coplanar and face f5 might be inconsistently defined.

In general, we say that a polyhedron is resolvable if it is possible to list its vertices
and faces in a sequence S = (..., v;,..., fj,...) in such a way that:

(C1) when a vertex occurs in &, it is incident to at most three previous faces;
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(C2) when a face occurs in S, it is incident to at most three previous vertices;

(C3) when two faces, f and f’, share three or more vertices (Figure 7.3b), f
and f’ appear earlier in S than the third of the common vertices;

(C4) when two vertices v and v are incident to three or more common faces
(Figure 7.3¢), both v and v' appear earlier than the third of the common
faces.

S is called a resolvable sequence for the polyhedron. Note that if such a sequence exists,
then we can construct the polyhedron in a consistent way. We just need to fix its vertices
and faces, one by one, following the order in §. Along the way, when an element is
underconstrained by previous choices, additional choices can be taken arbitrarily.

In 1934, Steinitz proved that all polyhedra whose graph of vertices and edges is planar
and vertex 3-connected are resolvable [135]. Actually, for these polyhedra it suffices to find
a sequence satisfying conditions (C1) and (C2) above as their 3-connectedness ensures
they have no face sharing more than two vertices, nor any pair of vertices sharing more
than two faces.

It is well-known that a graph G is the graph of a spherical polyhedron if and only if G
is a vertex 2-connected and edge 3-connected planar graph [24, Proposition 2.8]. Hence,
Steinitz’s result only applies to a subclass of spherical polyhedra. However, Sugihara
has recently extended Steinitz’s results, finding that actually all spherical polyhedra are
resolvable [113], a result which has definitely permitted the correction method we present,
valid for drawings with the incidence structure of a spherical polyhedron, and other related
topologies described in section 7.7. Moreover, [113] gives an algorithm to compute a
resolvable sequence in O(v + f) time, where v and f are the number of vertices and faces

Figure 7.3: (a) A square pyramid. (b) Two faces sharing more than two vertices. (c) Two
vertices sharing more than two faces.
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of the polyhedron, respectively. Sugihara also shows that the sequence is not unique in
general, and that it only depends on the incidence structure of the polyhedron at hand.

7.4 Parameterizing Correct Projections

The resolvable sequence induces a parameterization of all polyhedra with a given incidence
structure. For example, a trivial resolvable sequence for the truncated tetrahedron in
Figure 3.9a is to first list all faces, and then all vertices: S = (fi,..., f5,v1,...,g).
(This is clearly valid for any trihedral polyhedron, one where every vertex has three
incident faces.) Thus, here, the coordinates (x;,y;, ;) of every vertex v; can be written
as functions of the coefficients of its three incident planes by, e.g., solving for x;, y; and z;
using Cramer’s rule. That is, if these planes are

ij+Bjy+Cjz+Dj 0
Apx+ By +Crz+ D, = 0,

then the coordinates of v are

-D; B; Cj A =D G
Ve = % —Dj Bj Cj Uy = % Aj —Dj Cj

—Dk Bk Ck Ak _Dk Ck
v.=3x|4; Bj -Dj| A=|4; B Cj]|,

Ak B, —D, Ak By, Ck

and varying these parameters we get different liftings of the truncated tetrahedron.

Note that the resolvable sequence also induces a parameterization of all correct draw-
ings with the given incidence structure, as we only need to project the (parameterized)
spatial polyhedron onto the XY plane, keeping the parameterization for the X and Y
coordinates of every vertex.

In the general case, we can construct a parameterization of all polyhedra with a given
incidence structure I as follows. First, we compute a resolvable sequence S for I. Then,
we visit every element of S, following the order of the sequence. If the element is a face,
then:

e If it is not incident to any previous vertex, there is total freedom in choosing its
position and the four coefficients of its plane are free parameters.

e If it is incident to three previous vertices, the parameters of the plane are totally
fixed and no new parameter is introduced.
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e If it is incident to two previous vertices, say p and ¢, we must select one of all the
planes meeting the segment pg. Such a plane can be written as:

Py 4y Ty Y| _
Pz Gz Ts % ’
11 1 1

and the three coordinates of a third point r = (r,,r,,7,) are introduced as new
parameters.

e If a face is incident to one previous vertex p, its plane can be expressed as
(nmanyanz) . ((ZU,y,Z) - (p:mpyapz)) = 07

and the three coordinates of the normal vector (n,, n,, n,) are chosen as parameters.
If the element is a vertex v, then:

e If v is incident to no previous face, there is total freedom in choosing its position
and its three coordinates are taken as free parameters.

e If v is incident to three previous faces, the vertex is totally fixed and can be found
computing the intersection of the three planes.

e If v is incident to two previous faces, say f; and f;, we can write two equations:

Aivm + Bﬂ)y + CZ'UZ + Dl 0,
Ajl)x + le)y + ijz + Dj = 0,
and solve them for v, and v, in terms of v,, which is introduced as a new parameter.

e [Minally, if v is incident to one previous face, say f, we can freely choose v, and v,
and get v, from the equation of f’s plane.

Note that this parameterization is rational, as at each step of its construction we can
write a vertex or face coordinate as a quotient of polynomials in the parameters. Although
for certain choices of the parameters it may fail to provide a polyhedron (e.g., there is an
indetermination when a vertex is incident to three previous faces, and the chosen planes
for them are not all distinct), this only happens for a zero-measure subset of the parameter
space, posing no problem to the minimization, as the next section explains.

7.5 Implementation and Results

The correction algorithm has been implemented in C for drawings of trihedral polyhedra,
as these have the advantage that every vertex position is easily parameterized by the
twelve coefficients of its three incident planes.
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For the minimization, we use TNPACK, a freely available package specially suited
for large-scale problems with possibly thousands of variables [92, 93]. To minimize a
function F(X), X € R* TNPACK implements the iterative truncated Newton method,
based on minimizing a local quadratic approximation to F' at every step. For efficiency, an
approximated (truncated) solution of this local minimization is allowed, which is computed
through a preconditioned conjugate gradient algorithm.

The user must essentially supply three routines, returning F', its gradient, and the
Hessian matrix, evaluated at a given point X € R". For the gradient we directly provide
its symbolic expression, as it is easy to derive. For the Hessian matrix, we rely on an
(optional) internal TNPACK routine that uses finite differences of the gradient to compute
it. To prevent the minimization from falling in a point X of parameter space yielding
indetermination (see Section 7.4) the routine computing F'(X) is implemented to return
a very high value in these configurations.

We have tested the correction process on several drawings of spherical polyhedra:
a truncated tetrahedron, a dodecahedron, a truncated icosahedron, a rhombitruncated-
cubeoctahedron, and a rhombitruncated-icosidodecahedron (Figure 7.6). The number of
optimization variables involved in these examples is 20, 48, 104, 128 and 248, respectively
—four times the number of faces. A corrected drawing for them is obtained in less than
five seconds of CPU time on a SUN Ultra-80.

For each of these drawings the following experiment has been done. First, a correct

(a) (b)

Figure 7.4: Line drawings used as a testbed for the correction algorithm: a truncated
tetrahedron (a), a dodecahedron (b), a truncated icosahedron (c), a rhombitruncated
cubeoctahedron (d) and a rhombitruncated icosidodecahedron (e).

Figure 7.5: Correction of a truncated tetrahedron (left) and of a dodecahedron (right).
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Figure 7.6: A correction sequence of a dodecahedron using a bad starting point (left). The
incorrect drawing (in grey lines), the initial estimation (dashed) and the final correction
(black) have been singled out to the right. The final correction falls in a bad local minimum
because the initial estimation is actually translated and rotated with respect to the input

drawing.

drawing D™ is generated by projecting the spatial polyhedron to a plane. Then, the
vertices of D™ are randomly perturbed to get an incorrect drawing D¢ with the same
incidence structure. Finally, the correction algorithm is applied to D¢, by starting a
gradient search from D™ . The resulting corrected drawing D" is shown in Figure 7.5
for the truncated tetrahedron and the dodecahedron.

The gradient search has taken four seconds of CPU time in the toughest case of
Figure 7.4, using a SUN Ultra-80. This running time does not include that of computing
the incidence structure, which is assumed to be given throughout the thesis, as already
said in section 2.1. We note that, although simple, these drawings are far more complex
than those one can find in the literature [112, 100]. Extensive tests have been done in
all cases, starting the gradient search at different initial drawings and the minimization
always converged rapidly to a small neighborhood of the incorrect drawing.
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However, the used objective function certainly has local minima and one can find initial
drawings D™ from which the algorithm gets stuck on them. Figure 7.6 gives an example
of this undesired behavior. Here, D is generated by projecting the dodecahedron onto
the XY plane. Also a copy of D™ is generated, then translated downwards, rotated 180
degrees about its center and finally randomly perturbed to obtain D*¢. The sequence to
the left shows the path followed by the gradient method. Notice how the vertices follow
crossing trajectories, from their origin to the destination, to undo this 180° rotation. As
we see, the final correction is a local minimum compared to that of Figure 7.5 right, while
the input drawing D¢ is exactly the same in both cases. Clearly, there is a need for
feeding the search with a good starting point and next section proposes a method to this
end.

7.6 A Good Starting Point

A reasonably good starting drawing can be easily computed using again the resolvable
sequence. The idea is to properly place every vertex and face of the sequence, so that the
2D projection is locally close enough to D™¢. Let us see this in detail. We distinguish
several situations, depending on whether we are fixing a vertex or a face.

Assume first that we are fixing a vertex v, whose 2D position in the incorrect drawing
is v, v can be incident to zero, one, two or three previously-fixed faces. In the first
case, there is total freedom in choosing v’s spatial position but, to be compliant with the
drawing, we choose it to lie in the vertical line over v¢, at any height. If v is incident
to just one previous face, then we choose it over this face’s plane, in the vertical line at
v™e. If v is incident to two faces with planes o and 3 (respectively), we fix v on the line
of intersection of v and 3 at the place where its 2D projection is at a minimum distance
from v™¢. Finally, if v is incident with three previous faces, we fix it in the intersection
of their respective planes.

On the other hand, if we are fixing a face f, it can be incident to three, two, one or
zero previously-fixed vertices. In the first case, there is no choice for the plane of f as
it is fully determined by the three vertices. If the face is incident to two fixed vertices,
say p and ¢, we can choose among all the planes meeting the line pg. But, which one? If
some of the neighboring faces of f have already been fixed, say faces f;,, fi,,..., then we
would like that the lines of intersection of these faces with f lie reasonably close to the
corresponding edges in the incorrect drawing. If we label the common vertices between f
and f;,, fiy, .. a8 wq,..., Wy, and z(w;) denotes the height of vertex w; as computed on
the plane of its already-fixed face, over its position in the drawing, then a reasonable way
to achieve this is to fix f to the plane a that meets the line pg and minimizes the sum of
squared residuals:

m

D (2(wi) = za(wy))?,

=1

where z,(w;) denotes the z-coordinate of vertex w; as given by the plane a. Obviously, if
no adjacent face of f was previously fixed, we simply fix f at any plane meeting pq.
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(a). (d) ‘ (g) .
(b). (e) ’ (h) .
@. "l @.

Figure 7.7: Independent correction of neighboring polydisks (left) will separate their
boundaries (center) but these can be made coincident by properly moving the vertices
again (right) while preserving the overall correctness. Interior and boundary edges are
indicated in dashed and solid lines, respectively.

The remaining cases, when f is incident to one or to no previous vertex are analogous,
the only difference being that we choose among all the planes meeting a fixed point in
the first case, and among all possible planes of 3-space in the second.

Of course, following this strategy, the resulting correct drawing may deviate substan-
tially from D™ at some vertices, specially if the drawing is large enough. However, from
the good convergence behavior seen in the experiments above, we judge this approxima-
tion as good enough to avoid local minima.

7.7 Correction of Other Topologies

Real scenes of polyhedra differ substantially from the spherical model assumed in Sec-
tion 7.2. Hidden edges are not visible when the objects are opaque, and if several objects
are present, they may occlude one another left). As we saw in Section 2.2, when this
happens, the incidence structure of the line drawing is not that of a spherical polyhedron
anymore. Thus, in practice, the required tool is an algorithm able to correct drawings
whose incidence structure is that of a polydisk, maybe with polygonal holes in it. For-
tunately, the drawings of these objects are also correctable, as the results in [113] imply
that any surface composed of polygons that is homeomorphic to a disk with any number
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Figure 7.8: Two views of a same polyhedral scene (left) together with two incorrect
drawings of them, with boundary edges labelled in black (center), and the final corrections
(right).

of holes is resolvable.

Moreover, note that when several polydisks are present in the drawing, we can treat
each one separately in the same way. For this, we only need to have each one of them
identified, which can be done by collecting all regions delimited by boundary edges after
an edge-labeling algorithm has been applied. However, an issue may arise here. If we
correct each polydisk separately, the final boundaries of neighboring polydisks may not
coincide as they originally did. Depending on the application this disparity might be
irrelevant. For example, if all we want is an approximate reconstruction of the objects
in the scene, these small errors may be acceptable. On the contrary, if they are not, we
propose the following strategy to make the boundaries coincident again. It will only be
valid for trihedral scenes, but we note that this is the case that arises when all faces lie
on planes in general position.

First, observe that, if the objects are trihedral, only one of the following three situa-
tions occurs (figs. 7.7a, b and c, respectively): a boundary vertex either has 1) no incident
interior edge, or 2) only one interior edge on one side, or 3) one interior edge on both
sides. The correction algorithm will separate the boundaries as depicted in Figure 7.7 d,
e and f, yielding two copies of the original vertex, say v; and v,. In the first two cases,
the boundaries can be made coincident again by moving vs, the vertex with no incident
interior edge, to the position of v;. Note that this will not alter the correctness of the
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polydisk of vy (figs. 7.7g and h). In the third case, we can move v; and v, to the point
of intersection of their interior edges without altering the correctness of their respective
polydisks (Figure 7.71).

This strategy has been implemented and Figure 7.8 shows the results on a synthetic
polyhedral scene. In this example, the scenes to the left have been projected to yield the
drawings in the center, whose vertices have been randomly perturbed to yield the shown
incorrect configurations. Boundary edges delimiting each polydisk are marked in thick
black lines while interior edges are marked in grey. The resulting correct polydisks are
shown in Figure 7.8, right.

7.8 Future Extensions

This Chapter has presented a new approach to correct incorrect projections of polyhedra
and has discussed its contributions with respect to the previous method by Sugihara.
Surprisingly, our improvements have only been possible thanks to Sugihara’s latest finding
of the resolvable sequence, offering an unexpected new application of this result. To
conclude, it is worth to mention the following points deserving further attention.

Unfortunately, there are topological structures that
cannot be corrected. Namely, polyhedra with a genus
equal or greater than one do not have a resolvable se-
quence in general. A simple counterexample is given by
the torus in Figure 7.9. Since all vertices are incident
to exactly four faces, condition (C1) in Section 7.3 will
be necessarily violated at some vertex in any sequence.
Thus, an interesting open problem would be to character-
ize the resolvable polyhedra that are not homeomorphic
to a sphere or a disk with holes and to construct an al-

gorithm for finding resolvable sequences in such cases.
Figure 7.9: An unresolvable

torus.

Although the initial drawing we propose to start the
gradient search seems a fairly good approximation of the
result, the minimization is still not guaranteed to con-
verge to the global minimum. To mend this up, one can always start the search at several
different initial estimations, each derived from a different resolvable sequence of the same
incidence structure, and select the best corrected drawing.

Another possibility could be to derive a polynomial (rather than rational) parameter-
ization, by working in projective instead of affine coordinates, and attempt to find the
global minimum through interval arithmetic [42] or Bézier-clipping techniques [11].
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Chapter 8

Modifying the Incidence Structure

“By large, it is uniformly true that in mathematics there is
a time lapse between a mathematical discovery and the
moment it becomes useful; [...] and that the whole system
seems to function without any direction, without any
reference to usefulness, and without any desire to do things
which are useful”.

John Von Neumann [72].

This chapter presents a second approach to the correction of line drawings. This
time, instead of altering the vertex coordinates, we will conveniently modify the incidence
structure so that the drawing becomes spatially realizable. The strategy is motivated
within the context of an application to Solid Modelling; namely, to find a compact robust
representation of solid objects via trihedral polygonal meshes, a new type of meshes whose
combinatorial structure is dual to that of the usual triangulations. This chapter is joint
work with Kokichi Sugihara.

8.1 Motivation

A polygonal mesh is a piecewise linear 2-manifold made up with planar polygonal patches,
glued along the edges, and possibly containing holes. A polygonization method is an algo-
rithm able to construct a polygonal mesh approximating a given surface. The literature
on polygonization methods, mainly on triangulations, is vast (see for example [17, 138],
or [43] for a survey on triangulations and algorithms to simplify them). In general, the
main goal is to obtain meshes that are close to the surface within a known error, as a way
to understand and represent the surface shape [94]. Other goals have been to increase
the speed of polygonization and the ability of the polygonizer to satisfy some constraints
in the solution (e.g., one might request the most accurate approximation using a given
number of line segments or triangles).
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Figure 8.1: Arbitrary reconstructions of this triangulated projection have no spatial mean-
ing. But actually, a very specific one of them really does: it shows Nefertiti’s face.

In general, a polygonal mesh cannot be reconstructed from its projection onto a plane
because infinitely many meshes generate exactly the same projection. For example, for
the triangular mesh projection in Figure 8.1, there are many different reconstructions,
as illustrated. The first two seem to have no meaning; but, actually, there is a rather
“hidden” meaningfull reconstruction: Nefertiti’s face! Can we obtain a spatial mesh
approximating Nefertiti’s face in such a way that its projection still keeps its spatial
meaning?

Certainly, there is a class of meshes whose projections fully determine the spatial shape
once the heights of four vertices are given. We call these projections unequivocal because
their reconstructions represent essentially the same object. For example, the projection
in Figure 8.2a unequivocally represents a truncated tetrahedron, as seen in Figures 8.2d,
e, and f. As we know, it suffices to set the heights of P, (), T"and R to determine those of
S and U, using the fact that all cofacial vertices must be coplanar and, hence, S must lie
on the face plane RPQS, and U on SQTU. In general, if all vertices of a polyhedron have
exactly three incident faces, the heights of a vertex and its three neighbours are sufficient
to determine the heights of the rest, as Section 8.2 explains. One of our goals is then to
approximate any given surface with a polygonal mesh yielding unequivocal projections
that uniquely identify the spatial shape once the heights of four vertices (selected in this
way) are given. Section 8.2 presents the trihedral polygonal mesh, the model we use to
this end, and shows how its projections are unequivocal in the sense given above.

Nevertheless, we need to go beyond this goal if this representation is to be useful.
Consider what happens if the (x,y) vertex positions in Figure 8.2a are slightly altered
(Figure 8.2b). The new projection no longer represents a correct truncated tetrahedron
for, to be so, the edges joining the two triangular faces, when extended, should be con-
current at the apex of the imaginary original tetrahedron. Equivalently, note that once
P,QQ,R and T are given, the height of U is overconstrained, for it can be calculated
from both the coplanarity of SQTU or that of RPTU. For generic vertex positions, the
two values of this height do not necessarily coincide, and the only spatial reconstruction
that keeps cofacial vertices coplanar is a trivial one, with all vertices lying on a single
plane. This makes the four provided heights inconsistent between each other. In sum,
the consistency of the four heights only holds at very specific positions of the vertices
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Figure 8.2: A truncated tetrahedron (a) and three possible reconstructions (d, e, f).
The slightest perturbation destroys the correctness of the projection (b), but this can be
avoided adding new triangular faces (c).
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and inevitable discretization errors will make this representation useless. This problem is
common in Computer Vision [110] and Computer Graphics [135, 113], and mathematical
characterizations of generically consistent projections are given in [133, 112]. The way
we use to make this representation robust against these errors follows from this observa-
tion: if the height of a vertex in a projection is overconstrained because the vertex lies
on several planes that fix it, we just introduce new triangular faces around it for prevent-
ing this to occur (Figure 8.2c). Section 8.3 gives a fast algorithm to this end, derived
from this observation, using the so-called T /TT-transformations. Section 8.4 describes a
complementary optimization step that properly places these transformations to minimize
the reconstruction errors by reducing the problem to a cyclic AND/OR graph search.

Altogether, Sections 8.3 and 8.4 provide a new strategy to the correction of line drawings,
solely based on modifying the incidence structure.

8.2 Trihedral Polygonal Meshes

Trihedral meshes, i. e., those where all vertices have exactly three incident faces, produce
unequivocal projections. Indeed, Figure 8.3 shows that in them, after fixing the planes of
two adjacent faces, we have enough data to derive the heights of the remaining vertices.
Clearly, the heights of the bold vertices fix the shadowed face planes and the heights
of other vertices on them. At this point, any other surrounding face has three vertices
whose heights are known and, so, its plane can be fixed too. The same argument can
be iteratively applied and the result is a height propagation reaching all vertices in the
projection.
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In the schematic representation of this height propagation (Figure 8.3) every face f
receives three incoming arrows from the three vertices that fix it. The derivation of heights
for the rest of vertices on f is indicated with outgoing arrows from f. The result is a
tree-shaped structure spanning all vertices and faces. In this tree, a path from any of
the initial four vertices to any other vertex will be hereafter referred to as a propagation
wave. Note that height propagations where a face is fixed from three (almost) collinear
vertices must be avoided. Section 8.4 gives a way to compute propagations eluding these
collinearities.

A trihedral mesh approximating a convex or
concave surface can be readily obtained by dis-
tributing a set of random points all over the sur-
face and computing its tangent planes at these
points. This leads to a plane arrangement whose
upper envelope —if the surface is convex— or lower
envelope —if it is concave— provides a good mesh
approximation of the surface. Since the tangent
plane orientations are random, any three of such
planes meet in a single point, and hence the mesh
is trihedral.

overconstrained Alternatively, a trihedral mesh approxima-

tion of a piece of concave or convex surface can
be obtained by starting with a rough mesh ap-
proximation and iteratively applying a bevel-
cutting [33] and/or a corner-cutting [12] oper-
ation to attain the desired approximation.

Figure 8.3: A height propagation start-
ing at four pre-specified (bold) vertices.
Several vertices can have an overcon-
strained height.

The situation becomes more complex when

concavities, convexities and saddle-like shapes

are simultaneously present, as neither of the previous strategies can be directly applied.

A straightforward solution to find a trihedral mesh approximation of a general surface

consists of computing the three-dimensional Voronoi diagram of a set of points sampling

the surface. The algorithm encompasses the following steps, where S denotes the input
surface to be polygonized:

1. Generate points on & at random, with a density proportional to the
curvature of S.

2. Replace each point p produced in step 1 by a pair of generating points,
p" and p”, placing them on the normal to S at p, one in each side of S,
at the same distance from p. This distance must be sufficiently small so
that the line-segment connecting p’ and p” penetrates the surface exactly
once.

3. Construct the three-dimensional Voronoi diagram induced by all generat-
ing points. Each such point will yield one polyhedral cell in the diagram,
possibly unbounded.
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4. For each polygonal face separating two cells, if the two cells correspond to
points on different sides of S, select this face as part of the desired output
polygonization. Collecting such faces we get a polygonization with only
trihedral or tetrahedral vertices, with three and four incident faces,

5. Use one of the local operations in Figure 8.4-bottom to replace every
tetrahedral vertex with trihedral ones. Output the resulting polygoniza-
tion.

We easily see that this algorithm produces a trihedral mesh. Since we select faces from
the Voronoi diagram of points in general position, the polygonization obtained in step
four either contains trihedral or tetrahedral vertices. (Any five points in general position
will not be co-spherical and, hence, the vertices of the Voronoi diagram will have at most
four incident Voronoi cells.) Any tetrahedral vertex of this polygonization can be finally
removed by using one of the two operations in Figure 8.4-bottom. If there is a plane
that separates the vertex from its neighbours, we simply truncate the vertex (Figure 8.4-
bottom, left), otherwise it is a saddle point and we replace it with four trihedral vertices
(Figure 8.4-bottom, right).

This strategy has been partially implemented until step 4 using the Qhull package
to compute the required 3D Voronoi diagram [115]. Strictly, Qhull computes convex
hulls, but it can also be used to derive Delaunay triangulations, halfspace intersections
about a point, Voronoi diagrams, furthest-site Delaunay triangulations, and furthest-
site Voronoi diagrams in 2D, 3D, and higher dimensions. It implements the Quickhull
algorithm for computing convex hulls [5] and is able to handle roundoff errors inherent
to the use of floating point arithmetic. Figure 8.4-top shows the results of the strategy
when applied to a triangulated surface of a Venus sculpture. The input sculpture is shown
(left) together with the two layers of generating points generated in step 2 (center), and
the polygonization obtained in step 4 (right). Figure 8.4-center shows three enlargements
of selected areas. One could come up with other “trihedrization” strategies with possibly
better results, mainly concerning the smoothness of the approximation, but this does not
modify the discussions that follow.

8.3 T and TT-Transformations

In a trihedral mesh a projection is overconstrained because any of its vertices lies on
three faces and, potentially, up to three propagation waves can determine a height at
the same time (Figure 8.3). However, as done in Figure 8.2¢, this can be avoided by
adding triangular faces. To this end, we first compute an arbitrary height propagation
spanning all vertices, and check which of them receives more than one wave. We then
take one overconstrained vertex v at a time and prevent all but one waves from reaching
v as follows. To stop the wave getting v from face f, we apply either of these two
transformations (Figure 8.5a and b):

o A T-transformation which places a new edge joining v; and v,., the two neighboring
vertices of v in f.
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e A TT-transformation which places a new vertex v’ on f near v and the three new

edges (v',v), (v',v) and (v',v,).

After either transformation, f is split into two or three faces, respectively, so that it
constrain the height of v anymore. Also, the added triangles are innocuous because all

heights can still be determined from the four initial ones.

Which transformation is preferred depends on the geometry of face f around ver-
tex v. If all points inside the triangle v;v,v belong to f, we say that f is locally con-
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Figure 8.4: Top: a triangulated model of a Venus (left) is symmetrically sampled (center)

to obtain a polygonization with only trihedral and tetrahedral vertices (right). Center:

zoom into three selected areas. Bottom: local operations used to remove tetrahedral

vertices.
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Figure 8.5: (a and b) T and TT-transformations. (c¢) Overhanged and self-intersecting
reconstructions induced by T-transformations at locally non-convex faces. In all figures,
newly added edges are shown in thick lines.

ver at v. So, for situations where f is locally convex at v, simplicity prevails and T-
transformations are enough (Figure 8.5a). When local non-convexities are present (Fig-
ure 8.5b), T-transformations yield occluded or partially occluded crossing edges whose
spatial reconstructions have overhanged parts, or self-intersecting faces (Figure 8.5¢).
Here, TT-transformations are preferred for they can avoid this.

An observation complements the strategy. In an overconstrained vertex v, either two
or three incoming propagation waves arrive. If no more than one of them comes through
a locally non-convex face, then we can always drop the incidence constraint in this vertex
just with T-transformations: we just leave the eventual “bad” wave to determine the
height of v and stop the others with T-transformations. This completes the description of
a one-sweep algorithm removing overdetermination. As an example, Figures 8.6a-c show
a projected dodecahedron before and after applying T-transformations.

In general, when the approximated surface is uniformly convex, or uniformly con-
cave, all faces of the resulting trihedral polygonal mesh will be locally convex, and hence
T-transformations will suffice. However, even when local non-convexities exist at the
faces, there still might be some height propagations where only T-transformations suffice.
On Figure 8.6d, for example, an algorithm computing an arbitrary propagation can be
forced to use TT-transformations (Figure 8.6e), whereas with a proper search, a robust
projection is obtained only with T-transformations (Figure 8.6f). But one certainly finds
correct projections where no propagation strictly using T-transformations can be found
(Figure 8.6g).

8.4 Optimal Propagations

The algorithm in the preceeding section corrects the incidence structure by finding an
arbitrary height propagation and inserting a T or a TT-transformation whenever a ver-
tex height is determined by two or more faces. However, arbitrary propagations might
travel along “degenerate paths” where the planes for some of the faces are determined by
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(€)

Figure 8.6: A projected dodecahedron (a) together with a height propagation (b) and the
T-transformations it yields (¢). A protruded tetrahedron (d) and two possible corrections:
(e), involving TT-transformations, and (f), involving only T-transformations. There are
meshes where propagations involving only T-transformations do not exist (g).

three aligned (or almost aligned) vertices. Clearly, these degenerate propagations must be
avoided if we want to minimize the errors during the reconstruction of the spatial shape
from the initial set of four heights.

The following experiment exemplifies this point. For the projection of a trihedral strip
in figure 8.7a, knowing the heights of points 1, 2, 3 and 4 produces a height propagation
since, for : = 1,3,5,7, ..., the 3D locations of points i, 2+ 1 and ¢+ 2 determine the plane
where the points ¢ + 4 and 7 4+ 5 lie and, thus, their height on the spatial reconstruction.
However, this plane becomes numerically ill-determined as the angle o between the points
i, ©+1 and ¢+ 2 approaches 180° and, when this happens, small errors on previous heights
may accumulate rapidly along the height propagation. We can see this effect on the two
strips in figures 8.7b and 8.7c, whose angles are « = = 120° and o = 175°, 5 = 10°,
respectively, with all interior edges of length 1. Their spatial reconstructions are shown
in figure 8.7d, for z; = 0.01, 25 = z3 = 0.05 and z, = 0.1. For the two strips respectively,
the plots in figure 8.7e and 8.7f show the maximum relative error p in the height of point
i, when the XY coordinates of all points are perturbed within a circle of radius r around
their nominal position. The bounds on p have been obtained by randomly perturbing all
points and then computing the height propagation, repeating this process 10.000 times.
The results show that, for a fixed r, the errors accumulate linearly as the propagation
proceeds. Moreover, by linearly varying r, the errors increase linearly as well. Note that,
while for the first strip the errors keep moderately low, they rapidly increase for the second
due to the high degeneracy of the height propagation. Thus, an algorithm to find height
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Figure 8.7: Error propagations. Given the projection of a trihedral strip in (a), the Z
coordinates of points 1, 2, 3 and 4 trigger a height propagation along the whole strip.
Experiments have been done with the strips in (b) and (c), also shown in (d) together
with their spatial reconstructions. (e) and (f) show the maximum relative error p of the
computed heights on the two strips, respectively, when the XY coordinates of the points
are perturbed within a circle of radius r. See the text for details.

propagations that avoid these degeneracies is needed. The rest of the section presents one,
based on finding the least cost solution of cyclic AND/OR graphs [51]. We now recall
some preliminary concepts about this kind of graphs.
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8.4.1 Cyclic AND/OR Graphs

The use of AND/OR graphs for representing problems originated during the sixties within
the domain of Artificial Intelligence. Since then, it has spread to other fields such as
Operations Research and Robotics, where they are used to represent cutting problems,
polyhedral interference tests and assembly disassembly plans. [50, 51] provides a survey
of available algorithms.

An AND/OR directed graph G, can be regarded as a hierarchic representation of
possible solution strategies for a major problem, represented as a root node, r, in G. Any
other node v represents a subproblem of lower complexity whose solution contributes to
solve the problem at hand.

There are three types of nodes: AND nodes, OR nodes and TERMINAL nodes. Every
node v has a set S(v) of successor nodes, possibly empty, to which it is connected in either
of two ways:

e An AND node v is linked to all nodes s; € S(v) through directed AND arcs (v, s;),
meaning that the subproblem for v can be trivially solved once all subproblems for
the nodes in S(v) have been solved.

e An OR node v is linked to all nodes s; € S(v) through directed OR arcs (v, s;),
meaning that the subproblem for v can be trivially solved once any one of the
subproblems for the nodes in S(v) has been solved”.

e A TERMINAL node represents a yet-solved or trivial subproblem and has no suc-
Cessors.

With this setting, a feasible solution to the problem becomes represented as a directed
subgraph T' of G verifying:
e 7 belongs to 7.

e If v is an OR node and belongs to T, then exactly one of its successors in S(v)
belongs to T

If v is an AND node and belongs to 7', then every successor in S(v) belongs to 7.

Every leaf node in 7" is a TERMINAL node.

T contains no cycle, it is a tree.

One can also assign a cost ¢(u,v) > 0 to every arc (u,v) in G and ask for the solution
T with minimum overall cost C(T') = 3=, ,)ep(r) ¢(u, v), where E(T) is the set of arcs of
T. Note that, as defined, G' can contain cycles. This turns out to be the main difficulty for
this optimization problem, which, in the past, was usually tackled by a rather inefficient
trick: “unfolding” the cycles and applying standard AND/OR search methods for acyclic
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Figure 8.8: AND/OR subgraphs for the propagation rules. AND nodes are indicated
by joining all their emanating arcs. (a) Constructed subgraph translating rule R2 for a
quadrilateral face. Dummy-face nodes are shadowed in grey. Note that, actually, there is
only one vertex node for each vertex in the trihedral mesh, but for clarity they are here
duplicated. (b) Propagation waves reaching a vertex. (c¢) Subgraph for rule R3, with an
arc for each of the possibilities in (b).

graphs. However, explicit treatment of cycles has recently been considered, and an efficient
algorithm is achieved in [51].

The search for an optimal height propagation is next reduced to this model. This
amounts to (1) constructing an AND/OR graph G}, whose feasible solutions define a
height propagation, and (2) define a cost function that promotes non-degenerate propa-
gations over degenerate ones.

8.4.2 Feasible Height Propagations

A height propagation can be defined by the following rules, with the given straightforward
translation into AND/OR subgraphs.

R1: Four selected vertices of the projection trigger the propagation. For this, we put a
TERMINAL node for each of the triggering vertices.

R2: Every face in the polygonization can be determined once the heights of any three of
its vertices are determined. If deg(f) denotes the number of vertices of face f, then
there are c; = (degg(f )> possible combinations of three vertices determining f. If we

put a node in G, for every vertex, except for the four triggering ones, then this rule
is translated by adding an OR node for every face, linked to ¢y new “dummy-face”
AND nodes, each representing one of the above combinations. Each dummy-face
node is in turn linked with arcs to the three involved vertices in the combination.
Figure 8.8 gives a schematic representation. The newly introduced vertex nodes
have not been assigned a type yet. This type is induced by the following rule.

R3: Ezcept for the initial four vertices, the height of every other vertez is determined once
one of its incident faces has a determined plane. This implements the fact that the
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propagation wave fixing the height of a vertex can come from any of its three incident
faces (Figure 8.8b). This rule can be represented by setting each vertex node as OR,
type, and linking it to the face nodes of its incident faces Figure 8.8c.

R4: The height propagation must reach all vertices. For this, we add a root AND node r
to G, and link it to all vertex nodes.

Note that a feasible solution tree of G, provides instructions to derive a height prop-
agation that reaches all vertices, starting at the four pre-specified heights.

8.4.3 Cost Function

In order to penalize propagations using sets of almost-aligned vertices, we proceed as
follows. Consider a height propagation that fixes a face plane f from the point coordinates
of three previously fixed vertices v;, v; and v,. We can simply penalize the corresponding
arcs in G, emanating from f by giving them a cost that is inversely proportional to the
area of the triangle defined by v;, v; and vy in the projection. The rest of arc costs are
actually irrelevant, but need to be positively defined [51]. In sum, for every directed arc
(u,v) we define its cost as follows:

1. c(u,v) = 1/det(v;, vj,vi), if u is a dummy-face AND node and v is any one of its
descendants. Here, v;, v; and vj, are the homogeneous coordinates of the vertices
associated with the three descendants of u, with a 1 in the last coordinate.

2. ¢(u,v) = 1, otherwise.

Once the least cost solution 7" is found, the projection can be made robust to slight
vertex perturbations as follows. At a vertex v receiving more than one propagation wave,
we put a T/TT-transformation on all faces fixing v, except on the one in the propagation
wave represented in 7.

8.4.4 Complexity Analysis

The worst-case complexity of computing the optimal solution of a cyclic AND/OR graph
with n nodes is O(n?) [51]. We now prove that the number of nodes in G, grows linearly
with the number of vertices of the trihedral polygonal mesh.

Let e, v and f be the number of edges, vertices and faces of the given mesh. Then,
2¢ = 3v because the mesh is trihedral. Moreover, if the mesh has h holes, with “the
outside” of the mesh counting as a hole too, then Euler’s relation says that v—e+f = 2—h.
From these two equalities the number of faces of the mesh can be written in terms of the
number of vertices and holes, f = % — h. Let us now count the number of nodes added
by each of the rules R1,..., R4:
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e Rule R1 adds four vertex nodes.

e Rule R2 adds one OR node for each face, amounting to f = “$* —h = O(v) total

nodes, assuming a constant number of holes. Also, for every face f this rule adds
cp = (de%(f )) dummy-face AND nodes. Although this number is clearly in the worst
case O(deg(f)?), if we divide the sum of face degrees by the number of faces, the
average face degree is six, at an increasing number of randomly placed vertices in

the mesh:

Zallfaces deg(f;) 3v 6v

f T Ty r4-2h

which will keep the number of dummy-face AND nodes linearly growing:

<§>f:20<v—£4—h> — 0(v)

e Rule R3 adds a linear number of OR vertex nodes.

e Rule R4 only adds one AND node, the root.

Up to now we have assumed that the four vertices triggering the propagation are
a priori selected. But other height propagations starting at other four vertices could
yield better height propagations. To test all possibilities, we do not need to repeat the
AND/OR search for every different combination of four vertices. Indeed, note that these
vertices just fix the planes of the faces they belong to. So, any other set of four vertices
on these faces will yield the same optimal propagations, provided that two of them lie on
the common edge. We can equivalently think of pairs of faces triggering the propagation
and use their face nodes as TERMINAL in Gj,. The choice of TERMINAL vertices
(instead of TERMINAL faces) was done to be coherent with previous explanations. In
sum, if one wants to search over all possible starting places of propagation, then for each
pair of adjacent faces the AND/OR search needs to be repeated. This amounts to solve
e = %v optimization problems in the worst case, meaning that the overall complexity will
be O(v?), under the assumption that the face degree is six.

8.5 Further Extensions

This chapter has presented a correction algorithm that takes a trihedral line drawing as
input and uses T and TT-transformations to place triangular faces at strategic places until
a generically correct drawing is obtained. A local strategy has also been given that avoids
height propagations along degenerate paths when possible, in order to minimize the errors
of a spatial reconstruction of the shape. Moreover, we have shown how trihedral mesh
projections can capture the spatial shape of a given object’s surface, once the heights of
four vertices are specified, and we have given an algorithm to derive trihedral meshes from
arbitrary input surfaces.
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One issue that deserves further attention is that errors accumulate from one vertex
to another along a height propagation, as shown in figure 8.7. The AND/OR search
algorithm reduces these errors but, for the same purpose, one could additionally extend
the number of vertices for which a Z value is given. Optimizing the position of such
vertices is almost certainly intractable, but simple heuristics could be used to add vertices
to a “specified Z” set whenever errors accumulated along a propagation path become
unacceptable.

Moreover, it would be helpful to seek an enhancement of (or an alternative to) the tri-
hedrization algorithm presented in section 8.2. Clearly, as observed in figure 8.4-bottom,
the obtained polygonization contains small polygons, almost orthogonal to the input sur-
face. This kind of “staircase effect” may produce numerical instabilities when attempting
to reconstruct the spatial shape from its projection, and should be avoided. A possible
solution to this problem may be found by using projective polarities [20]. It is well known
that the projective polar of a triangulated polyhedron (with respect to a quadric) is a
trihedral polyhedron. Thus, in principle, to get a trihedral mesh of a surface S, one could
derive an auxiliary surface §*, the polar of S through a polarity P [46], and then apply
P! to a triangulation of S*, to obtain a trihedral mesh approximating S. We believe
this is a promising method to increase the smoothness of the obtained polygonization.
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Conclusions

“We can only see o short distance ahead, but we can see
plenty there that needs to be done.”

Alan Turing —From his paper on the Turing test
“Computing Machinery and Intelligence”, 1950 [116].

During the seventies and early eighties, the spatial interpretation of line drawings
was one of the hot topics in Computer Vision and Artificial Intelligence. This is not
too surprising, as one of the aims of these disciplines is to furnish a robot with visual
capabilities to interact with the environment, which means that some means of automatic
scene reconstruction needs to be developed. Line drawings offered a simple idealized
picture of what a robot could observe, but precisely this simplicity, together with the fact
that humans are also able to infer 3D shape just from boundary information, made the
problem interesting and one of coveted solution.

The main issues to attack were not clear initially, but after the works by Guzmann,
Huffmann, Clowes and Waltz, the realizability problem emerged as a reasonable one to
start with: what conditions must be verified on a line drawing so that it represents a
true projection of a polyhedral scene? By the end of the seventies, many computer vision
scientists who were later to gain international prominence, had already engaged in a
race to solve this question. Gradually, partial solutions were found and published, from
the labelling techniques to the gradient space approach, authored by Waltz, Mackworth,
Kanade, Sugihara and Shapira, to name a few renowned ones. It was finally Sugihara who
gave a complete set of conditions, in a series of papers [108, 111, 110, 109] that culminated
with the publication of his celebrated book in 1986 [112].

Despite having resolved the main questions, in the course of his investigation Sugihara
noticed the connecting threads between line drawing interpretation and the rigidity of
plane skeletal structures and began establishing contacts with other geometers working
in Rigidity Theory, specially with Walter Whiteley and Henry Crapo of the Canadian
Structural Topology Group, who were working on complete proofs and extensions of
Maxwell’s theorem by that time. This contact led to a remarkable theorem by Sugihara on
the combinatorial characterization of generic realizability (see Theorem 3.1 in Chapter 3).
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The proof was partially achieved by him in [107] and finally completed by Whiteley
in [132]. Sugihara reports on this proof in his book, but also devotes a full chapter to
collect the main connections of Rigidity Theory with line drawing interpretation. In the
introduction he writes: “this chapter is rather a digression from the main story of the
book, but seems important for future researches on line drawings” [112, page 12]. It
was probably this sentence one that mostly influenced us to pursue new enhancements,
to clarify the connections with the mechanics of articulated frameworks, and to try to
approach the problem in a less algebraic fashion as possible. We then discovered the
concurrence conditions for a correct truncated tetrahedron, a 4-calotte and a 5-calotte
(Figure 4.1), which motivated our first question in 1997: could it be possible that a
drawing’s correctness be checkable solely verifying concurrence conditions on groups of
three lines?

We realized that the answer is “yes” with a rather sophisticated proof that used
delta-wye transformations to reduce the graph of the depicted polyhedron to one of a
tetrahedron [87, 86]. However, in the course of a stay with Whiteley’s group, we realized
that he had already discovered a simpler version of this fact several years before, involving
a smaller number of concurrence tests [134]. His cross-section test though, was only proven
for spherical polyhedra, and we were seeking a more general method, suitable to test
drawings of several opaque polyhedra with occlusions among them. This motivated our
research on synthetic geometric tools presented in Chapter 4 and in [88]. Our contributions
on this regard have been mainly two:

1. An extension of the range of applicability of the cross-section test, which now in-
cludes the case of line drawings of polyhedral disks with holes.

2. A simpler proof to the fact that cross-sections are necessary and sufficient to decide
the correctness of these types of drawings.

These results can be extended in a number of ways. On the one hand, we note that the
cross-section is just one among several known reciprocal diagrams. As seen in Chapter 3,
other similar diagrams have been found and used for the same purposes, like Maxwell’s
reciprocal or the gradient-space approach, for example. The known fact that Maxwell’s
reciprocal can be transformed to the cross-section through a plane polarity [134] indicates
that all these diagrams are essentially the same, up to projective transformations. It would
be helpful to clarify which are these transformations with a unifying aim in mind, since
one usually has the impression that many authors use the same concepts under a different
language, when browsing the literature [58, 48, 28, 52, 53]. On the other hand, the main
drawback of cross-sections is that no general method has been given yet to construct a
cross-section or otherwise show that none exists, using a pencil and a straightedge alone.
Although we have shown an incremental construction that works for trihedral drawings,
a general tool still remains unknown. Its development, or a proof of its non-existence, are
challenging open problems for further consideration.

On the contrary, if algebraic methods are used, we have seen that an algorithm to
construct cross-sections does exist, which also constitutes a powerful method to decide
the correctness of drawings of objects with complicated topologies, with any genus and
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an arbitrary number of boundaries (see Chapter 6). This algebraic algorithm, though,
relies on a highly kinematic-geometric observation, realized by Whiteley in [130]. Namely,
that motions of an associated panel framework are in one-to-one correspondence with the
spatial reconstructions of the drawing. Then, telling whether a drawing is correct reduces
to the study of the instantaneous motion space of this framework, and it is precisely here
where the tools of the Grassmann-Cayley algebra have become useful (Chapter 5). We
have further exploited this connection in a number of ways, leading to an approach whose
main advantages over Sugihara’s are the following:

1. One can decide the correctness of a drawing by simply computing a vector basis of
the kernel of a matrix, whose entries are just Pliicker coordinates of the edges. This
offers a simpler alternative to Sugihara’s approach based on Linear Programming.

2. Asopposed to Sugihara’s, this method is straightforwardly implementable in floating
point arithmetic, as it can be made robust to the super-strictness problems induced
by numerical round-off errors by simply using the singular value decomposition to
find a basis of the aforementioned kernel.

3. A single test is enough to check many differently labelled versions of the same
drawing D. If two labellings assign occlusive labels to the same edges, they yield
the same incidence structure for D, regardless of whether the orientation of the
labels (— or <) coincides on each edge or not. In consequence, a single test is
needed to check both labellings simultaneously.

4. {+, —}-labellings can be generated in a constructive fashion, rather than by solving
a constraint satisfaction problem. The only pre-requisite to this end is that the
incidence structure be known or, equivalently, that the input line drawing has its
boundary edges identified.

Once the correctness is ensured, the best we can do is to recover all liftings in a pa-
rameterized fashion. However, humans do not seem to get such an infinite family of
reconstructions, but a single one among them, and a possible extension that we envisage
here is to achieve a similar result. This can be done in a number of ways. For example,
we can use shading information from the image to select a lifting that best approximates
the given brightness pattern (under some model of illumination). This is currently a
joint work with Michel Devy from the LAAS lab at Toulouse. The same effect could be
achieved with an assumption of which liftings a human seems to prefer. Recent studies
by Marill [60, 61, 62] indicate that a human might tend to select those interpretations
that minimize the standard deviation of the dihedral angles between pairs of faces. The
weaknesses of this study are criticized in [56] by Leclerc and Fischler, arguing that Mar-
ill’s simple technique may produce liftings with non-coplanar faces even on simple line
drawings. Nevertheless, we anticipate that these non-coplanarities can be avoided if the
linear parameterization of the interpretation space is used in this minimization.

The last part of the Thesis is devoted to the correction of line drawings and it is
mainly the outcome of a research stay with Sugihara. We propose a first strategy that
minimally modifies the positions of all vertices until the closest correct drawing is found.
This approach presents several advantages over previously existing ones:



124 Conclusions

1. Since we permit the movement of all vertices and we minimize a sum of Euclidean
distances between vertex pairs, we get closer corrected versions of the input drawing,
as compared to those one can achieve with the techniques in [112].

2. The correction strategy is itself a realizability test. If the input drawing is correct,
this is quickly detected by the method that finds an initial approximation to the
minimization problem (Section 7.6).

3. The method of Ponce and Shimshoni [82, 100] is not complete, since it can classify
an incorrect drawing as correct. Our approach does not suffer from this drawback.

However, we still foresee some enhancements to our technique. The most relevant of them
is to turn the rational parameterization in Section 7.4 into a polynomial one, by using
projective rather than Euclidean coordinates for the vertices. We have preliminary studies
showing that this avoids the presence of divisions by zero in the objective function, and
could even prevent from falling on bad solutions whose liftings have coplanar faces. This
polynomial parameterization would open the door to the use of more powerful optimiza-
tion techniques, in an attempt to attain the global minimum. Interval arithmetic [42] or
Bézier-clipping methods could be very suitable to this end [11].

Finally, in Chapter 8, we give a second alternative to correct line drawings, now by
just modifying the incidence structure while keeping the vertices fixed. As shown, this
technique has applications to robust solid modelling, and it allows to represent a trihedral
mesh just by its XY -projection, plus four extra Z-coordinates. Here, the main point
deserving further attention is to obtain better trihedral mesh approximations of arbitrary
surfaces, avoiding the staircase effect in Figure 8.4 as much as possible. Our current
focus is in devising an algorithm to this end, based on the use of projective polarities, as
outlined in Section 8.5.

Despite the importance of line drawing interpretation in the past decades, nowadays
we observe a gradual decrease of researchers’ interest on these topics. This decay is
probably motivated by two reasons: on the one hand, the main theoretical questions were
already solved by the middle eighties, with the appearance of Sugihara’s papers and his
book in 1986 [112]; on the other hand, the problem itself was too idealistic to be applied
to practical situations, since line data extracted from real images are far from perfect line
drawings, and it seems difficult to use the line drawing interpretation theory directly for
real image processing. Moreover, Robotics itself is experiencing substantial changes in the
way of approaching its fundamental questions. Most significantly, classical solutions to
planning a robot’s actions, which used to rely on highly symbolic reasoning over simplified
models of reality, turn out to be infeasible on complex unstructured environments and,
in consequence, they are being gradually substituted by behaviour-based approaches that
avoid internal representations of the world as much as possible. As a result, reconstruction
methods like the ones we present here are currently disregarded, due to their highly
symbolic nature, and the strong assumptions they introduce about the external world
—Iike polyhedrality in our case.

Nevertheless, driven by the pervasiveness of diagrams in human communication and by
the increasing availability of graphical environments in computerized work, the study of
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diagrammatic notations is emerging as a research field in its own right. This development
has simultaneously taken place in several scientific disciplines, including Cognitive Science,
Artificial Intelligence and Computer Science among others, which indicates a return to
the main questions of drawing interpretation inside a broader context: drawings are not
only regarded as a means of communication with computers but they are also recognized
as a key ingredient of visual intelligence.
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